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In recent years, many works spring out to adopt the forecast-based approach to support the investment
decision in the financial market. Nevertheless, most of them do not consider mining the hidden
patterns in the cross-regional financial time-series. However, the fluctuation in financial markets has
always been affected by the global economy, instead of a single market. To overcome this issue, this
article proposes an Attention enhanced Compound Neural Network (AComNN) that can be applied on
features of multiple-sources, including different financial markets and economic entities. The proposed
novel approach compounds of Artificial Neural Network (ANN), Long Short-Term Memory (LSTM), and
self-attention to progressively capture the time-zone-dependent context behind the financial time-
series across regions with multiple filters. Thereby, it provides trading signals for supporting the
financial investment decision. The proposed AComNN has been applied on the Hong Kong Hang Seng
Index (HSI) trend prediction based on various initial features across regions. The experimental result
demonstrates that the AComNN achieves the highest average accuracy for the one-day ahead trend
prediction over 60%. Besides, it reveals highly superior competitiveness on the forecasting capability
improved by 13.36% on average compared with the baselines. Therefore, we encourage to adopt
the proposed method to the practitioners and provide a new thought, considering the analysis of
cross-regional features, in the financial time-series forecasting.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Due to the volatile, nonlinear, complicated, and chaotic charac-
eristics of the financial market, accurately forecasting the trend
f the financial time-series has always been challenging [1]. In
ecent years, a series of well-designed machine-learning-based
rading systems emerge for assisting investors or speculators
n identifying financially rewarding stocks and exercising their
wnership [2,3].
Previous traditional studies mainly adopt some univariate

ime-series models for the prediction in the financial market, such
s AutoRegressive Moving Average model (ARMA) [4], AutoRe-
ressive Integrated Moving Average model (ARIMA) [5–7] and
eneralized AutoRegressive Conditional Heteroskedast (GARCH)
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[8]. However, only considering the influence of its historical
behaviors on future movements of the price, the univariate model
structure and their simple market pattern assumptions lead to the
low financial forecasting capability in the practical application.

Apart from the traditional time-series models, machine learn-
ing models also have been adopted in the financial time-series
forecasting for years due to their more substantial capability of
learning, ease of interpretability, and absence of the presumption,
such as Support Vector Machine (SVM) [9,10], Support Vector
Regression (SVR) [11], Logistic Regression (LR) [12], Random For-
est (RF) [13], eXtreme Gradient Boosting (XGBoost) [14], Deci-
sion Tree (DT) [15] as well as a series of ensemble models of
stacking [16] and bagging [17].

In recent years, deep learning has been widely applied to
various research fields such as pattern recognition, image classi-
fication, and autopilot, which obtained great success. Because of
their robust fitting and nonlinear mapping capability, researchers
also have designed various deep learning models to implement
the forecasting in the financial market, such as Long Short-Term

Memory (LSTM) [2,18], Convolutional Neural Network (CNN) [19],
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rtificial Neural Networks (ANN) [20], Graph Convolutional Neu-
al Network (GCNN) [21] and other hybrid neural networks [22–
5].
Nevertheless, two issues suppress the forecasting capability

f the above techniques. These are — (1) most of the previous
tudies of financial market prediction only focus their features
n the relationship of inter-markets restricted in one region or
ven on a single targeting market, obstructing crucial information
ransmission from the outside market, i.e., information insuffi-
iency. (2) Besides, their models are unable to capture the crucial
idden patterns behind the financial time-series across areas, due
o the lack of corresponding adaptation to the multi-regional
eatures, i.e., structural deficiency.

Therefore, in this work, we adopt the Hang Seng Index (HSI)
rend prediction task by taking as an example to solve the above
wo issues. For the information insufficiency, we adopt cross-
egional features as the initial input from two perspectives. On
he one hand, we collect the technical indicators extracted from
he Financial Times Stock Exchange 100 Index (FTSE 100), Stan-
ard & Poor’s 500 (S&P 500) and HSI in the area of London,
ew York, and Hong Kong respectively. On the other hand,
e collect other highly associated economic indicators such as
acro-economic indicators, commodity indicators, and currency
xchange indicators obtained from regions of the U.K., the U.S.,
nd China.
For the structural deficiency issue, we propose a novel At-

ention enhanced Compound Neural Network (AcomNN) for ex-
racting features from multiple sources, which is constructed of
he steps of ANN, LSTM, and self-attention in order. The ANN
tep is responsible for preliminarily extracting semantics from
ach region and uniform their feature dimensions. The LSTM step
orizontally further transfers the refined semantics among re-
ions according to their time-series relation on time zone. Finally,
he self-attention step can dynamically focus on the decisive
arts of regions for the weights allocation, thereby progressively
apturing the time-zone-dependent context behind the financial
ime-series across regions with multiple filters.

In the experimental stage, we evaluate the AComNN on the
SI prediction with cross-regional features collected from Apr.
003 to Dec. 2019. The experimental result demonstrates that
he highest average accuracy for the one-day ahead HSI trend
rediction can up to 60.81%. Compared with the state-of-the-art
aselines, our AComNN outperforms them on average over 13%,
imultaneously with a relatively very low standard deviation of
.0355. Additionally, we also implement the trading simulation
ased on the trading signal provided by the AComNN. The final
ccumulative return during the simulation can up to 35.04% on
verage, showing that the performance of the AComNN based
nvestment advisory system is highly competitive and practical
n the real world.

The main contributions of our work are as follows:

1. We mitigate the information insufficiency by integrating
the cross-regional features of multiple stock markets and
economic entities that constitute the raw features.

2. We propose a fine-designed Attention enhanced Compound
Neural Network (AcomNN), which can progressively cap-
ture the time-series relation characteristics and dynami-
cally allocate attention for cross-regional features in each
time zone.

3. We explore the performance of AComNN under different
feature smoothing and forecasting windows configuration.
Also, we re-implement three state-of-the-art financial fore-
casting models [16,19,22] to compare with the proposed
AComNN, and the experimental results prove that our pro-
posed AComNN achieves an encouraging result among the

baselines.

2

The rest of the paper is organized as follows: Section 2 sum-
marizes the related literature concerning the financial time-series
forecasting. Section 3 presents the associated data collection
and preparation. Section 4 elaborates on the model construc-
tion method. Section 5 demonstrates the experimental design.
Section 6 reports the experimental results. Section 7 discusses
the whole experiment in forecasting capability and trading sim-
ulation. Section 8 discusses the threats to validity of this work.
Finally, Section 9 concludes the paper and outlines the future
work.

2. Related work

2.1. Feature study in financial markets

Since the price variation in the financial market is highly
fluctuating and full of unexpected noises, features studies includ-
ing determinant factors selection and dimension reduction play
a critical role in effectively boosting the accuracy for financial
market prediction and mitigating overfitting in training.

In [26], Garefalakis et al. study the determinant factors that
influence HSI tendency and conclude that S&P 500 in the U.S.
stock exchanges, gold, and crude oil prices play a substantial
role in the Hong Kong stock market. Valukonis [27] statistically
analyzes several China’s stock indices, such as Shanghai Shen-
zhen CSI 300 index, Shanghai Stock Exchange (SSE) composite
index, and ShenZhen Stock Exchange (SZSE) composite index
data from 2008 to 2012. And he concludes that the GDP growth
and inflation rate are the key factors that affect the Chinese
stock market tendency. Weng et al. [28] explore the 23 macro-
economic indicators concerning the U.S. market, such as oil price,
unemployment rate, trade balance, and monetary supply. Then
they adopt three ensemble models and four time-series models
to predict four major U.S stock indices including the Dow Jones
Industrial Average (DJIA) index, the New York Stock Exchange
(NYSE) composite index, the National Association of Securities
Dealers Automated Quotation (NASDAQ) composite index, and
the S&P 500 index. In addition, technical indicators, as another
critical part of market features, have also been adopted in stock
prediction. Kara et al. [29] apply ten technical indicators such as
momentum, stochastic K%, and RSI in SVM and ANN to predict
the movement of the Istanbul Stock Exchange (ISE) national 100
index.

Furthermore, a tremendous amount of feature selection meth-
ods are also put forward in financial time-series forecasting be-
cause overwhelmed irrelevant features may mislead the predic-
tion models. Tanaka-Yamawaki and Tokuoka [30] adopt evolution
computing to implement technical indicators selection on eight
stocks from NYSE, thereby to carry on the intra-day forecast.
Wang [31] study the HSI and Korea Composite Stock Price In-
dex (KOSPI) moving tends and apply the Principal Component
Analysis (PCA) to implement the feature selection and dimension
reduction before the classification process. Nti et al. [13] utilize
the random forest to operate the feature selection among a series
of macro-economic indicators in the Ghana Stock Exchange (GSE),
thereby to further predict a 30-day ahead stock-price. Neverthe-
less, these methods cannot construct a model in an end-to-end
manner; instead, models change in feature extraction and objec-
tive prediction, causing it difficult to determine their influence on
the whole framework.

2.2. Statistical models in financial time-series

At the early stage, researchers adopt traditional AutoRegres-

sive (AR) models as the prediction engine to deal with financial
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ach stock market open and close time.

Open Close Time zone

London stock exchange 08:00 16:30 UTC +1
New York stock exchange 13:00 20:00 UTC −4
NASDAQ exchange 13:00 20:00 UTC −4
Hong Kong stock exchange 01:30 (day +1) 8:00 (day +1) UTC +8

time-series forecasting. Ariyo et al. [6] exploit ARIMA to imple-
ment the stock prediction for NYSE and Nigeria Stock Exchange
(NSE). Kocak [4] put forward a new high-order fuzzy ARMA(p,q)
and apply it to the prediction of the stock market in Turkey.
Afterward, other improved traditional AR models are continu-
ously involved in the forecasting of financial markets, such as the
AutoRegressive Conditional Heteroskedasticity model (ARCH) by
Zumbach et al. [32], GARCH by Lin [8], and VAR by Ülkü et al. [33].

Subsequently, more complex machine learning techniques
ave steadily become commonly adopted in financial forecasting
or their more powerful capabilities to find internal patterns be-
ween features and objectives. Wang et al. [17] and Nair et al. [15]
dopt tree-based models to forecast the stock indices in China and
ndia. Luo et al. [10] propose an improved PLR-WSVM to over-
ome four deficiencies that occurred in the previous one. Besides,
iang et al. [16] exploit the ensemble learning to integrate several
ree-based models and simple deep learning models to construct
he complex stacking framework to predict the tendency for the
.S market.
In recent years, deep learning-based models as the bionics of

uman brain structure have been applied in more and more data
cience fields, including the stock forecasting domain. Rundo [34]
ropose a deep LSTM model with reinforcement learning layers
o forecast the price trend in the high-frequency foreign currency
xchange market. Hoseinzade et al. [19] put forward a CNNpred
odel to analyze the five principal U.S. stock market indices from
three-dimensional perspective. Long et al. [22] propose a Multi-
ilters Neural Network (MFNN) for extracting the features by
ultiple filters, which also achieved some success in the CSI300

ndex.
However, most of the works we mentioned above either did

ot exploit the cross-regional features to forecast their objectives
r cannot capture the internal patterns from their gathered data.
o this end, our motivation is to bridge the gap of the above
eficiencies and put forward our own high performing prediction
ngine in the investment advisory system that can capture the
ritical patterns between features and labels under the global
arket.

. Data collection and preparation

Regionally, our cross-regional features can be divided into
hree parts, i.e., from the U.K., the U.S., and China. The data com-
rises both technical indicators and other economic indicators in
ach region.
Technical indicators are the same in each region, extracted

ither from FTSE 100, S&P 500, or HSI. The FTSE 100 is composed
f 100 constituent stocks in the London stock exchange. The S&P
00 consists of 500 constituent stocks in the NYSE and NASDAQ
xchange, while the HSI consists of 50 constituent stocks in the
ong Kong exchange. The open and close time for each of the
bove stock exchanges are listed in Table 1 [35], which present
he time-zone relation between each index.

Other economic indicators are obtained from three major eco-
omic entities, i.e., the U.K., the U.S., and China, such as macro-
conomic indicators, commodity indicators, and currency indica-
ors, which are different among areas because of their various re-
ional economic characteristics. These indicators can be obtained
y days, months, or quarterly.
3

The whole data are collected from Apr. 2003 to the end of Dec.
2019, a total of 4119 instances, and the detailed information of
our collected features have been recorded in Table A.1 in the Ap-
pendix section by elaborating on each feature’s name, description,
type, source, and calculation function. The detailed label, feature
generation procedures and their configuration in our experiment
are shown in the later parts.

3.1. Label generation

In our experiment, we explore the influence of the fore-
casting window size (ws) of our models’ performance. We set
ws = {1, 5, 10, 20}, where respectively denote one-day, one-
week, two-week, and one-month ahead prediction. Since our
objective is to forecast the moving trend of HSI, we set a binary
variable yt,ws as the label of the instance of the day t , as shown
in Eq. (1).

yt,ws =

{
1 rt,ws ≥ 0
0 rt,ws < 0 (1)

he rt,ws =
closet+ws
closet

− 1 is the return from day t to its future ws
ays, where the closet represents the close price of HSI at day t
hile closet+ws represents the close price of day t + ws.

.2. Feature generation

Although lots of literature have proposed various determinant
ndicators that are highly related to stock index price move-
ent of HSI, S&P 500, DJIA, NASDAQ composite index, and FTSE
00 [13,16,19,26–30], there is no unified criterion on related
eature selection. In this work, our raw data are retrieved from
egions of the U.K., the U.S., and China, including Open, High, Low,
lose price, and Volume (called as OHLCV variables) of FTSE 100,
&P 500, and HSI as well as regional indicators such as macro-
conomic indicators, commodity indicators, currency indicators.
ee Table A.1 in Appendix for details.
After we collect all the indicators in the range of Apr. 2003

o Dec. 2019 from each public source, we mainly implement four
teps to pre-process those raw data for the preparation of feeding
nto our proposed model.

(1) Smoothing: One of the most challenging parts of stock
prediction is the extreme volatility. Smoothing with the
exponential moving average can effectively reduce the un-
expected variations and noises in the stock price move-
ment, which is a practical approach to capture a relatively
long-term moving trend in the stock market. Some of the
previous works [14,16] have adopted the smoothing proce-
dure for their raw data; however, they just set a constant
value for smoothing factor (α) without further exploration.
Thus, in our work, we uniformly set four candidate α =

{0.095, 0.3, 0.5, 0.9} to explore the influence of various
smoothing effects on our prediction model, where larger α

gives more weights to the current time-step. OHLCV vari-
ables and all other economic indicators are smoothed by
the exponential moving average when they are collected.
The exponential smooth can be defined by the following
Eq. (2) in a recursive way:

S0 = X0,

for t > 0, St = α ∗ Xt + (1− α) ∗ St−1,
(2)

where the Xt represents the feature vector in time step
t , α is the exponential smoothing factor, and each St is
recursively calculated by the current Xt and its previous
S .
t−1



Z. Yang, J. Keung, M.A. Kabir et al. Applied Soft Computing 111 (2021) 107649
(2) Calculate technical indicators: After smoothing each raw
feature, we calculate 19 technical indicators based on the
OHLCV variables of FTSE 100, S&P 500, and HSI respec-
tively, which can be referred to Table A.1 in Appendix.

(3) Substitute absolute indicators with their relative rate:
For each indicator, including technical indicators and other
economic indicators, we convert their absolute values to
relative rates since relative rates have stronger correlations
with the labels of the price trend [10,16]. Specifically, we
define the relative rate calculation in Eq. (3):

X̂t = Xt/Xt−1 − 1, (3)

where Xt represents the feature vector at the time step t
and X̂t represents the relative rate of the original feature
vector at the time step t .

(4) Data normalization: Since different features are in dif-
ferent data magnitude, the larger value of features may
overwhelm those smaller ones. As such, data normalization
has always been critical and commonly used in multi-
variate machine learning methods. In this work, we adopt
the Z-score normalization method for our feature matrix,
which can be defined in Eq. (4):

X̃ =
X − E[X]
√
Var[X]

, (4)

where the X̃ is the normalized feature matrix, X is the
original feature matrix, and E[X] and Var[X] are the mean
and variance of the X by features.

(5) Align the date of each indicator: Since features from
different regions or markets have different releasing cycles
or different holiday arrangements, causing the fact that
some indicators may be released while others may not on
the same day, i.e., missing values may appear on some
features in a sample. For instance, the Hong Kong exchange
will not open on the Chinese lunar new year, while the
other three stock exchanges will open on that day, leading
the HSI related data to be missing. Furthermore, due to
the time-zone difference (as shown in Table 1), when the
HSI trend forecasting is implemented, we can only obtain
the features (including the technical indicators and other
economic indicators) of the previous day for the U.K., and
the U.S. region. In this case, to avoid utilizing future data
in prediction, we align these two regions’ data on day
t − 1 with the HSI of the day t . However, for the regional
features in China, we directly align them with HSI by date
due to the absence of the time-zone difference. Finally, if
missing values still exist in the dataset, we fill those empty
positions by their values in previous time steps.

3.3. Back-testing arrangement

In our study, we experiment on each combination of α and ws.
To obtain a stable evaluation for the model performance, under
each α and ws combination, we configure five groups of continu-
ous historical data for back-testing experiments from July 2017
to December 2019, where the backtest is conducted every six
months. Thereby, when applying to the practical trading, we will
still re-train the model by every six months with the best α and
ws combination to try to follow and reproduce the experimental
performance. Table 2(a) presents that for each combination of α

and ws, we configure same five groups of back-testing data, while
Table 2(b) presents the sample distribution labeled with Increase
(+1) or Decrease (0) in each group of back-testing dataset, when
the ws = 1.
4

Table 2
Research data statistics.
(a) Five groups of backtests configuration for each combination of ws and α

Group # Train set Validate set Test set

1 04/2003–12/2016 01/2017–06/2017 07/2017–12/2017
2 04/2003–06/2017 07/2017–12/2017 01/2018–06/2018
3 04/2003–12/2017 01/2018–06/2018 07/2018–12/2018
4 04/2003–06/2018 07/2018–12/2018 01/2019–06/2019
5 04/2003–12/2018 01/2019–06/2019 07/2019–12/2019

(b) Samples distribution for ws = 1

Group # Train set Validate set Test set

Increase Decrease Increase Decrease Increase Decrease

1 1767 1616 68 53 74 51
2 1835 1669 74 51 68 53
3 1909 1720 68 53 64 61
4 1977 1773 64 61 70 48
5 2038 1837 70 48 65 61

So, to summarize, we set four candidate values for both the
smoothing factor α = {0.095, 0.3, 0.5, 0.9} and the forecasting
window sizes ws = {1, 5, 10, 20}. And for each combination of
ws and α, we apply the AComNN on five groups of back-testing
experiments. Thus totally we generate 4 ∗ 4 ∗ 5 = 80 datasets
to explore the influence of ws and α on our model prediction
performance in this work.

4. Attention enhanced Compound Neural Network

In this section, we introduce the construction of our proposed
Attention enhanced Compound Neural Network (AComNN). The
whole framework includes three main steps: ANN Step, LSTM
Step, and Self-Attention Step. Fig. 1 depicts the general frame-
work of the AComNN.

4.1. Before the AComNN construction

As aforementioned in Section 3, our processed features are
retrieved from three regions: the U.K., the U.S., and China. In each
area, features consist of technical indicators extracted from its
corresponding stock market index (i.e., FTSE 100 in the London,
S&P 500 in the New York, and HSI in Hong Kong) and other eco-
nomic indicators with its regional characteristic. Before feeding
the features of each region into the model, we arrange them ac-
cording to the time zone order of the U.K. (UTC +1), the U.S. (UTC
−4), then China (UTC +8, day +1) to better refine their time-
series relations. Additionally, we partition the technical indicators
and other economic indicators in each region to extract the high-
frequency (i.e., technical indicators) and low-frequency (i.e., other
economic indicators) semantics separately. Up to now, we have
ready six-part of features in the order of time zone.

4.2. The artificial Neural Network step

Artificial Neural Network (ANN) was the first kind of net-
work structure inspired by the human brain system that tries
to let machines imitate how humans learn. It is composed of a
series of fully connected layers customarily used for conveying
information via non-linear mappings in the network [36].

In our framework, the prepared features are first fed into the
six ANN networks to extract their high dimensional semantics
and uniform the feature dimension in each input tunnel. Specif-
ically, features in each layer will first dot product with layers’
trainable weights as a linear transformation, which is formally
defined in Eq. (5):

v
j
i =

∑
v
j−1
k w

j−1
k,i , (5)
k
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Fig. 1. Attention enhanced Compound Neural Network.
a
W

o

here v
j
i represents the linear transformed result of neural i at

he layer j, and w
j−1
k,i represents the connection weight between

eural i of layer j and neural k of layer j− 1.
In order to speed up the model convergence and mitigate the

radient vanishing and explosion, we adopt batch normalization
n the output of the above linear transform [37–39]. Specifically,
or each layer, it can be defined in Eqs. (6) and (7):

ˆj =
V j
− E[V j

]√
Var[V j]

, (6)

Y j
= γ V̂ j + β, (7)

where Vj represents a batch of linear transformed features at the
layer j, E[·] and Var[·] represent the mean and variance of each
batch, respectively, γ and β represent the parameters of batch
normalization those to be learned in training, and Y j represents
he output of batch normalization at layer j.

Afterwords, we adopt Rectified Linear Unit (ReLU) as our ac-
ivation function for ANN Step. More formally, for each layer, it
an be defined in Eq. (8):

(yji) = max(0, yji), (8)

here yji is the batch normalized features of neural i in layer j.
Through all the above procedures in each layer, the features

f six tunnels concatenate together by the same order to be

repared as the input of the LSTM Step.

5

4.3. The long short-term memory step

LSTM was first proposed in [40], enhanced from Recurrent
Neural Network (RNN), mainly applied in sequential or tempo-
ral data. Unlike traditional RNNs that have gradient vanishing
and explosion problems, which make it impossible to deal with
long-term dependencies between features, LSTM provides three
gates (i.e., forget gate, input gate, and output gate) to keep the
vital information transferred in the network. More formally, their
mathematical definitions are shown below in Eqs. (9), (10), (11),
(12), (13), and (14):

Ft = σ (XtWx,f + Ht−1Wh,f + bf ), (9)

It = σ (XtWx,i + Ht−1Wh,i + bi), (10)

Ot = σ (XtWx,o + Ht−1Wh,o + bo), (11)

C̃t = tanh(XtWx,c + Ht−1Wh,c + bc), (12)

Ct = Ft
⨀

Ct−1 + It
⨀

C̃, (13)

Ht = Ot

⨀
tanh(Ct ), (14)

where Xt represents the feature vector at time step t; Ht−1 rep-
resents the hidden states of the previous time step; Wx,f , Wh,f ,
nd bf represent the trainable weight vector at forget gate Ft ;
x,i, Wh,i, and bi represent the trainable weight vector at input

gate It ; Wx,o, Wh,o, and bo represent the trainable weight vector at
utput gate O ; W , W , and b represent the trainable weight
t x,c h,c c
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ector for calculating the candidate memory C̃t ; Ct stores the long
erm memory up to the current time step, which is generated by
alculating the weighted sum of both C̃t and previous long term
emory Ct−1; Finally, the current hidden state Ht is obtained by

using the information from Ot and Ct .
In this step, we adopt the bidirectional LSTM neural network

o capture the relation pattern between features of three time
ones from six tunnels. The bidirectional spread can enhance the
nformation connection and learn the internal relation pattern
rom both the forward and backward time dependency [41,42].
esides, we also adopt batch normalization in each layer of LSTM,
hich is similar to the ANN Step. At the end of the LSTM Step, we
utput the hidden states of each time-step for the preparation of
he later Self-Attention step.

.4. The self-attention step

Attention mechanism has been widely applied in many fields
uch as machine translation [43,44], relation classification [45],
nd images content description [46], and obtained outstanding
chievements for it can automatically and individually set differ-
nt attention (i.e., weight) to each part of the features.
In this work, the input features are collected from different

conomic entities and stock markets with multiple categories,
nd the importance of their refined semantics to each day’s
rediction varies. Yet, humans cannot easily capture these vital
elations in time. Since the self-attention mechanism can dynami-
ally and empirically allocate attention to each part of the regions
ased on the massive amount of data-driven learning, leading
o a more effective manner in the harness of the cross-regional
nformation.

In our AComNN, we follow the steps in [45] and adopt the
elf-attention mechanism after the features are extracted from
he LSTM Step. Therefore, the self-attention module can allo-
ate weights to the hidden states in each time-step dynamically.
he following Eqs. (15), (16), and (17) illustrate each step of
elf-attention mechanism we applied:

M = tanh(H), (15)

= softmax(wTM), (16)

r = HαT , (17)

where H = [h1, h2, h3, h4, h5, h6] represents the hidden states
output from the LSTM Step, composed of six time-steps, w is
a trainable parameter vector, and the softmax layer is used for
generating the corresponding weights for each time-step’s hidden
states. Finally, the weighted hidden states in each time-step will
be added together to form the output of the Self-Attention Step,
as shown in Eq. (17). Afterward, we flatten the tensor from the
Self-Attention Step and adopt a single neuron with a sigmoid
activation function to output a scalar in the range of (0,1) to
denote the HSI price upward (≥ 0.5) or downward (< 0.5). The
loss function we adopt is the binary cross-entropy loss which is
defined in Eq. (18):

Loss = −
1
n

∑
i

(yilogŷi + (1− yi)log(1− ŷi)), (18)

where ŷi represents the predicted result of ith instance in a
mini-batch while yi represents its corresponding actual label.
Besides, we adopt Adam [47] as our network optimizer for its
efficiency in computation and convergence as well as its excellent
performance in solving gradient with high noise.
6

4.5. Mitigating overfitting

Overfitting has always been a critical problem in the training
stage of deep learning. It behaves as the phenomenon of low
training loss while high test loss. In our experiments, we mainly
adopt two kinds of approaches for our AComNN to mitigate the
overfitting, i.e., stochastic dropout and regularization.

(1) Stochastic dropout has been a useful trick and widely ap-
plied in the deep learning field to prevent overfitting [48,
49]. It makes specific amounts of neurons stop working
with a certain probability p (p = 0.5 in this work) in the
training stage. As such, the model can be more generalized,
for it does not rely too much on certain local features,
thereby mitigating the overfitting [50].

(2) Regularization as another overfitting prevention trick is
also adopted in the each layer of our model, which includes
L1 and L2 regularization. L1 regularization prevents the
overfitting by sparsing the weight matrix while the L2
regularization adopts weights decay to mitigate overfit-
ting [51].

. Experiment design

.1. Evaluation metrics

As we mentioned in Section 3.3, we conduct five consecu-
ive back-testing experiments under each combination of α and
ws. To obtain a stable evaluation for the AComNN performance
(including the forecasting capability and stability) under each
combination of α and ws, we define Average Accuracy (Avg. Acc.)
and Standard Deviation (Std. Dev.) respectively as our evaluation
metrics. The Avg. Acc and Std. Dev. are defined in Eqs. (20) and
(21). The Accuracyi represents the accuracy in the ith back-testing
experiment, which can be calculated by Eq. (19). The TPi, TNi, FPi,
nd FNi represent the number of True Positive, True Negative,
alse Positive and False Negative samples in the ith back-testing

experiment of a particular group.

Accuracyi =
TPi + TNi

TPi + TNi + FPi + FNi
(19)

Avg.Acc. = 1/5
5∑

i=1

Accuracyi (20)

Std.Dev. =

√∑5
i=1(Accuracyi − Avg.Acc.)

5
(21)

5.2. Experimental procedure

Fig. 2 presents the general experiment flow graph. The first
part is for the AComNN experiment. It can be seen from the figure
that we adopt four forecasting window sizes ws = {1, 5, 10, 20},
four smoothing factors α = {0.095, 0.3, 0.5, 0.9}, and imple-
ment five consecutive backtests for each of above two variables’
combination. For each back-testing experiment, we implement
a model training, model selection and best model deployment
procedure. Afterward, for each group of five back-testing experi-
ments, we summarize their Avg. Acc. and Std. Dev. and compare
with other groups’ results on the test set. Finally, the ws and
α combination with the highest Avg. Acc. will be selected as
the best configuration for further evaluation and application in
part 2 and part 3. The second part is for baseline comparison.
We re-implement three state-of-the-art models with their best
configuration recorded in their papers to make comparisons with
our proposed AcomNN of best configuration on Avg. Acc and
Std.Dev, i.e., forecasting capability comparison. Additionally, we
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Fig. 2. Experimental procedure.
lso adopt the trading simulation for each of the models and
easure their profitability on a series of investment evaluation
etrics, i.e., profitability comparison. The third part demonstrates

he future prediction-based trading strategy, which illustrates the
rrangement of the future model training and prediction strategy
ollowing the same steps in back-testing experiments.

.3. AComNN training methodology

In this subsection, we illustrate the training methodology of
ComNN, which is composed of the training algorithm and model
uning.

For each time of the backtest, we tune the parameters to
ind the model of the parameter combination that obtains the
ighest accuracy on the validation set. When there are several
odels with the same highest accuracy, we choose the one with

he lowest validation loss among them. Table 3 presents the
arameters to be tuned in our model and their candidate values
n the experiment.

And for each training process with a fixed model parameter
ombination, we follow the Algorithm 1 as our standard training
rocedure. We adopt Adam as our optimizer, which has been
entioned before. The initial learning rate ρ is set to 0.01, and

he batch size Nbatch is set to 256. Since Adam itself can decay
he learning rate automatically, we do not implement an extra
allback function for learning rate decay. During the training
tage, we train 500 epochs for each backtest. Besides, during
teration, we only keep the model weights that obtain the highest
ccuracy on the validation set, as another method to mitigate
verfitting.
7

Table 3
Parameters tuned in the AComNN.
(a) ANN step related parameters

Depth # Units # Kernel regularizer Bias regularizer

1 32 1e−2 1e−3
2 64 1e−3 1e−4
3 128 / /
4 256 / /

(b) LSTM step related parameters

Depth # Units # Kernel regularizer Bias regularizer

1 32 1e−4 1e−5
2 64 1e−5 1e−6
3 128 / /
4 256 / /

5.4. Baselines

In this section, we briefly introduce the baseline models to be
compared with the proposed AComNN.

• MFNN: It is a hybrid deep learning method extracting fea-
tures of previous a range of time with multiple filters of
one-layer CNN, multi-layer CNN, and LSTM [22].
• CNNpred: It formulates the input features with technical

indicators of five stock market indices in the U.S and related
macroeconomic indicators to construct a 3D cube and adopt
a 3D CNN to extract features [19].
• Stacking Model: It exploits the stacking method to integrate

four tree-based classifiers and four RNN models to construct
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Algorithm 1 AComNN Training Process

Require: Prepared training samples X = x1, ..., xn
1: Initialization: Initialize parameters ρ = 0.01, Nbatch = 256,

epoch = 0, accuracybest = −∞, lossacc_best = ∞ and
weightsbest = null

2: while epoch < 500 do
3: Stochastically retrieve Nbatch data from X with replacement
4: Fit the retrieved data with AComNN
5: Calculate the accuracytmp on validation set
6: Calculate the lossacc_tmp on validation set
7: if accuracytmp > accuracybest then
8: weightsbest ← AComNN.weights
9: accuracybest ← accuracytmp

10: lossacc_best ← lossacc_tmp
11: end if
12: epoch++
13: end while
14: return weightbest , accuracybest , lossacc_best

the ensemble model for feature extracting. It then adopts a
Lasso logistic regression as the meta classifier to output the
final forecasting results [16].

5.5. Experimental devices and tools

The experiments are conducted on a Ubuntu GPU server with
our GTX1080ti GPUs of 11 GB memory for each. Our proposed
ComNN is constructed by Tensorflow 2.3, which is a powerful
eep learning framework.

. Experimental results

.1. AComNN performance results

For this part, we discuss the performance of our AComNN with
ifferent forecasting windows and smoothing factors. After we
inish the first part of the experimental procedure in Fig. 2, we
resent Table 4 to demonstrate the best model’s accuracy on the
est set in each back-testing experiment, and we also list the Avg.
cc. and Std. Dev. among five backtests on the right side of the
able. It is obvious that the AComNN predicting for the datasets
ith ws = 1 and α = 0.5 obtains the highest Avg. Acc. which is

0.6081 simultaneously with a very low Std. Dev. of 0.0355 while
the predicting for dataset with ws = 1 and α = 0.095 obtains
he lowest Std. Dev. of 0.0267 with the fourth-highest Avg. Acc. of
.5759. The highest accuracy among all backtests is 0.8720 with
s = 20, α = 0.9 during 07/-12/2017 while the lowest accuracy

of 0.3051 lies in the ws = 10, α = 0.5, 01/-06/2019.
Besides, we found that when ws = 1, as we mentioned before,

the highest Avg. Acc. lies in the α = 0.5, which may due to fact
that data smoothed excessively is not conducive to short-term
forecasts. However, for ws = {5, 10}, the highest Avg. Acc. is
lways obtained when α = 0.095, and basically, the Avg. Acc.
ecreases with the enlarging of α, showing that their prediction
ccuracy is improved under the relatively longer-term trend cap-
ured by a smaller α. Furthermore, we also notice that setting the
= 0.9 obtains the highest Avg. Acc. in the twenty-day ahead

rediction, and the Avg. Acc. shows a decreasing tendency with
he shrinking of α. A potential explanation is that the twenty-
ay ahead prediction is implemented in the extreme absence
f the latest necessary information; with the smoothing effect
ncrement, the available original information becomes exceed-
ngly less and even distorted, leading the forecasting capability
ecrease. Concluded above, the exponential smoothing indeed
8

an remove the unexpected noises and improve the prediction
ccuracy yet the prediction with different ws needs different

specific smoothing factors.
In Fig. 3, each box represents the accuracy of the five consecu-

tive backtests under a forecasting window and smoothing factor
combination. It is evident that from the one-day ahead prediction
to the twenty-day ahead prediction, the range of the forecasting
accuracy gradually becomes large, which means with the exten-
sion of the window size, the prediction accuracy becomes more
and more unstable. Because the most necessary information it
needs has not been published when forecasting with a relatively
large window size. Fig. 4(b) reflects the same conclusion by the
line chart, the Std. Dev. becomes steadily larger with the enlarg-
ing of the ws. On the other hand, The Fig. 4(a) presents that the
one-day ahead prediction always obtains the highest Avg. Acc.
comparing with the prediction for other ws under the same α,
ince it has the chance to utilize all the latest information in the
orecast. And there is a general decreasing tendency in Avg. Acc.
ith the expansion of the forecasting window.
Concluded from the above analysis, one-day ahead prediction

btains the highest Avg. Acc. under every smoothing factor for
t has all the updated information on the current time. Combined
ith the smoothing factor of α = 0.5, we obtain the best Avg. Acc.

of 0.6081 among all other counterparts and also hold a relatively
lower Std. Dev. of 0.0355, which means it also very stable in
the back-testing. Although configured with α = 0.9, ws = 20
can obtain the highest accuracy over 87%; it cannot stably get
such high accuracy in other backtests. To this end, we set the
forecasting window size ws = 1 and smoothing factor α = 0.5 as
the best configuration to pre-process our future data and make a
comparison with the baselines in the later section.

6.2. Comparison result

For this section, because the authors of those baseline models
did not publish their source code, we try our best to re-implement
them according to their interpretation in papers [16,19,22], and
make comparisons with our proposed AComNN. Similarly, we
evaluate the three baseline models on the same five consecutive
backtests from 07/2017 to 12/2019 and try to tune their model
parameters to fit the training data. Afterwards, we calculate their
average accuracy and standard deviation based on above exper-
iments to assess their performance on the one-day ahead HSI
trend prediction task.

Table 5 illustrates the comparison result between the AComNN
and the other three baselines. It is clear that the AComNN out-
performs the other three baselines under almost all backtests.
Additionally, the AComNN obtains the highest Avg. Acc. of 0.6081
with improvements to the CNNpred, Stacking model and MFNN
by 10.53%, 14.55%, and 15.01%, respectively. Furthermore, the
AcomNN also obtains a very small Std. Dev. of 0.0355. Compared
with the CNNpred and MFNN, the AComNN reduces the Std.
Dev. by 15.19% and 6.27%, respectively; however, the Stacking
model achieves the lowest Std. Dev., showing that in spite of its
predictive accuracy is not very high but it has stable performance
on the HSI moving trend forecast.

In addition, we also conduct the T-test to evaluate the sta-
tistical significance of difference between each model. Table 6
presents the t and p-value of each pair of models based on the
one-tailed T-test, where the null hypothesis is the performance
between each pair of the models are the same, while the alterna-
tive hypothesis is the row models outperform the column models.
It is obvious that the p-values between the AComNN and each
of the baseline are always much smaller than 0.05, statistically
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Table 4
AComNN experimental results with different ws and α.
(a) forecasting window size ws = 1

α 07/-12/2017 01/-06/2018 07/-12/2018 01/-06/2019 07/-12/2019 Avg. Acc. Std. Dev.

0.095 0.6000 0.5785 0.5280 0.6017 0.5714 0.5759 0.0267
0.3 0.6320 0.5702 0.5920 0.5932 0.5238 0.5823 0.0354
0.5 0.6240 0.6033 0.5440 0.6186 0.6508 0.6081 0.0355
0.9 0.6400 0.5620 0.5840 0.6102 0.5793 0.5951 0.0272

(b) forecasting window size ws = 5

α 07/-12/2017 01/-06/2018 07/-12/2018 01/-06/2019 07/-12/2019 Avg. Acc. Std. Dev.

0.095 0.6640 0.4876 0.5600 0.5508 0.5714 0.5668 0.0566
0.3 0.5760 0.4463 0.52800 0.5847 0.5238 0.5318 0.0493
0.5 0.6480 0.5785 0.4800 0.4237 0.5635 0.5387 0.0785
0.9 0.6240 0.5289 0.5280 0.4830 0.5317 0.5391 0.0461

(c) forecasting window size ws = 10

α 07/-12/2017 01/-06/2018 07/-12/2018 01/-06/2019 07/-12/2019 Avg. Acc. Std. Dev.

0.095 0.6880 0.4793 0.5600 0.4068 0.5794 0.5427 0.0951
0.3 0.6400 0.4711 0.5440 0.5000 0.5556 0.5421 0.0576
0.5 0.6640 0.5124 0.5040 0.3051 0.5635 0.5098 0.1171
0.9 0.6720 0.4876 0.3600 0.3136 0.5397 0.4746 0.1284

(d) forecasting window size ws = 20

α 07/-12/2017 01/-06/2018 07/-12/2018 01/-06/2019 07/-12/2019 Avg. Acc. Std. Dev.

0.095 0.7440 0.4628 0.6240 0.3475 0.4524 0.5261 0.1403
0.3 0.7520 0.3884 0.5520 0.3305 0.5397 0.5125 0.1471
0.5 0.8560 0.5537 0.3200 0.5000 0.4921 0.5444 0.1745
0.9 0.8720 0.3719 0.6320 0.3390 0.5714 0.5573 0.1933
Fig. 3. AComNN overall experimental results.
Fig. 4. The average accuracy and the standard deviation comparison among different ws and α.
able 5
omparison with baselines.

Model accuracy on test set in each backtest Avg.Acc. Std.Dev. Improvements on

07/-12/17 01/-06/18 07/-12/18 01/-06/19 07/-12/19 Avg.Acc. Std.Dev.

AComNN 0.6240 0.6033 0.5440 0.6186 0.6508 0.6081 0.0355 / /
CNNpred 0.5920 0.5620 0.4880 0.5932 0.5159 0.5502 0.0419 10.53% −15.19%
Stacking 0.4803 0.5242 0.5659 0.5455 0.5385 0.5309 0.0286 14.55% 24.12%
MFNN 0.5760 0.5619 0.4960 0.5339 0.4762 0.5288 0.0379 15.01% −6.27%

Average 13.36% -0.89%
9
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able 6
-test for statistical significance of difference between each models.

AComNN CNNpred Stacking MFNN

t p-value t p-value t p-value t p-value

AComNN / 2.1080 0.0340 3.3849 0.0047 3.0526 0.0079
CNNpred / 0.7620 0.2340 0.7580 0.2351
Stacking / 0.0875 0.4662
MFNN /

proving that the improvement of AComNN is statistically signifi-
cant and the null hypothesis is rejected. However, for the rest of
baselines, they have no statistical significance of difference with
each other.

6.3. Trading simulation

To measure the profitability, we further implement a trading
imulation on HSI and adopt a series of assessment metrics [22],
ncluding the Return, Annual Return, Sharpe Ratio, and Maximum
rawdown in the financial market to evaluate our proposed
ComNN and other three baseline models. The Annual Return is
alculated based on the Return (i.e., the trading profits during the
imulation period). The Sharpe Ratio estimates the excess profits
btained by the investor for each additional unit of risk. And the
aximum Drawdown refers to the maximum of the drawdown
ver the history for evaluating the maximum possible loss during
nvestment.

For the trading strategy, we set the initial investment capital
o 1 and neglect the commission charge in Hong Kong Exchange
ith the action of buy and short selling so that to implement
he day trading according to the increase or decrease signal
rovided by each investment advisory model for trading support.
pecifically, when the predicted stock price rises, we fully invest
n the index at the close price of the day t and sell all its shares at
the close price of day t+1. On the other hand, when the predicted
stock price falls down, we perform a short position opposite the
process above to continue obtaining the profits.

Since randomly selecting one period to implement the trading
simulation may cause unexpected evaluation bias, we conduct
a trading simulation on each of the backtests and obtain their
average result to further comparison. At each of the backtest, we
reset the investment capital to 1 and follow the trading opera-
tion mention above to implement a separate trading simulation.
Table 7 presents the performance of AComNN and other baseline
models in the five trading simulations.

7. Discussion

The above experiments illustrate the predictive and profit
capability of our proposed AComNN and the comparison with
other baseline models.

For comparing the forecasting capability, our proposed
AComNN outperforms the other three baselines because we con-
sider the global major stock markets and economic entities for
cross-regional feature extraction. With each of the stock mar-
kets opens and closes, their influence transfer from western
hemisphere to the eastern hemisphere and finally affect the HSI
trend in the next day. Besides, the other economic indicators
worldwide also influence the financial market cyclically [26–28].
Thus, we mitigate the information insufficiency. Furthermore,
our proposed AComNN is fine-designed for the above crucial
time-series information transfer and refine, with a self-attention
10
Table 7
HSI trading simulation result.
(a) 07/2017–12/2017

Return Annual return Sharpe ratio Max. Drawdown

AComNN 0.3304 0.7381 4.7278 −0.0376
CNNpred 0.1835 0.3857 2.6717 −0.0593
Stacking 0.0048 0.0092 0.0726 −0.0670
MFNN 0.0591 0.1177 0.9159 −0.1074

(b) 01/2018–06/2018

Return Annual return Sharpe ratio Max. Drawdown

AComNN 0.4413 1.0773 3.8943 −0.0485
CNNpred 0.1221 0.2591 1.1867 −0.0834
Stacking −0.0510 −0.0972 −0.5542 −0.2054
MFNN 0.0558 0.1148 0.5460 −0.1021

(c) 07/2018–12/2018

Return Annual return Sharpe ratio Max. Drawdown

AComNN 0.1330 0.2735 1.2397 −0.0562
CNNpred −0.1196 −0.2187 −1.2855 −0.1499
Stacking 0.0728 0.1411 0.6877 −0.1368
MFNN −0.0735 −0.1375 −0.7735 −0.1362

(d) 01/2019–06/2019

Return Annual return Sharpe ratio Max. Drawdown

AComNN 0.3945 0.9774 4.6725 −0.0385
CNNpred 0.1536 0.3403 1.8958 −0.1126
Stacking 0.0251 0.0509 0.3214 −0.1010
MFNN 0.0702 0.1493 0.8953 −0.1027

(e) 07/2019–12/2019

Return Annual return Sharpe ratio Max. Drawdown

AComNN 0.4530 1.0617 4.9307 −0.0481
CNNpred −0.0085 −0.0163 −0.1139 −0.1245
Stacking −0.0069 −0.0128 −0.0823 −0.1320
MFNN −0.0659 −0.1227 −0.8807 −0.1715

(f) Average

Return Annual return Sharpe ratio Max. Drawdown

AComNN 0.3504 0.8256 3.8930 −0.0458
CNNpred 0.0662 0.1500 0.8709 −0.1059
Stacking 0.0090 0.0182 0.0890 −0.1284
MFNN 0.0092 0.0243 0.1406 −0.1240

mechanism at the end of the model for dynamically allocating
weights to each part of cross-regional features.

Nevertheless, for the other three baseline models, the MFNN
adopts the historical data of the previous 120 time-steps to form
each instance. For each sample, it only considers the features of
Open, Close, High, Low, Volume, and Amount of a single stock
index for the moving trend prediction, lacking the interaction
with other macroeconomic indicators and technical indicators. As
for the CNNpred, although it collects various features of multiple
stock indices and even includes macro-economic indicators, its
features are restricted in one region, lacking the assessment of
the global market. Furthermore, it only adopts one kind of net-
work; thus, it cannot understand the features based on multiple
perspectives. Besides, both of the above models do not adopt
effective data pre-processing, causing the difficulty in crucial
information capture. For the last model, Stacking is a good ap-
proach to ensemble different models’ classification ability. Based
on the simultaneous prediction by multiple models, its prediction
indeed is the stablest. However, the base learners are relatively
too similar, which is a series of tree-based models and another
series of variants of RNN, leading those base learners are unable
to capture and discriminate heterogeneous patterns in the same
task.
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For the comparison of profitability, we adopt the trading sim-
ulation on each of the backtests and average their simulation
results to comprehensively present their performance. Table 7
demonstrates the AComNN can obtain a high profit in each back-
test and the average Annual Return can up to 82.56%, which is
much higher than the profits of other baseline models. Besides, in
each backtest, the AComNN also keep the lowest Max. Drawdown
(−0.0458 on average) and highest Sharpe Ratio (3.8930 on av-
erage), proving that the AComNN that synthesizes cross-regional
features has strong anti-risk ability compared with baselines. As
for the other three baselines, although their prediction accuracy
are not low, like the MFNN can obtain an forecasting accuracy of
56.20% on 01/-06/18, they still cannot get a high profit on average.
This phenomenon reflects that the baselines are unable to provide
the correct prediction on the days with large price fluctuation,
causing their huge loss on those days and further leads low profit
overall.

8. Threats to validity

Some of our re-implementation to the original baseline paper
for fair comparison may cause threats to the validity, we list
below:

For the MFNN, referring to its Section 3.1 in [22], it labels sam-
ples with −1, 0, and 1 as Decrease, No change (when the return
fluctuation does not exceed a certain threshold) and Increase, in
which they account for 10%, 80%, and 10% respectively as the best
configuration. In order to avoid class imbalance problem, MFNN
stochastically deletes instances in the class of No change until the
number of samples in each category becomes the same. However,
MFNN is a model proposed for predicting minute-level trading;
thus, after dropping 70% of the whole data, it still has enough
data for training. While in this experiment for day-level trading,
after we go through the same process, the train set decreases to
several hundred, causing the MFNN’s performance to even worse.
Thus to implement a fair comparison, we keep all the samples and
only label Increase and Decrease to re-implement the MFNN as a
binary classifier like AComNN, CNNpred, and the Stacking model.
However, although we change the MFNN to a binary classifier, its
highest accuracy reaches 57.60%, which also achieves and exceeds
the best performance recorded in his paper (55.50%).

For the CNNpred, using five U.S. stock indices with U.S. macro-
economic indicators for the U.S. stock market prediction, in order
to change the prediction target to HSI for a fair comparison, we
adopt SSE composite index, SZSE composite index, CSI 300, Hang
Seng China Enterprises Index (HSCEI), and HSI to substitute the
S&P 500, NASDAQ composite index, DJIA, NYSE composite index,
and RUSSELL index that adopted in its paper. Additionally, we
exploit the economic indicators in the China region to replace the
U.S. economic indicators mentioned in its original paper. Besides,
we adopt Avg. Acc. and Std. Dev. as the evaluation metrics in-
stead of the F-measure which is adopted in the CNNpred paper.
Because in our trading strategy, the prediction for increase and
decrease are both important. We exploit the increase signals to
buy stocks and decrease signals to implement the short position.
However, in the CNNpred paper, it only make the decision by
the increase signal in trading. For the prediction capability, the
CNNpred performs almost the same in both our experiment and
its own paper, but it does not show the same high profitability
in our experiment, which may be caused by different dataset and

the targeting stock market.

11
For the Stacking model, the original paper adopts some techni-
cal indicators and macro-economic indicators obtained from the
U.S. market to implement the prediction for the several stock
indices in the U.S. Similarly, we substitute the prediction target to
HSI and adopt the economic indicators in the China region as its
features to try to implement the fair comparison. The difference
of the performance between our re-implemented model and the
original model may due to the different prediction objectives and
dataset.

9. Conclusion and future work

In this paper, we propose a novel Attention enhanced Com-
pound Neural Network (AComNN) as the prediction engine for
the financial trading system to fully exploit the time-series inter-
relation of features across regions. Further, we explore its perfor-
mance with four different forecasting windows and another four
different smoothing factors. In addition, we verify its robustness
and performance by five consecutive back-testing experiments
under each window size and smoothing factor combination.

The experimental results demonstrate that our proposed
AComNN can obtain an average accuracy of up to 60.81%. Com-
pared with the state-of-the-art baselines, the proposed AComNN
outperforms them on average over 13.36%, simultaneously with
a very low standard deviation of 0.0355. Furthermore, we im-
plement five trading simulations based on the five consecutive
backtests. The AComNN also shows a more powerful profitability
than the other baselines, which manifests that the AComNN based
investment advisory system has high practicality and competitive
performance in the real world.

For future work, we will extract some cross-regional senti-
mental features from social media as an additional information
source to assist the financial prediction, and apply the methodol-
ogy of this paper to explore more other stock indices. Thereby, the
forecasting capability and profitability of our investment advisory
system can be further strengthened in multiple financial markets.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This work is supported in part by the General Research Fund
of the Research Grants Council of Hong Kong (No. 11208017) and
the research funds of City University of Hong Kong (7005028,
7005217), and the Research Support Fund by Intel (9220097),
and funding supports from other industry partners (9678149,
9440227, 9440180, 9220103 and 9229029).

Appendix

The Table A.1 describes the indicators we adopt in our exper-
iment, including their names, descriptions, types and sources or
calculation functions.



Z. Yang, J. Keung, M.A. Kabir et al. Applied Soft Computing 111 (2021) 107649

T
D

able A.1
escription of used features.
# Feature Description Type Source

(a) Technical Indicators of HSI/S&P 500/FTSE 100

1 Open Open Price Primitive Yahoo
Finance

2 High High Price Primitive Yahoo
Finance

3 Low Low Price Primitive Yahoo
Finance

4 Close Close Price Primitive Yahoo
Finance

5 Volume Trading Volume Primitive Yahoo
Finance

6 RSI Relative Strength Index Technical Indicator TA-Lib
7 STOCHF %K Stochastic Oscillator Fast %K Technical Indicator TA-Lib
8 STOCHF %D Stochastic Oscillator Fast %D Technical Indicator TA-Lib
9 STOCH %D Stochastic Oscillator Slow %D Technical Indicator TA-Lib
10 WILLR Williams %R Technical Indicator TA-Lib
11 MACD Moving Average Convergence/Divergence Technical Indicator TA-Lib
12 ROCClose Rate of Change for Close Price Technical Indicator TA-Lib
13 CCI Commodity Channel Index Technical Indicator TA-Lib
14 OBV On Balance Volume Technical Indicator TA-Lib
15 P{1, ..., 5}CCR Previous n days Close Price Change rate Technical Indicator Closetoday

Closen
− 1,

n = 1, ..., 5

(b) Economic Indicators for China

16 CHEPUI Economic Policy Uncertainty Index for China Academic Indicator FRED
17 3MHIBOR 3-Month Hong Kong Interbank Offered Rate Interest Rate Indicator Tushare
18 GDPYGR GDP Year-on-year Growth Rate National Economy Tushare
19 PIYGR Primary Industry Year-on-year Growth Rate National Economy Tushare
20 SIYGR Secondary Industry Year-on-year Growth Rate National Economy Tushare
21 TIYGR Tertiary Industry Year-on-year Growth Rate National Economy Tushare
22 CPIYGR CPI Year-on-year Growth Rate Price Index Tushare
23 CPIMGR CPI Month-on-month Growth Rate Price Index Tushare
24 M0YGR M0 Year-on-year Growth Rate Currency Supply Tushare
25 M0MGR M0 Month-on-month Growth Rate Currency Supply Tushare
26 M1YGR M1 Year-on-year Growth Rate Currency Supply Tushare
27 M1MGR M1 Month-on-month Growth Rate Currency Supply Tushare
28 M2YGR M2 Year-on-year Growth Rate Currency Supply Tushare
29 M2MGR M2 Month-on-month Growth Rate Currency Supply Tushare

(c) Economic Indicators for the U.K.

30 3MLIBOR 3-Month London Interbank Offered Rate Interest Rate Indicator FRED
31 GOLDAM Gold Fixing Price 10:30 A.M. (London time) in London Bullion Market, based in U.S. Dollars Commodity Indicator FRED
32 GOLDPM Gold fixing price 3:00 P.M. (London time) in London Bullion Market, based in U.S. Dollars Commodity Indicator FRED
33 UKEPUI Economic Policy Uncertainty Index for the U.K. Academic Indicator FRED

(d) Economic Indicators for the U.S.

34 DGS10 10-year Treasury Constant Maturity Rate Interest Rate Indicator FRED
35 DGS1 1-year Treasury Constant Maturity Rate Interest Rate Indicator FRED
36 EFFR Effective Federal Funds Rate Interest Rate Indicator FRED
37 DAAA Moody’s Seasoned Aaa Corporate Bond Yield Interest Rate Indicator FRED
38 DBAA Moody’s Seasoned Baa Corporate Bond Yield Interest Rate Indicator FRED
39 TEDRATE TED Spread Interest Rate Indicator FRED
40 T10YIE 10-year Breakeven Inflation Rate Interest Rate Indicator FRED
41 T5YIFR 5-Year, 5-Year Forward Inflation Expectation Rate Interest Rate Indicator FRED
42 DTWEXBGS Trade Weighted U.S. Dollar Index Exchange Rate FRED
43 DEXUSEU U.S./Euro Foreign Exchange Rate Exchange Rate FRED
44 DEXUSCH U.S./China Foreign Exchange Rate Exchange Rate FRED
45 DEXUSJP U.S./Japan Foreign Exchange Rate Exchange Rate FRED
46 DCOILWTICO Crude Oil Prices: West Texas Intermediate (WTI) Commodity Indicator FRED
47 VIXCLS CBOE Volatility Index: VIX Financial Indicator FRED
48 USEPUI Economic Policy Uncertainty Index for the U.S. Academic Indicator FRED

Yahoo finance (https://finance.yahoo.com/) is a comprehensive financial website.
Ta-Lib (https://mrjbq7.github.io/ta-lib/) is a tool for performing technical analysis of financial market data.
Tushare (https://tushare.pro/) is an open source community for financial market data.
FRED (https://fred.stlouisfed.org/) is a financial database maintained by the Federal Reserve Bank of St. Louis.
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