Expert Systems With Applications 245 (2024) 123041

| -

Expert
Systems
with
Applications &%

An International
Journal

Contents lists available at ScienceDirect

Expert Systems With Applications

Eebtorin-Chiel
Binshon

journal homepage: www.elsevier.com/locate/eswa

t.)

Check for
updates
L |

On the relative value of clustering techniques for Unsupervised Effort-Aware
Defect Prediction

Peixin Yang ®°, Lin Zhu ¢, Yanjiao Zhang ¢, Chuanxiang Ma %¢, Liming Liu, Xiao Yu ®#>,
Wenhua Hu?

aSchool of Computer Science and Artificial Intelligence, Wuhan University of Technology, Wuhan, China

b Sanya Science and Education Innovation Park of Wuhan University of Technology, Sanya, China

¢ School of Computer, Wuhan Qingchuan University, Wuhan, China

d School of Computer Science and Information Engineering, Hubei University, Wuhan, China

© Hubei Province Project of Key Research Institute of Humanities and Social Sciences at Universities (Research Center of Information Management for Performance
Evaluation), Wuhan, China

fSchool of Cyber Science and Engineering, Wuhan University, Wuhan, China

8 Wuhan University of Technology Chongqing Research Institute, Chongqing, China

ARTICLE INFO ABSTRACT

Unsupervised Effort-Aware Defect Prediction (EADP) uses unlabeled data to construct a model and ranks
software modules according to the software feature values. Xu et al. (JSS 2021) conducted an exploration
of clustering techniques for unsupervised defect prediction and found that several clustering methods exhibit
better performance on the F1@20% effort-aware metric. However, their conclusion may not be convincing,
as they did not take into account the impact of the Initial False Alarms (IFA) metric on unsupervised
EADP. Furthermore, their study did not compare with the state-of-the-art supervised EADP models. To further
investigate clustering techniques for unsupervised EADP more comprehensively, we explore the performance
of 22 clustering techniques for unsupervised EADP using three classification metrics and six effort-aware
metrics. The experimental results demonstrate that (1) the best clustering technique for unsupervised EADP,
K-medoids, can significantly reduce the IFA of the ManualUp method to an acceptable range. In contrast, the
clustering techniques recommended by Xu et al. exhibit a high IFA value that cannot be deemed acceptable
by testing teams; (2) K-medoids performs better than some supervised EADP methods, especially on metrics
such as IFA and PMI@20% (Proportion of Modules Inspected when inspecting the top 20% lines of code);
(3) better classification performance of clustering techniques could lead to better effort-aware performance.
In summary, we recommend using the K-medoids clustering technique for unsupervised EADP and suggest
that future research devote more effort to exploring better-unsupervised clustering techniques. In support of
reproducibility and future research, we provide the source code used in our study (https://github.com/Andre-
Yang816/Clustering4UEADP).

Keywords:

Software defect prediction
Effort-aware

Clustering technique
Unsupervised learning

et al., 2021; Majd et al., 2020; Pandey et al., 2020; Shao et al., 2018;
Yu et al.,, 2022, 2018; Zain et al., 2023). By analyzing and mining
data during the software development process, EADP can detect po-

1. Introduction

Software defects are a common occurrence in software development

and can lead to impaired functionality, errors, and even system crashes,
causing significant inconvenience and losses to users (Feng et al., 2024;
Gong, Jiang, & Jiang, 2019; Gong et al., 2022; Jin, 2021; Liang et al.,
2021). Therefore, it is crucial for development teams to identify and
promptly address potential defect issues. Software defect prediction
has become an important research direction in the field of software
engineering (Feng et al., 2021; Gong, Jiang, Wang, & Jiang, 2019; Li

tential defects in the early stages of software development and provide
corresponding improvement suggestions for development teams, thus
improving software quality and development efficiency (Gong et al.,
2021; Xiang et al., 2018). Classification-Based Defect Prediction (CBDP)
is a software defect prediction approach that uses machine learning
classification algorithms to predict whether a software module is likely

* Corresponding author at: School of Computer Science and Artificial Intelligence, Wuhan University of Technology, Wuhan, China.
E-mail addresses: peixinyang@whut.edu.cn (P. Yang), linzhu_cs@126.com (L. Zhu), yanjiaozhang cs@163.com (Y. Zhang), mcx838@hubu.edu.cn (C. Ma),
liming.liu@whu.edu.cn (L. Liu), xiaoyu@whut.edu.cn (X. Yu), whul0O@whut.edu.cn (W. Hu).

https://doi.org/10.1016/j.eswa.2023.123041

Received 24 May 2023; Received in revised form 7 December 2023; Accepted 24 December 2023

Available online 28 December 2023
0957-4174/© 2023 Elsevier Ltd. All rights reserved.

https://www.elsevier.com/locate/eswa
https://www.elsevier.com/locate/eswa
https://github.com/Andre-Yang816/Clustering4UEADP
https://github.com/Andre-Yang816/Clustering4UEADP
mailto:peixinyang@whut.edu.cn
mailto:linzhu_cs@126.com
mailto:yanjiaozhang_cs@163.com
mailto:mcx838@hubu.edu.cn
mailto:liming.liu@whu.edu.cn
mailto:xiaoyu@whut.edu.cn
mailto:whu10@whut.edu.cn
https://doi.org/10.1016/j.eswa.2023.123041
https://doi.org/10.1016/j.eswa.2023.123041
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2023.123041&domain=pdf

P. Yang et al.

Yes No No Yes

The predicted class labels

model
0

0.020 0.015 0.012

The predicted ranking based on the defeet density

Fig. 1. The differences between CBDP and EADP.

to contain defects or not (Shao et al., 2018). However, the conventional
CBDP research has not taken into account issues related to resource
allocation and the cost of defects fix, which may be unable to guide
development teams to make optimal decisions.

To address these shortcomings, Mende and Koschke (2010) incor-
porated effort into the EADP and proposed the Effort-Aware Defect
Prediction (EADP), which sorted software modules based on defect
density and prioritizes inspection of modules with higher defect den-
sities. The EADP model can more accurately predict the likelihood of
defects and provide development teams with more practical recommen-
dations and decision-making support. Software development teams can
find more defects when checking a certain number of Lines Of Code
(LOC) (Li, Yang, et al., 2023; Yu et al., 2023).

Fig. 1 illustrates the differences between CBDP and EADP. Suppose
software testers evaluate a newly developed software system compris-
ing 100 software modules (i.e., M, M,, M3, ..., M y,). The LOC in
this system amount to 10,000. However, owing to restricted testing
resources, the testers can only focus on a part of the code (e.g., 20%
LOC of the entire system). Therefore, they have the option to build
either a CBDP model or an EADP model based on historical software
data. Suppose the CBDP model predicts that 30 modules with 2,500
LOC are defective. They need to determine which of these modules to
inspect first. However, they can test the first several modules (i.e., M,
M9, My, ..., and so on) in descending order of the density provided
by the EADP model, until 2,000 LOC are inspected. Therefore, EADP
can assist in allocating the limited testing resources more efficiently.

1.1. Motivation

However, EADP typically requires a large amount of labeled data
from the current project or external projects to train supervised learning
models, which may not always be available (Li, Lu, et al.,, 2023).
Furthermore, the cost of acquiring and annotating defect data is pro-
hibitively high. Unsupervised defect prediction methods do not require
manually labeled defect data, but instead employ the data in the
development process to discover potential defects (Li et al., 2020).
Fig. 2 illustrates the process of unsupervised clustering defect predic-
tion. In detail, the process involves initially extracting modules from
the projects under development. Following the extraction, features are
extracted from these modules and used to construct the unsupervised
clustering model. This model partitions the modules into two clusters:
defective and clean modules.

Menzies et al. (2010) proposed an unsupervised model named Man-
ualUp, which arranged modules in descending order based on the
inverse of their respective feature values. ManualUp outperforms some
supervised models on several effort-aware metrics. However, according
to Yang et al. (2016), ManualUp can result in a very high value of
the Initial False Alarms (IFA), which can frustrate the software testing
team if the IFA value exceeds 10 (Kochhar et al., 2016). Therefore, in
subsequent studies on EADP, few scholars have proposed the utilization
of unsupervised learning approaches.

However, there have been a lot of studies utilizing unsupervised
clustering techniques for CBDP. For example, Zhang et al. (2016)

Expert Systems With Applications 245 (2024) 123041

Software modules. Software features

(TN : Defeeve

Projects under ||| T " — —
e [] NI

Unsupervised
clustering
technology

(1) Extract modules () Extract features (3) Build model () Clustering

Fig. 2. The process of unsupervised clustering defect prediction.

proposed a connectivity-based clustering algorithm, which divided soft-
ware modules into two clusters using spectral clustering, then la-
beled each cluster as a defective or clean cluster according to the
average row sum of all modules within each cluster. Recently, Xu,
Li, et al. (2021) have explored the performance of some clustering
techniques for unsupervised EADP using both classification and effort-
aware metrics, which employs clustering techniques to divide software
modules into two different groups and predict defects based on spe-
cific rules according to the characteristics of each group. Their study
revealed several clustering techniques that perform well in terms of the
F1@20% effort-aware metric, such as DBSCAN (Density-Based Spatial
Clustering of Applications with Noise), OPTICS (Ordering Points To
Identify Clustering Structure), AP (Affinity Propagation), and ROCK
(RObust Clustering using linKs). However, these clustering techniques
all have high IFA values in our research. Therefore, their conclu-
sions may lack persuasiveness because these clustering techniques only
hold practical significance when the IFA is less than 10. Furthermore,
their study did not compare with the state-of-the-art supervised EADP
model, so it remains uncertain about the extent to which unsupervised
clustering techniques can match the supervised models.

1.2. Our work and contributions

Inspired by these limitations, we conduct a study and comparison
of 22 clustering techniques for unsupervised EADP. Similar to the study
by Xu, Li, et al. (2021), we initially use these clustering techniques
to divide software modules into defective and clean groups, and sub-
sequently rank the modules based on each feature value, following
the approach of ManualUp (Menzies et al., 2010). We compare these
unsupervised clustering techniques with the unsupervised method Man-
ualUp and the state-of-the-art supervised EADP methods (including
EALR (Kamei et al., 2012), EATT (Li et al., 2020), and CBS+ (Huang
et al., 2019)) on the PROMISE dataset. PROMISE consists of 41 re-
leases from 11 open-source software projects. We utilize PofB@20%
(Proportion of the found Bugs when inspecting the top 20%LOC) and
Recall@20% to evaluate the impact of these 26 methods. Additionally,
we employ Precision@20% and IFA to assess the false positive rate,
and PMI@20% (Proportion of Modules Inspected when inspecting the
top 20% LOC) to quantify the number of software modules that need an
inspection. We also employ the Scott-Knott Effect Size Difference (ESD)
test and the Wilcoxon signed-rank test to evaluate these methods.

Our research process and experimental results can be condensed
into the following four Research Questions (RQs):

RQ1: Which unsupervised clustering technique exhibits the most
exemplary performance?

In order to investigate which unsupervised clustering technique
exhibits the most exemplary effort-aware performance on the PROMISE
dataset, we compare the 22 unsupervised clustering techniques. In
detail, we first apply the 22 clustering techniques to cluster the testing
dataset and sort the clustering results in ascending order for each fea-
ture dimension. Then, we evaluate the modules in the top 20% LOC, uti-
lizing the Scott-Knott ESD test and presenting the plots to demonstrate
the statistically distinct groups with significant differences.

P. Yang et al.

The results show that K-medoids, Kmeans++, and CURE (Clustering
Using REpresentative) exhibit the most comprehensive effort-aware
performance, and it is advisable to avoid utilizing DBSCAN, OPTICS,
AP, and BANG for unsupervised EADP.

RQ2: Could unsupervised clustering techniques enhance the per-
formance of the unsupervised EADP model ManualUp?

Previous research (Yu, Bennin, et al., 2019) has shown that Man-
ualUp performs poorly in terms of the IFA metric, with IFA exceed-
ing 10 on multiple PROMISE datasets, which is considered unaccept-
able (Kochhar et al., 2016). Therefore, we conduct a comprehensive
comparison between the top-performing unsupervised clustering tech-
niques (i.e., K-medoids, K-means++, and CURE) and ManualUp to
explore whether unsupervised clustering techniques can improve the
performance of ManualUp. We utilize the Wilcoxon signed-rank test to
examine the significant differences in terms of the metrics.

Our experiment results show that K-medoids, K-means++, and
CURE can significantly decrease the IFA and PMI@20% metrics of
ManualUp, while only marginally compromising the performance of
other effort-aware metrics.

RQ3: How does the performance of unsupervised clustering tech-
niques compare to that of the state-of-the-art supervised EADP
model?

Since (Xu, Li, et al., 2021) has not explored the extent to which
unsupervised clustering techniques can match the supervised models,
we compare K-medoids, K-means++, and CURE with the state-of-the-
art supervised EADP methods, including EALR (Effort-Aware Linear
Regression (Kamei et al., 2012)), EATT (Effort-Aware Tri-Training (Li
et al.,, 2020)), CBS+ (Classify Before Sorting (Huang et al., 2019)),
CBS+(RF) (CBS+ with Random Forests (Balaram & Vasundra, 2022)),
CBS+(GB) (CBS+ with Gradient Boosting (Sandhu & Batth, 2021)), and
SERS (Shivkumar S., E James W., Ram A. and Sunghun K. Shivaji et al.
(2012)).

Our experiment results indicate that unsupervised clustering tech-
niques perform better than some supervised EADP methods, espe-
cially on metrics such as IFA and PMI@20%. Although there is still
a gap compared to the best supervised EADP method on some metrics,
unsupervised clustering techniques do not always perform worse.

RQ4: Is the effort-aware performance of unsupervised clustering
techniques related to the classification performance?

We initially employ K-medoids to classify the modules into defective
and clean, and subsequently rank the software modules based on each
feature. This prompts us to wonder whether the superior classification
performance of these clustering methods can lead to better effort-aware
performance. We apply the Kendell correlation coefficient to evaluate
the correlation among the evaluation metrics and use a heat map to
display the results.

The experimental findings reveal a pronounced correlation between
classification metrics and effort-aware metrics. This signifies that better
classification performance could potentially lead to better effort-aware
performance.

RQS5: Can the best-performing unsupervised clustering method be
generalized to other datasets?

To explore the findings on the PROMISE dataset, specifically eval-
uating whether the identified optimal unsupervised clustering method,
K-medoids, is equally applicable to other software defect datasets, we
conduct comparative experiments on the NASA and SOFTLAB datasets.

The experimental results indicate that the best-performing unsuper-
vised clustering method still exhibits the best performance among these
16 software projects from the NASA and SOFTLAB datasets, compared
to other unsupervised clustering methods.

Our contributions are succinctly summarized as follows:

Expert Systems With Applications 245 (2024) 123041

Integration of Effort-Aware Metrics: Our research emphasizes the
consideration of the Initial False Alarms (IFA) metric, which was
not taken into account in Xu, Li, et al. (2021) exploring clustering
techniques for unsupervised EADP. By evaluating clustering meth-
ods using three classification metrics and six effort-aware metrics,
including IFA, we provide a more comprehensive analysis of their
performance.

Comparison with Supervised EADP Models: Unlike (Xu, Li, et al.,
2021), we conduct a thorough comparison of the clustering tech-
niques for unsupervised EADP with state-of-the-art supervised
EADP models. The comparative analysis results indicate that the
best-performing unsupervised clustering method, K-medoids, out-
performs some supervised methods on IFA and PMI@20%.
Impact of Classification Performance: We highlight the correla-
tion between the classification performance of clustering tech-
niques and their effort-aware performance. This linkage empha-
sizes the importance of accurate classification in achieving better
effort-aware metrics, showcasing the significance of the selected
clustering technique.

Recommendations for Future Research: Based on our findings,
we recommend the use of the K-medoids clustering technique for
unsupervised EADP. Additionally, we suggest that future research
should focus on exploring improved unsupervised clustering tech-
niques, thereby providing a direction for further investigation and
advancement in the field.

1.3. Organization

Section 2 introduces the related work on EADP and clustering tech-
niques for unsupervised EADP. Section 3 provides a brief description
of the unsupervised clustering techniques and several EADP methods.
Section 4 outlines the setup of our experiment. Section 5 analyzes the
experimental results in detail. Sections 6 and 7 respectively present
the threats to validity and the implications of our work. Section 8
summarizes our work and draws a conclusion.

2. Related work
2.1. Effort-aware defect prediction

EADP methods prioritize the inspection of modules with higher
defect density, thereby improving the efficiency of software resting. The
notion of “Effort-Aware” was first introduced by Mende and Koschke
(2010) and Kamei et al. (2010) in the field of EADP, where they
proposed the EADP technique with the aim of detecting more defects
within the same LOC. Several EADP techniques have been proposed in
the previous literature, including supervised and unsupervised meth-
ods. The EALR model proposed by Kamei et al. (2012), employed linear
regression to construct an EADP model, which assisted developers in
efficiently reviewing defects with a fixed inspection budget. Yang et al.
(2016) proposed an unsupervised model called ManualUp for Just-
In-Time (JIT) EADP. The results showed that ManualUp was more
effective than some supervised methods on Recall@20%. Bennin, Toda,
et al. (2016) and Yu, Bennin, et al. (2019) explored the optimal
EADP algorithms, while (Bennin, Keung, et al., 2016) also assessed the
influence of data re-sampling techniques on EADP. Fu and Menzies
(2017) refuted the conclusions of Yang et al. (2016) and proposed
a supervised effort-aware JIT defect prediction model called OneWay
based on the ManualUp (Yang et al., 2016). OneWay initially evalu-
ated the unsupervised models from ManualUp using labeled training
data and selected the one with the best Recall@20% for prioritizing
changes in testing data. The experiments demonstrated that OneWay
outperformed most unsupervised models in effort-aware metrics, and a
combination of unsupervised learners may achieve comparable perfor-
mance to supervised learners on a project-by-project basis. Yan et al.
(2017) shared similar conclusions with Fu and Menzies (2017) and

P. Yang et al.

pointed out that unsupervised models did not perform significantly bet-
ter than state-of-the-art supervised models using within-project setup,
while unsupervised models can outperform state-of-the-art supervised
models significantly using cross-project setup. In addition, the number
of files to be inspected should be considered rather than only con-
sidering LOC, when evaluating effort-aware file-level defect prediction
models. Chen et al. (2018) proposed an EADP method named MULTI,
which aimed to maximize recall value and minimize inspection effort,
to guide the selection of modules for inspection. It employed a multi-
objective optimization algorithm to identify the Pareto-optimal set
of solutions, and used a decision-making process to select the most
appropriate solution based on the trade-off between two objectives.
Huang et al. (2018, 2019) reviewed the works of the supervised EADP
model (i.e., EALR Kamei et al., 2012) and unsupervised EADP model
(i.e., ManualUp Yang et al., 2016) and pointed out that software testers
would encounter lots of initial false alarms (i.e., the high IFA value)
and must inspect many software modules (i.e., the high PMI@20%
value) according to the rankings of ManualUp. Therefore, they pro-
posed the CBS+ method, including classification and ranking strategy
for modules. The experiment results showed that CBS+ could find
15%-26% more faulty modules than EALR and reduce the PMI@20%
and IFA values compared with ManualUp. Ni, Xia, Lo, Chen, and Gu
(2022), Ni, Xia, Lo, Yang, and Hassan (2022) indicated the superiority
of CBS+ for cross-project EADP and JIT EADP on JavaScript projects,
respectively. Qu et al. (2021, 2019) have introduced a technique that
enhanced the effectiveness of EADP by utilizing k-core decomposition
applied to software class dependency networks and developer informa-
tion. Additionally, Yang et al. (2021) proposed a differential evolution
algorithm-based EADP method, and Carka et al. (2022) proposed to
evaluate the EADP performance using the normalized proportion of
the found defects, which ranked software modules based on predicted
defect densities. In recent decades, the traditional approach to defect
prediction at the module level (such as file or class level) has been
dominated by supervised models, while applying supervised models
in practice can be expensive for practitioners, as collecting defect
data is often time-consuming and costly. Furthermore, the supervised
EADP models require labeled modules of historical data from either the
current project or external projects, which may not always be available.
In contrast, unsupervised methods have a low modeling cost and a wide
range of applications, as they do not require defect data to build pre-
diction models. Menzies et al. (2010) proposed the unsupervised model
ManualUp, which demonstrated superior performance in some effort-
aware metrics compared to some supervised models. Nevertheless, if
the value of the IFA exceeds 10, it can be frustrating for the software
testing team, and ManualUp has the potential to yield such high IFA
values, as noted by Kochhar et al. (2016). Therefore, in subsequent
studies on unsupervised EADP, few scholars have explored the use of
unsupervised learning approaches.

2.2. Clustering techniques for unsupervised classification-based defect pre-
diction

The use of unsupervised methods for CBDP has become a research
hotspot in recent years, and numerous studies have been conducted on
utilizing unsupervised clustering techniques for CBDP. Unsupervised
clustering methods for CBDP generally classify the modules into two
clusters, where the modules in one cluster are predicted as defective,
while those in the other cluster are predicted as clean. According
to Bishnu and Bhattacherjee (2011), a quad tree-based K-means algo-
rithm was utilized to predict defects in program modules. Quad trees
were utilized to determine the initial cluster centers to be input to
the A’-Means algorithm and it was applied for predicting defects in
program modules. Park and Hong (2014) constructed unsupervised
EADP models using clustering algorithms (i.e., EM and X-means), to
automatically determine the number of clusters. Oztiirk et al. (2015)
presented a new defect clustering technique using K-means++ for web

Expert Systems With Applications 245 (2024) 123041

page source codes and pointed out that linear discriminant analysis
performs better than the other three classifiers in general after clus-
tering. Zhang et al. (2016) proposed a connectivity-based classifier,
spectral clustering, for cross-project EADP, which ranked as one of
the top classifiers, along with five widely-used supervised classifiers
(random forest, naive Bayes, logistic regression, decision tree, and
logistic model tree) and four other unsupervised classifiers (K-means,
partition around medoids, fuzzy c-means and neural-gas) in their ex-
periments. Local models were introduced by Menzies et al. (2011)
for EADP. With local models, the available data is first clustered into
homogeneous regions, and afterward, separate classifiers are trained
for each homogeneous region. Herbold et al. (2017) and Menzies et al.
(2012) compared the effects of global models and local models on
cross-project EADP. In the local models, clustering techniques such
as EM and WHERE were used to cluster the training project set. The
experimental results showed that the clustered dataset had better per-
formance. Ha et al. (2019) replicated the experimental results of Zhang
et al. (2016) and attempted to improve the performance by examining
different techniques at each step of the approach using unsupervised
learning methods to solve the EADP problem. The experiments showed
that fluid clustering and spectral clustering yielded better results than
Newman clustering and CNM clustering. Furthermore, using kernel
principal component analysis or non-negative matrix factorization for
feature selection improved performance compared to using all features,
particularly in the case of unlabeled data. Xu, Li, et al. (2021) explored
the application of clustering techniques for unsupervised EADP, but
they only used F1@20%effort and Popt as the effort-aware metrics.
They did not consider the impact of IFA, which is crucial because
the unsupervised method ManualUp has not been further investigated
due to its high IFA. Therefore, we compare the clustering techniques
with the unsupervised method ManualUp and some supervised EADP
methods to evaluate their performance under six effort-aware metrics.
Our work is more comprehensive and reflects the difference in the per-
formance of different clustering techniques for unsupervised EADP in a
more comprehensive manner. Liu et al. (2022) introduced the Transfer
Spectral Clustering (TSC), an unsupervised model for identifying the
software defects without labeled data. TSC transfers knowledge from
auxiliary unlabeled data in the source project to enhance clustering
on unlabeled data in the target project. In experiments with seven
software projects, TSC outperformed four unsupervised methods and
showed competitive performance against eight supervised cross-project
methods. Thirumoorthy and Britto (2022) introduced ESAMP-SMO, a
hybrid elitist self-adaptive multi-population social mimic optimization
technique for software defect module clustering. The objective function
minimizes intra-cluster distance while maximizing fault prediction rate.
Using NASA datasets, the proposed technique demonstrates superior
performance compared to other competitor approaches in the perfor-
mance comparison analysis. Khalid et al. (2023) introduced a method
that employs K-means clustering for class label categorization, applies
classification models to selected features, and utilizes Particle Swarm
Optimization for model optimization.

3. Preliminaries

Unsupervised clustering techniques have the ability to identify de-
fective software modules without the need for defect labels. Therefore,
searching for unsupervised clustering technologies that can achieve
a performance similar to or better than supervised EADP models is
highly valuable. We provide a brief description of the process of using
clustering techniques for unsupervised EADP in our work and offer
a concise introduction to the 22 unsupervised clustering techniques.
These models are classified into seven clustering families, as outlined
by Xu, Li, et al. (2021).

P. Yang et al. Expert Systems With Applications 245 (2024) 123041
F, F, F; F, F; SFM
M |S[S|7]9]|3 29
Ranking
F, F, F; F, F; Ms|7(3]|6|8]4 28 by F,
M |55 71]9]|3 Mg | L |9 817 34
My | 11014211 ASFM 30.3
My |31 [5]3]2 Defective
— R —
M, |2 |4]|3]1]0 M,
Clean M
Ms|71(3]|6 4 4
ASFM 10.6 | "
Mg | 198|719 3
M, |1 []0]|4]2]1 8 M,
- Result
Mgla [t]2 14 M, Ranking List
M,|2[4]3|1]0 10 M, by F,
F, F, F; F, F; SFM

Fig. 3. The example process of using clustering techniques for unsupervised EADP.

3.1. Process of clustering techniques for unsupervised EADP

According to the research of Yang et al. (2016) and Xu, Li, et al.
(2021), which suggest that the cluster with higher average feature
values should be labeled as defective, we adopt the labeling scheme
consistent with Xu, Li, et al. (2021).

Specifically, we apply unsupervised clustering techniques to par-
tition the modules into two distinct clusters. Then, we proceed to
compute the Sum of Feature values of each Module (SFM) in both
clusters, which allows us to derive the Average SFM (ASFM) for each
cluster. For binary clustering, we label the modules in the cluster with
higher ASFM values as defective and those in the other cluster as
clean. For multi-clustering, we label the modules in the clusters with
ASFM values exceeding the mean value of these ASFMs as defective and
those in the remaining clusters as clean. The above process is equally
applicable to multi-clustering techniques. Next, we sort the modules in
the defective and clean clusters in ascending order based on a software
feature separately. This approach aligns with Menzies et al. (2010),
suggesting that smaller feature values often correspond to higher defect
densities, a phenomenon known as “smaller modules inspected first”.
Finally, we place the defective modules before the clean modules to
obtain the final ranking result. The example in Fig. 3 depicts the
entire process for a dataset consisting of six modules, each having
five-dimensional software features. We cluster these six modules into
two clusters using unsupervised clustering techniques, where cluster 1
comprises modules M, M5, and Mg, while cluster 2 comprises modules
M,, M5, and M,. Next, we compute and compare the ASFM values of
these two clusters. The ASFM value of cluster 1, which is 30.3, exceeds
that of cluster 2, which is 10.6. Therefore, we label the three modules in
cluster 1 as “defective” and the modules in cluster 2 as “clean”. Then,
suppose we sort the modules in both clusters in ascending order based
on the first feature value. Finally, we arrange the defective modules
before the clean ones to obtain the final ranking result (i.e., My, M,
Ms, My, My, and M3.).

3.2. Clustering techniques

3.2.1. Partition-based clustering (PBC)

The PBC methods divide the dataset into non-overlapping subsets,
with each subset corresponding to a cluster, and the clusters are mu-
tually independent. The PBC methods begin by selecting the number
of clusters to be formed and initializing the cluster centroids. Next,

the PBC methods calculate the distance of each module in the dataset
to all the cluster centroids and assign each module to the cluster
whose centroid is closest. After assigning each module to a cluster, the
centroid of each cluster is re-calculated, typically by taking the mean
of all modules in the cluster. This process of re-assigning modules to
clusters and re-calculating the centroids is repeated until a stopping
criterion is met, such as reaching the maximum number of iterations
or when the centroids no longer change. Finally, each module in the
dataset is assigned to a cluster, and the clusters formed by the PBC
method are mutually independent and non-overlapping subsets of the
dataset.

In our study, we opt for several clustering algorithms that are
based on K-means (Ikotun et al., 2022) and have undergone modifi-
cations, namely K-medoids (Lund & Ma, 2021), X-means (Mughnyanti
et al., 2020), Fuzzy C-Means (FCM) (Askari, 2021), G-means (Su-
dakov & Dmitriev, 2022), MiniBatchKmeans (Mehta et al., 2022), and
K-means++ (Li & Wang, 2022).

3.2.2. Hierarchy-based clustering (HBC)

The HBC methods construct a clustering hierarchy by continually
merging or splitting clusters, resulting in clustering results at different
levels. For each pair of software modules, HBC methods calculate
their similarity using a similarity metric such as Euclidean distance or
Manhattan distance, and record all similarities in a similarity matrix.
Based on the similarity matrix, HBC methods use a hierarchical clus-
tering algorithm to gradually merge the most similar clusters until all
software modules are clustered into a single cluster. By selecting an
appropriate number of clusters based on the clustering tree, such as
by setting a threshold or truncating the tree, the software modules can
be partitioned into the chosen clusters to obtain the final clustering
result (Xu, Li, et al., 2021).

In our work, we opt for four methods in HBC, including Balanced
Iterative Reducing and Clustering using Hierarchies (BIRCH) (Yin et al.,
2020), Clustering Using REpresentatives (CURE) (Guha et al., 2001),
RObust Clustering using linKs (ROCK) (Guha et al., 2000), and
Agglomerative Hierarchical Clustering (AHC) (Ding & He, 2002).

3.2.3. Density-based clustering (DBC)

The DBC methods are designed to discover clusters by identifying
high-density regions within a given dataset. These methods use density
connectivity to determine the boundaries of clusters and can handle
clusters of arbitrary shapes. To begin, the distance threshold ¢ and

P. Yang et al.

the minimum number of modules MinPts are set. For each software
module, its density is calculated, which is the number of software
modules in its neighborhood within the distance threshold e. If the
density is greater than or equal to the minimum number of modules
MinPts, the software module is marked as a core module. For each
core module, all density-reachable modules are added to the same
cluster. Specifically, the process begins with the core module, where
software modules with a density not less than MinPts within the
distance threshold ¢ are added to the cluster. If the added module is
also a core module, all modules in its neighborhood are added to the
cluster, and this process is repeated until all density-reachable modules
have been included in the cluster. The software modules not included
in any cluster are marked as noise modules.

In our work, we opt for three methods in HBC, including Density-
Based Spatial Clustering of Applications with Noise (DBSCAN) (Deng,
2020), Ordering Points To Identify Clustering Structure (OPTICS) (Sub-
udhi & Panigrahi, 2022), and Mean Shift (MS) (Ranjbarzadeh & Saadi,
2020).

3.2.4. Model-based clustering (MBC)

The MBC methods describe the data generation process using a
probability or other mathematical model, determine the number and
shape of clusters through model parameter estimation, and discover
elliptical or spherical clusters. First, the MBC methods calculate its
probability of belonging to each probability model for each software
module, and assign it to the most likely cluster based on the maximum a
posterior probability principle. Then, based on all the software modules
in the current cluster, estimate the parameters of each probability
model. If there are changes in the clustering assignment of software
modules, reassign the clusters; otherwise, assume that the optimal
clustering result has been obtained.

In this work, we opt three MBC methods including Self-Organizing
Map for Simple Clustering (SOMSC) (Peng & Nie, 2017), SYNChronized
SOM (SYNC-SOM) (Novikov & Benderskaya, 2014), and Expectation
Maximization (EM) (Subudhi et al., 2020).

3.2.5. Graph-theory-based clustering (GTBC)

The GTBC methods define the similarity between software modules
as edge weights on a graph, discover clusters through graph connec-
tivity, and can handle clusters of arbitrary shapes. Firstly, a similarity
graph in the GTBC method is constructed between software modules.
Then, based on the connectivity and cut properties of the graph, the
graph is partitioned into multiple subgraphs, with each subgraph cor-
responding to a cluster. During implementation, it is typically necessary
to set a threshold to control the size of the subgraphs, and to choose an
appropriate similarity measurement method to construct the similarity
graph.

In this paper, we opt for one GTBC method named Affinity
Propagation (AP) (Frey & Dueck, 2007).

3.2.6. Sequence-based clustering (SBC)

The SBC methods perform clustering based on the similarity of se-
quence data. These methods are designed to handle data with temporal
structure and are useful for discovering patterns and trends within
sequences. The first step in the SBC method involves converting the
sequence data into feature vector representations. Next, an appropriate
similarity measure is used to compute the similarity between sequence
data. Finally, the sequence data is clustered based on the similarity
matrix.

In this work, we opt three SBC methods, including Basic Sequential
Algorithmic Scheme (BSAS) (Theodoridis & Koutroumbas, 2006), Two-
Threshold Sequential Algorithmic Scheme (TTSAS) (Ahmadi & Berangi,
2008), and Modified BSAS (MBSAS) (Angel & Viola, 2016).

Expert Systems With Applications 245 (2024) 123041

3.2.7. Grid-based clustering (GBC)

The GBC methods divide the data space into multiple grids and
perform clustering on each grid, enabling fast processing of large
datasets and obtaining good clustering results for spatially clustered
data. It involves dividing the data space into multiple grids and then,
for each grid, counting the number of software modules and density
information within it. Based on a density threshold, the grid is labeled
as a core region, an edge region, or a noise region. Next, for all core
regions, clusters are formed by building them around their centers and
adding software modules from neighboring regions to the cluster.

In this paper, we opt for one GBC method named BANG (Schikuta
& Erhart, 1998).

The succinct descriptions for the 22 unsupervised clustering tech-
niques of the seven clustering families are presented in Table 1.

4. Experiment setup
4.1. Dataset

As our research requires comparison with supervised EADP meth-
ods, we employ cross-version validation while constructing the super-
vised EADP models. Cross-version validation enables the evaluation of
a model’s generalization ability across different versions of software
systems. If a model performs well in multiple versions of software
systems, it can be deemed as robust and reliable, and can be effectively
applied in practical applications (Tantithamthavorn et al., 2018).

To meet the requirements of the EADP task for the number of
defects, we select the PROMISE data repository (Boetticher, 2007)
in this paper. The selection of our experimental dataset differs from
previous research (Chen et al., 2018; Cheng et al., 2022; Fu & Menzies,
2017; Huang et al., 2019; Yang et al., 2021; Zhao et al., 2022) as
they did not consider the information on the number of defects and
chose the datasets without the number information, such as SOFT-
LAB (Turhan et al., 2009), RELINK (Wu et al., 2011), NASA (Shepperd
et al., 2013), Change-level datasets (Kamei et al., 2012), and Android
datasets (Catolino et al., 2019). However, the goal of EADP is to
predict defect density (i.e., the ratio between the number of defects
and LOC) and rank software modules based on the density (Yu et al.,
2024). Furthermore, it is important to note that the PofB@20% metric
we utilize requires information on the number of defects. A detailed
explanation of this metric will be provided in Section 4.2 of the paper.
Therefore, we finally select the PROMISE dataset, which is an open-
source dataset comprised of 41 releases from 11 open-source software
projects. This dataset has been widely utilized in EADP research (Ni,
Xia, Lo, Chen, & Gu, 2022; Xu, Li, et al., 2021; Yan et al., 2017; Yu,
Bennin, et al.,, 2019; Yu et al., 2017). More detailed information is
provided in Table 2, where the column “#Module” denotes the count
of modules, “#Def” corresponds to the number of defects, “%Def”
signifies the percentage of defective modules, and “AvgDef” indicates
the mean number of defects. The PROMISE dataset contains 20 software
features that cover various aspects of software complexity, coupling,
cohesion, reusability, maintainability, reliability, and scalability.

4.2. Evaluation metrics

4.2.1. Effort-aware evaluation metrics

Since the effort-aware metrics used in Xu, Li, et al. (2021) are in-
sufficient to comprehensively evaluate model performance, we employ
the following six commonly used effort-aware evaluation metrics from
EADP research (Amasaki et al., 2022; Cho et al., 2022; Huang et al.,
2019; Khatri & Singh, 2022; Ni, Xia, Lo, Chen, & Gu, 2022; Rao et al.,
2021; Xu, Zhao, et al., 2021; Yang et al., 2020; Yu, Liu, et al., 2019) to
evaluate these clustering techniques. Similar to these EADP studies, we
restrict the limited effort to 20% of the total LOC of the defect dataset.
Assume that there are N software modules in a defect dataset, which
contain P defective modules and Q defects. When checking the top 20%

P. Yang et al.

Expert Systems With Applications 245 (2024) 123041

Table 1
A summary of the unsupervised clustering techniques.
Family Method Brief Description
K-means A centroid-based clustering algorithm by selecting the average values of the instances in the cluster as the centers.
K-medoids It selects instances from the dataset as representatives, known as modoids, to build clusters around.
PBC X-means It initially assumes a minimum number of clusters and dynamically increases them using a specified splitting criterion
to control the process of splitting clusters.
FCM It allows modules to belong to multiple clusters simultaneously by assigning them membership degrees that represent
their degrees of belonging to each cluster.
G-means It grows the number of centers by splitting those centers whose data do not appear to come from a Gaussian
distribution based on a statistical test.
MiniBatchKmeans A variant of the K-means algorithm that updates the cluster centers using small, random subsets of the data.
K-means++ It selecting the initial centers in K-Means, which guarantees an approximation ratio O(log k) and aims to find optimal
initial centers to improve clustering results.
BIRCH It uses Clustering Features and a CF tree to incrementally and dynamically cluster multi-dimensional metric data
les.
HBC modules,
CURE It utilizes a hierarchical clustering approach, and optimizes performance using a KD-tree implementation.
ROCK It uses common neighbor distance to detect clusters, and iteratively removes links between distant clusters until
convergence.
AHC A bottom-up hierarchical clustering algorithm that merges smaller clusters to form larger clusters.
DBSCAN A density-based clustering algorithm that groups nearby instances and identifies outliers with distant neighbors.
DBC OPTICS A density-based clustering algorithm that produces a hierarchical clustering with a reachability distance plot.
MS Iteratively shifting instances until they reach the nearest peak of their kernel density estimation surface.
SOMSC It uses a self-organizing map to group similar instances together based on their topological relationships in a
MBC low-dimensional space.
SYNC-SOM A bio-inspired clustering algorithm that uses a synchronized oscillatory network based on SOM as the first layer to
perform data clustering.
EM An iterative algorithm that alternates between an E-step and an M-step, which respectively compute the expectation of
the log-likelihood and maximize the log-likelihood to update the model parameters.
GTBC AP It uses message passing between instances to find the most representative exemplars as cluster centers.
BSAS It selects a single vector as the representative of each cluster and aims to create compact clusters with non-repeating
SBC vectors.
MBSAS A modification of the BSAS that runs through the instances twice, allowing for better cluster separation.
TTSAS A modification to BSAS and MBSAS that uses two threshold parameters to assign modules to clusters and create new
clusters.
GBC BANG It uses a grid structure to organize the value space and groups patterns into blocks, which are then clustered using a

topological neighbor search algorithm.

LOC according to the predicted result of the EADP model, the software
testing team inspects n software modules and finds p actual defective
modules with g defects. In addition, the software testing team have
inspected k modules when they detect the first actual defective module.
Precision@20% is defined as the quotient of the number of truly
defective modules to the number of predicted defective modules in the
top 20% LOC. A lower Precision@20% could affect the testing team’s
confidence, which can squander valuable testing resources.

Precision@20% = 4 (@)
n

Recall@20% is the proportion of truly defective modules identified
in the top 20% LOC to the total number of defective modules present in
the dataset. More defective modules could be discovered with a higher
value of Recall@20%.

Recall @20% = %)

F1@20% takes into account both the Precision@20% and Re-
call@20% simultaneously, which is a harmonic average of the two.

2 X Precision@20% X Recall @20%
F1@20% =
@20% Precision@20% + Recall @20% 3

PofB@20% is the Proportion of the found Bugs when the top 20%
LOC are inspected. This metric is equivalent to Recall@20% when
each defective module comprises only one defect. A higher PofB@20%
signifies the ability to detect a larger number of defects.

PofB@20% = é @

PMI@20%' is the Proportion of Module Inspected when the top
20% LOC are inspected (Huang et al., 2017; Yu et al., 2023). A high
value of PMI@20% implies that the software testing team needs to
scrutinize a greater number of modules for the same number of LOCs.
This increases the actual effort and time cost as they frequently switch
between different modules.

PMT@20% = % 5)

PofB@20% and PMI@20% are often correlated, and when an EADP
method obtains a high PofB@20%, it will also achieve a high
PMI@20%.

IFA is the number of Initial False Alarms encountered before the
testing team finds the first actual defective module. Kochhar et al.
(2016) found that if the top-k predicted defective modules are all false
defective modules, the software testing team may become frustrated
and stop checking other modules for defects. In addition, their study
shows that almost all respondents (close to 98%) agree that examining
more than ten actual clean modules was beyond their acceptable level.
Recent studies (Huang et al., 2019; Li, Yang, et al., 2023; Yu et al.,

! Initially (Huang et al., 2017) proposed PCI@20% based on code change-
level, and other researchers (Li, Lu, et al., 2023; Li, Yang, et al., 2023; Yu et al.,
2023, 2024) transformed the code change-level PCI@20% into the module-
level PMI@20%. Our methodology and evaluation metrics are tailored to the
module level, and we have chosen PMI@20% to assess the efficiency of our
approach.

P. Yang et al.

Table 2
The details of the experiment dataset.
Project Version #Module #Def %Def AvgDef
1.3 125 33 16 1.65
1.4 178 47 22.5 1.18
Ant 1.5 293 35 10.9 1.09
1.6 351 184 26.2 2
1.7 745 338 22.3 2.04
1 339 14 3.8 1.08
Camel 1.2 608 522 35.5 2.42
1.4 872 335 16.6 2.31
1.6 965 500 19.5 2.66
1.1 111 233 56.8 3.7
Ivy 1.4 241 18 6.6 1.12
2.0 352 56 11.4 1.4
3.2 372 382 33.1 4.24
4.0 306 226 24.5 3.01
Jedit 4.1 312 217 25.3 2.75
4.2 367 106 13.1 2.21
4.3 492 12 2.2 1.09
1.0 135 61 25.2 1.79
Log4j 1.1 109 86 33.9 2.32
1.2 205 498 92.2 2.63
2.0 195 268 46.7 2.95
Lucene 2.2 247 414 58.3 2.88
2.4 340 632 59.7 3.11
1.5 237 342 59.5 2.43
Poi 2.0 314 39 11.8 1.05
2.5 385 496 64.4 2
3.0 442 500 63.6 1.78
1.0 157 21 10.2 1.31
Synapse 1.1 222 929 27 1.65
1.2 256 145 33.6 1.69
1.4 196 210 75 1.43
Velocity 1.5 214 331 66.4 2.33
1.6 229 190 34.1 2.44
2.4 723 156 15.2 1.42
Xalan 2.5 803 531 48.2 1.37
2.6 885 625 46.4 1.52
2.7 909 1213 98.8 1.35
1.1 162 167 47.5 217
Xerces 1.2 440 115 16.1 1.62
1.3 453 193 15.2 2.8
1.4 588 1596 74.3 3.65

2023, 2024) highlighted the significance of the IFA metric as a crucial
criterion for assessing model performance. Therefore, EADP methods
will not be adopted by developers when the IFA of their prediction
exceeds 10.

IFA=k (6)

Higher Precision@20%, Recall@20%, F1@20%, and PofB@20%,
lower PMI@20% and IFA, indicating excellent EADP performance.

To better illustrate these indicators, we give an example: suppose
there exists a given test dataset comprising ten software modules de-
noted as M, M,, M5, ..., M,,. Among these modules, M, M,, and M,
are defective with 3, 2, and 2 bugs, respectively, while the remaining
modules are non-defective. Additionally, the LOC for these ten modules
sum up to 1500. Specifically, M, M,, and Mj; consist of 300, 150, and
50 LOC, respectively, whereas the rest of the software modules each
possess 100 LOC. Due to limited testing resources, software testers can
only test the top 20% LOC, i.e., 300 LOC. There is a ranking of the
software modules: M,, M,, M3, M,, M5, M¢, M7, Mg, My, M.

Fig. 4 visually depicts the detection status corresponding to this
ranking. The modules to be detected during the testing of the top 20%
LOC are represented by blue boxes, arranged according to their ranking
order. The numbers below each module denote their respective count
of defects and LOC. Owing the limitation that testers can only test the

Expert Systems With Applications 245 (2024) 123041

top 20% of LOC of modules, and considering that the aggregate LOC
count of M,, M,, M; equates to 300, constituting 20% of the overall
code lines (1500), only the first three software modules can be tested
in this order.

(1) Precision@20%: We find 2 actual defective modules when we
check the top 20% of LOC of modules in this ranking. Therefore, the
Precision@20% of this ranking is 0.667 (=2/3).

(2) Recall@20%: The total number of defective modules for this
ranking is 3. We find 2 actual defective modules when we check the
top 20% of LOC of modules. Therefore, the Recall@20% of this ranking
is 0.667 (=2/3).

(3) F1@20%: The Precision@20% for this ranking stands at 0.667,
while the Recall@20% is also 0.667. Consequently, the F1@20% for
this ranking is 0.667.

(4) PofB@20%: The total number of bugs in the test dataset is 7
(=3+2+2). Among these, the first three modules incorporate 4 bugs
(=2+2). Therefore, the PofB@20% of this ranking is 0.571 (=4/7).

(5) PMI@20%: The total number of modules in the test dataset is
10. Therefore, the PMI@20% of this ranking is 0.3 (=3/10).

(6) IFA: In the given ranking, the first truly defective module is M,.
Upon the detection of M,, testers have already finalized the assessment
of one module (M,). Therefore, the IFA of this ranking is 2.

4.2.2. Classification evaluation metrics

In Section 5, we investigate the relationship between the effort-
aware performance and classification performance of clustering tech-
niques. Therefore, we employ Precision, Recall, and F1, which are the
most commonly used metrics for evaluating classification performance
in the filed of software engineering and artificial intelligence (Chen
et al., 2023, 2020; Li, Zou, et al., 2023; Ma, Keung, He, et al., 2023;
Ma et al., 2022; Ma, Keung, Yu, et al., 2023; Yang et al., 2023; Zhang
et al., 2018).

Precision measures the proportion of software modules predicted
by a classification model as a certain class that actually belongs to that
class. It is calculated as:

Precision = e , 7

TP+ FP

where TP (True Positive) represents the number of software mod-
ules correctly predicted as defective modules, and FP (False Positive)
represents the number of software modules incorrectly predicted as
defective modules. The higher the Precision value, the more accurate
the classifier’s judgment is for a given category, which implies a lower
number of false defective modules.

Recall measures the proportion of actual defective modules that are
correctly predicted by the model. The formula to calculate it is:

Recall = TP __ , (8)
TP+ FN

where FN (False Negative) represents the number of software modules

incorrectly predicted as clean modules. The higher the Recall value, the

stronger the classifier’s ability to identify the category, and the lower

the number of false clean modules.

F1 is a comprehensive evaluation metric that considers both Preci-
sion and Recall. It balances the Precision and Recall values to provide
a more comprehensive evaluation of its performance. The F1 is the
harmonic mean of Precision and Recall:

2 X Precision X Recall

Fl1= — . (C)]
Precision + Recall

4.3. Experimental process

Our experiments employ a cross-version setup where the previous
version is used as the training set, and the current version is used as
the testing set. For example, in the case of the cross-version dataset
composed of Ant 1.3 and Ant 1.4, the supervised EADP methods use
Ant 1.3 as the training set and Ant 1.4 as the testing set. However,
the unsupervised clustering techniques do not require the training set,

P. Yang et al. Expert Systems With Applications 245 (2024) 123041
. e ——————— ~\‘

reee (e o] [(060 [0 (D) [0 [[(06
: i
: i

Bugs b0 2 2 13 0 0 0 0 0 0
i i
: i

LOC . 100 150 50) 300 100 100 100 100 100 100

Fig. 4. An example of ranking. The modules to be detected during the testing of the top 20% LOC are represented by blue boxes, arranged according to their ranking order. The
numbers below each module denote their respective count of bugs and LOC. According to this sorting, when testing resources are limited, we can only check the modules of the

first 20% LOC, that is, the first 3 modules in the red box.

- OO O ¢ == Rk
o ——— > . ’ —_— by _
L ;
o Density
- (D) 2) TrainingDataset EADP (5)
— Model AN
L S— : A .I.LlJ.
PROMISE Cross-release (3) @ | Ranking
repository Tl —> - | by — AIEZTUES
TestingDateSet @ | Feature y
CUEADP
Model
(1) Extract modules (2) Divide datasets (3) Build model (4) Predict and rank modules (5) Evaluate models

Fig. 5. The whole process of our experiment.

so these methods only utilize the Ant 1.4 dataset. Fig. 5 illustrates the
complete workflow of our experiment. A detailed description of our
experiment’s entire process is presented as below:

We first apply a cross-version setup to split the dataset into a
training dataset and a testing dataset. For the unsupervised clustering
techniques, we use them to cluster the testing dataset. We subsequently
employ the ASFM labeling scheme, which is described in Section 3,
to categorize the clustering results into defective and clean modules.
Meanwhile, we construct the EADP models using the training dataset
and utilize them to predict the modules in the testing dataset as
defective or clean modules.

Next, we sort the defective and clean modules in ascending order
of each feature on the PROMISE dataset. We then identify the feature
that yields the highest average PofB@20% value for each clustering
technique. As a result, we obtain a definitive sequence of software
modules, where all the defective modules precede the clean ones.
Finally, we evaluate the modules within the top 20% LOC based on
the sequence of software modules.

4.4. Supervised EADP methods

To verify the effectiveness of the clustering techniques for unsu-
pervised EADP, we compare them with the following state-of-the-art
supervised EADP methods.

(1) EALR (Effort-Aware Linear Regression) (Kamei et al., 2012): It
assumes that there is a linear relationship between the defect density
and the feature values. Accordingly, it constructs a linear regression
model using the least squares method to derive parameter solutions
that minimize the total difference between actual and predicted defect
densities.

(2) EATT (Effort-Aware Tri-Training) (Li et al., 2020): It initially uti-
lizes the tri-training technique to train three classifiers. Subsequently, it
employs the majority voting strategy to compute the defect probability
of a novel software module. Eventually, all new modules are arranged
based on the ratio between the defect probability and LOC.

(3) CBS+ (Classify Before Sorting) (Huang et al., 2019): It employs
a trained Logistic Regression (LR) model to identify potentially de-
fective and clean software modules. Subsequently, the method sorts
the predicted defective modules and clean modules separately based
on the defect density, which is the ratio between the predicted defect
probability and LOC. Lastly, the method arranges the sorted defective
modules before the clean ones. Based on the research by Ni, Xia,
Lo, Chen, and Gu (2022), CBS+ exhibits good performance on the
JavaScript dataset.

(4) CBS+(RF): We integrate an advanced classifier known as Random
Forests (RF) (Balaram & Vasundra, 2022) to replace the LR classifier in
the CBS+. RF is an ensemble classifier aimed at enhancing prediction
accuracy. It builds multiple decision trees by randomly selecting data
subsets and features, combining their predictions through voting. This
approach mitigates overfitting, enhances stability against noise, and
provides insights into feature importance. The RF classifier exhibits
reduced classification errors compared to existing algorithms. With its
ability to handle high-dimensional data, RF is a versatile and effective
method widely used for many EADP studies (Balaram & Vasundra,
2022; Pachouly et al., 2022; Zheng et al., 2022).

(5) CBS+(GB): We embed the Gradient Boosting (GB) (Sandhu &
Batth, 2021) classifier into the CBS+. GB is a powerful machine learning
algorithm for solving classification problems. GB operates through a
three-step process. In Step 1, it optimizes the loss function. Step 2
involves predicting using a weaker learner. In Step 3, an adaptive
model is fashioned by appending trees to the weaker learner, thereby
minimizing the loss function. GB, serving as a remedy for the primary
speed drawback of RF, is coupled with it to yield improved outcomes
in EADP (Chen et al., 2022; Sandhu & Batth, 2021).

(6) SERS: We also compare a supervised method for reducing fea-
tures, which we have named SERS (Shivkumar S., E James W., Ram A.
and Sunghun K.) based on the authors’ name of Shivaji et al. (2012).
The process of this method begins by utilizing the complete feature
set F and conducting feature evaluation for various feature selection

P. Yang et al.

Expert Systems With Applications 245 (2024) 123041

Table 3
The optimized hyper-parameters of the EADP methods. (The default parameter value is in bold font.)
Classifier Hyper-parameters Tuning range Description
CBS+ tol [0.1, 0.01, 0.001, 0.0001, 0.00001] Tolerance for stopping criteria
CBS+(RF) n_estimators [10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 150] The number of decision trees in the forest
CBS+(GB) n_estimators [10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 150] The number of weak classifiers

techniques. The top-performing 50% features are then selected to form
a new feature set, selF. Using naive Bayes or SVM as classifiers, cross-
validation is performed, and feature evaluations are recorded. The 50%
of features with the lowest evaluations within selF are subsequently
removed, and selF is updated accordingly. Ultimately, the best F-
measure result and the corresponding feature percentage leading to
the optimal outcome are determined. The overarching objective of
the entire process is to iteratively select and eliminate features to
identify the most optimal feature set based on the specified evaluation
metric. Our experiments find that the naive Bayes can result in the
best performance, aligning with the conclusions of the original paper.
Therefore, we opt for the naive Bayes as the classifier for this method.

In order to attain optimal detection performance, it is imperative
to fine-tune hyperparameters. Based on the outcomes of initial experi-
ments, we utilize the grid search algorithm (Bergstra & Bengio, 2012)
to optimize these hyperparameters, with the F1 score as the target for
optimization. The details of the hyper-parameters of the EADP methods
are shown in Table 3.

4.5. Statistic test

Scott-Knott Effect Size Difference (ESD) test is a statistical method
for comparing the means of model groups based on their effect size dif-
ferences at the significance level of 0.05 (« = 0.05). It uses hierarchical
clustering to partition the set of the model means into distinct groups
with non-negligible differences in effect size. The method involves two
steps: (1) finding a partition that maximizes model means between
groups, and (2) splitting or merging groups based on the magnitude
of the difference for each pair of the model means. The test aims
to produce a ranking of models while ensuring that the magnitude
of differences within each group is negligible, and the magnitude of
differences between groups is non-negligible.

Wilcoxon signed-rank test is a non-parametric hypothesis testing
method used to compare whether there is a significant difference be-
tween the medians of two independent or paired models. This method
arranges the sample data, ranks them according to their order, and
then calculates a statistic, the Wilcoxon signed-rank test statistic, based
on the significant difference in the ranks between the two models.
According to the rank-sum distribution theory in statistics, the signifi-
cance level and confidence interval of this statistic can be calculated to
determine whether the difference in medians between the two models
is significant or not. The null hypothesis posits that there exists no
difference between two distinct methods. If the p-value is less than 0.05,
we reject the null hypothesis, implying a significant difference between
the methods; otherwise, we shall refrain from rejecting it.

5. Experimental results

5.1. RQ1: Which unsupervised clustering techniques exhibits the most ex-
emplary performance?

Motivation: Previous research on unsupervised defect prediction
have not provided a definitive conclusion as to which unsupervised
clustering technique has the most superior performance on EADP. In
order to investigate which unsupervised clustering technique exhibits
the most exemplary effort-aware performance on the PROMISE dataset,
we have compared 22 unsupervised clustering techniques.

Methods: Figs. 6-11 illustrate the distribution of performance
of different clustering unsupervised methods, employing the optimal

10

feature ranking across all datasets, concerning Precision@20%, Re-
call@20%, F1@20%, PofB@20%, PMI@20%, and IFA. In these pic-
tures, different colors of the Scott-Knott ESD test ranking indicate
different ranks and the ranks corresponding to the colors in descending
order: 1: ‘red’, 2: “green”, 3: ‘blue’, 4: ‘orange’, 5: ‘purple’, 6: ‘yellow’,
7: ‘pink’, 8: ‘gray’. To show the rank results more precisely, we use
Figs. 12-17 to show the Scott-Knott ESD rankings of different unsu-
pervised clustering techniques. Initially, we apply the 22 clustering
techniques to cluster the testing dataset into defective and clean mod-
ules and sort the clustering results in ascending order for each feature,
with all defective modules listed before the clean ones. Subsequently,
we select the feature that can yield the highest average PofB@20%
value among the 22 clustering techniques. Then, we evaluate the
modules in the top 20% LOC, utilizing the Scott-Knott ESD test and pre-
senting the results as a box plot to demonstrate the statistically distinct
groups with significant differences. We represent the methods as X.F
in these figures, where ‘X’ denotes the clustering-based unsupervised
method and ‘F’ signifies the best feature by sorting the modules.

Results analysis: The K-medoids clustering technique could obtain
the best overall effort-aware performance by sorting the modules in
ascending order based on the LOC feature. Additionally, Kmeans++ and
CURE achieve performance second only to K-medoids when using the
same feature ranking the modules as K-medoids. Detailed analysis of
these results are as follows:

(1) Kochhar et al. (2016) found that almost all respondents consid-
ered examining more than ten actual clean modules to be beyond their
acceptable level. Therefore, our initial step is to exclude the clustering
algorithms with an IFA value greater than 10. Fig. 11 presents the
IFA results of these 22 clustering techniques on their optimal feature
sequences. Additionally, we consider the practical implications of high
PMI@20% values. Specifically, higher PMI@20% values indicate that
inspecting the first 20% LOC requires checking a larger number of
modules, leading to additional overhead in module switching. Fig. 10
presents the PMI@20% results of the 22 clustering techniques on
their optimal feature sequences. Considering the results of IFA and
PMI@20%, we can reject four clustering techniques, namely DBSCAN,
OPTICS, AP, and BANG, and we will ignore them in our subsequent
comparisons. In detail, both DBSCAN and OPTICS have an IFA average
of 11.5, while BANG has an IFA average of 17. Furthermore, DBSCAN,
OPTICS, AP, and BANG have IFA values exceeding 10 on 9, 9, 7, and
16 datasets, respectively. From Figs. 10 and 16, we can also visually
observe that BANG, DBSCAN, OPTICS, and AP are at the highest level
in PMI@20%, indicating that these methods exhibit the poorest per-
formance in terms of PMI@20%. Therefore, in subsequent evaluations,
we should not include these four methods since their other values
no longer hold statistical significance. Excluding these four methods,
the remaining 18 unsupervised clustering techniques meet the IFA
requirements.

(2) After excluding the four methods of DBSCAN, OPTICS, AP, and
BANG, K-medoids show the best performance in terms of PofB@20%
and Recall@20%, followed by K-means++ and CURE. Specifically,
K-medoids exhibits the highest PofB@20% and Recall@20% values
among the remaining 18 methods, significantly surpassing all other
methods by 4.84% to 8.54%. However, K-medoids has an average PMI
value that is 6.72% to 12.78% higher than the other methods. CURE
and K-means++ lose the best method by 8.32% and 11.32%, respec-
tively. However, this is inevitable because PofB@20% and PMI@20%
are often correlated. When an EADP method achieves a high PofB@
20%, it is likely to also obtain a high PMI@20%.

P. Yang et al. Expert Systems With Applications 245 (2024) 123041

PBC HBC DBC MBC

or 1 7T T T T OTIT T : T = T
- i ! i i ! | [! il . (I
Sorsp 4 b b b b bR I
5} R R A S I N
Zo0s0f : - :
z : : :
wh + 1+ 4+ I L L TiL T T 4 1

() (] -2 > 9 2 C
& &@\ & 4 &0@ &'VOL XXVQL @\g S L ¢ S CHIG AN 2 v@\

@‘&% & & F&T & & ¥ & &8 (9& S &
& 0@ . Q\c}‘ & Q ﬁ\e? E AV\C
& °

Fig. 6. The Precision@20% of each clustering technique. The ranks corresponding to the colors in descending order: 1: ‘red’, 2: “green”, 3: ‘blue’, 4: ‘orange’, 5: ‘purple’, 6:
‘yellow’, 7: ‘pink’, 8: ‘gray’.

PBC HBC DBC MBC GTBC SBC GBC

o
i

o
=
T

Recall@20%
f=]
S

1Tt
T
HIH
-
HIH
HT -
HH
.+-|:|]---|

S S
o
bp---

Fig. 7. The Recall@20% of each clustering technique. The ranks corresponding to the colors in descending order: 1: ‘red’, 2: “green”, 3: ‘blue’, 4: ‘orange’, 5: ‘purple’, 6: ‘yellow’,
7: ‘pink’, 8: ‘gray’.

PBC HBC DBC MBC GTBC SBC GBC
08} N T
: : i
- - 1
o 06F : : : | P
S A - H
& = 1 . - R (N
904r T P - T TiT 4T P i iy
(= : : -
o HE8s0B8BHBHH =R=H=H=}=Nu}
e R A I ‘Y 1
00 1 = 1 = 1 1 5 1 (/I f IC/ 1 1 I(/ 1 1 1 1
> ce O
K ¢ & S & ¢ & S s @“ RS RS g“ S
o §F & © N & 7 &S & & YR & ¢ 5 e
& & & o & & N RS S & & o 3
& & < & & & < ¢
& I & F o
&

Fig. 8. The F1@20% of each clustering technique. The ranks corresponding to the colors in descending order: 1: ‘red’, 2: “green”, 3: ‘blue’, 4: ‘orange’, 5: ‘purple’, 6: ‘yellow’, 7:
‘pink’, 8: ‘gray’.

PBC HBC DBC MBC SBC GBC
0.8 : : T
H P
£ | LT T :
o 1
N@ ! i i
: i g ; = : Q Q : . . .
o & T T .
-9
02} : = = Higs 57 = — = =
1 AL - -+ L
1
0.0k L -+ . . L L . 1 . L 1 1 1 L L 1 1 L . 1 .
D O ¢ o < < ¢ N < 3 O D)
&\)QL ‘S,y& & QO&C &0@ & g Q_@b'c Q&yo @V\ Q‘C\»OL N Cvoc RS \‘CQ‘“?_%Q s \90@ Vco“\ & é@_@
& S Ch & 4 N ?
yo‘% o 4 _‘:&q’ & & A - U (b%cv & Q%“(\ %§\v~ %O& & ¥ 5 & F
¥ & & © +F & v
&

Fig. 9. The PofB@20% of each clustering technique. The ranks corresponding to the colors in descending order: 1: ‘red’, 2: “green”, 3: ‘blue’, 4: ‘orange’, 5: ‘purple’, 6: ‘yellow’,
7: ‘pink’, 8: ‘gray’.

11

P. Yang et al. Expert Systems With Applications 245 (2024) 123041
PBC HBC DBC MBC GTBC SBC GBC
08F P P P
: : : P : $
o~
® o : - : : :
S 04f " : 5 Nk :
~ _ - . E : : — - T e — :
02f = P + T i = T T B P Bifpie 8 s
. . 3 . i . o i : L i i c I . 8 . L
g F & &F TIPS T T S S S
& &S Y LSS TS T T P Y Y S
o g & S & <5 s & 5 A ¥
24 *:\\" 45 . ,\“@ q,@& {5\& < N & IS ES *\;U% & S < Q'
5 S

Fig. 10. The PMI@20% of each clustering technique. The ranks corresponding to the colors in descending order: 1: ‘red’, 2: “green”, 3: ‘blue’, 4: ‘orange’, 5: ‘purple’, 6: ‘yellow’,

7: ‘pink’, 8: ‘gray’.

PBC HBC DBC MBC GTBC SBC GBC
: : : : : =
& H 8 o N b i
: ; : L P
40 F i : - : : Do
: : : : : Dol
< : : T T : : : -
= i Do i : - : Do
0t : S : N ﬂ
: MM : DT :
! & 5 N & & H
N = e e e S S =
vog & \sé\ o & »OC »OQ ~ VO(J YF\(/ VOC \‘OQ \90 QO\‘\ & @&\ < VOC & & éﬁt\ &
& RS e O O & 9 & & & w & Y S SR\ 3 S % <% S
& < E b & & F & £ W S SHER\ N v & RS & 5
& F & 6@0 & & < <& o‘z’% & S8 C%,O & & &9
¥ S A g & §
W

Fig. 11. The IFA of each clustering technique. The ranks corresponding to the colors in descending order: 1: ‘red’, 2: “green”, 3: ‘blue’, 4: ‘orange’, 5: ‘purple’, 6: ‘yellow’, 7:

‘pink’, 8: ‘gray’.
|
g o
g
<
g — @9
N
M S
o |
© r—rr—1 1 17 717 1T T T T T T T T T T T T T T T 1
© W ©w vy wn = @ A B U om v v
S E2Z2EZ2LIE585EEESES £ 28 %
O ¢ v R L v @ n ¢S Y < O S 8 D U B <
E H EmmeH 8 Ef:—)fﬂ\
- SERONN S 5 @ 7 O 8 ° B 5 A
< > - G - M
n =

Fig. 12. The rankings of clustering techniques on Precision@20%. Different colors indicate different ranking levels. The higher ranking value indicates the better performance of

each clustering technique on Precision@20%.

(3) The 18 methods exhibit almost identical Scott-Knott ESD levels
or differ by only one level in terms of Precision@20% and F1@20%.
The difference in numerical values is less than 1% on average. This
indicates that all methods do not show significant differences in per-
formance in terms of Precision@20% and F1@20%.

(4) Furthermore, we compare several algorithms selected based on
the experimental results of Xu, Li, et al. (2021), which perform the best
on the PROMISE dataset, including X-means, BSAS, MBSAS, DBSCAN,
and OPTICS. DBSCAN and OPTICS perform particularly poorly in the
IFA metric, exceeding the threshold on multiple datasets and resulting
in very high PMI@20%. However, these two algorithms belong to the
top-ranked group in terms of PofB@20%. Other algorithms like X-
means, BSAS, and MBSAS can satisfy the IFA requirements, but no
method belongs to the top-ranked group in metrics like PofB@20%,
Recall@20%, etc. This implies that these clustering algorithms are more

12

inclined to incorrectly clustering modules with small LOC as defective,
leading to high IFA and PMI@20%.

Answer to RQ1: K-medoids demonstrates the best overall
effort-aware performance when inspecting top 20% modules,
followed by K-means++ and CURE.

5.2. RQ2: Could unsupervised clustering techniques enhance the perfor-
mance of the unsupervised EADP model manualup?

Motivation: In addressing RQ1, we investigate the best clustering
techniques, but it remains unknown whether these methods can effec-
tively improve the performance of ManualUp, particularly in reducing
the value of IFA. Previous research has shown that ManualUp performs

Expert Systems With Applications 245 (2024) 123041

P. Yang et al.
n —
an
g =
i, -
= o
[3+]
= todododogoododododopodogopogogop
=
© [I I [I I I I I I I I I I I I [I I I I I
O A Z ® 2 W 0 8 8 2 WU UE M8 S o
> <2022 g5 §§ 83225 EYH 8829
< O & 8 =2 3 < g & g8 ¥ R PO 2 E KN H
m (75 - o O = g g = o E m M § ~ £ @) E
M O €& v XM M o = 3 O Z.
a M = 2 -
p= n
Different colors indicate different ranking levels. The higher ranking value indicates the better performance of

Fig. 13. The Rankings of clustering techniques on Recall@20%.
each clustering technique on Recall@20%.

SOMAC

%)
on _
§=
2 a1
Qc20
-
o
("7 71 1 ‘1 1T 1T 1T T 1T 1T 17T T T T T T T]
O B 2 Z 88 ¥ S 2 4L 29 R 2L 2 LS ESE
z < 2 < Q@ 2 U S 3 £ £ < < 8§ 8 & 0 =2 U O
2T EoEccAliiggeEeiiiger g
2 A & E £ AmE EBE E 8 50 F =
= S| S~ S
MooA 8 SR
2 N

Fig. 14. The Rankings of clustering techniques on F1@20%. Different colors indicate different ranking levels.

clustering technique on F1@20%.

Rankings
0.4

——
—9—

——
——

—

The higher ranking value indicates the better performance of each

——
——
—o—

—

——
——

—o—

—
+
—o—
+

——

0.1

BANG —
AP —
DBSCAN —
OPTICS —
Kmedoids —
CURE —
Kmeans..
AHC —
Xmeans —

Kmeans —

EMA —
SOMAC —
TTSAS

BSAS -
MBSAS —
MeanShift —
ROCK -
Gmeans —
FCM —
SYNCSOM —
BIRCH -

VIBKmeans —

Fig. 15. The Rankings of clustering techniques on PofB@20%. Different colors indicate different ranking levels. The higher ranking value indicates the better performance of each

clustering technique on PofB@20%.

poorly in terms of the IFA metric, with IFA exceeding 10 on multiple
PROMISE datasets and even reaching a high of 66, which is considered
unacceptable for the software testing team. Therefore, we conduct
a comprehensive comparison between the top-performing clustering
techniques (i.e., K-medoids, K-means++, and CURE) and ManualUp to
explore whether unsupervised clustering techniques can improve the
performance of ManualUp.

Methods: We first apply three clustering techniques divide the
dataset into two clusters, and then sort the software modules based
on the 20-dimensional features in ascending order according to the
ManualUp approach. This is attributed to the fact that smaller feature

13

values can exhibit a higher defect density. When inspecting the same
lines of code, the ManualUp ranking strategy is capable of identifying
more defective modules.

Tables 4-6 display the performance differences between these three
clustering techniques and ManualUp. We also utilize the Wilcoxon
signed-rank test to examine the significant differences in terms of the
metrics and present the p-values at the end of Tables 4 and 5.

Results analysis: (1) The IFA values of the three clustering tech-
niques are consistently lower than those of ManualUp across 29 cross-
version validations. Particularly, the IFA values of K-medoids,
K-means++, and CURE range between 6.767 and 7.433, much lower

P. Yang et al.

0.6
——

Rankings

0.3

— —
——
—n—
—o—

0.1

——

Expert Systems With Applications 245 (2024) 123041

P
-8
-
.
-
-0
R 2

BANG —
DBSCAN —
OPTICS —
AP —
Kmedoids —
CURE —
Kmeans..
Kmeans —
AHC —

Fig. 16. The Rankings of clustering techniques on PMI@20%.
clustering technique on PMI@20%.

SOMAC —

BIRCH —
MeanShift —
Gmeans —
TTSAS —
Xmeans
SYNCSOM —
ROCK -

Different colors indicate different ranking levels. The lower ranking value indicates the better performance of each

Xmeans —

o
& —
™
- _
20
g o
= T
N‘_
g 7 R T
™
m_
< T T T T T T T T T T T T T T T T T T T 1
O Z N~ £ 5 35 4 1 2 00 M < € 2 8 5 419
AR EE EEEEEREEEEEE:
< U & 5 2P E 8§ ¥ g S 4 0 @m®v g ¥ g v 2 FH
m 2 A o O = - E B8 & — § & E @ P 8 O
m O = \;*Mm o ¢ O EZ
A M RS s /M &
> n

Fig. 17. The Rankings of clustering techniques on IFA. Different colors indicate different ranking levels. The lower ranking value indicates the better performance of each clustering

technique on IFA.

than ManualUp’s 17.033. Additionally, the p-values from the Wilcoxon
signed-rank test are all less than 0.05, indicating a low probability of
chance differences and significant statistical differences between the
three unsupervised clustering techniques and ManualUp. Therefore, we
cannot ignore this difference and must acknowledge the significant
performance differences between these methods. This implies that
in practical application, when testers can only utilize limited testing
resources to inspect a subset of modules (i.e., modules in the first 20%
LOCQ), introducing the best-performing clustering techniques can assist
testers in identifying the first defective module earlier, contributing to
building confidence among testers.

(2) Similar to IFA results, these three unsupervised clustering tech-
niques outperform ManualUp on multiple datasets in terms of
PMI@20%. K-medoids, K-means++, and CURE significantly reduce
the PMI@20% by 35.9%, 40.4%, and 37.4%, respectively. This im-
plies the introduction of the best-performing clustering techniques can
significantly reduce the number of modules testes need to inspect,
thereby greatly minimizing the resource wastage in switching between
modules.

(3) However, on the PofB@20% and Recall@20% metrics, these
three clustering techniques perform slightly worse than ManualUp.
Compared to ManualUp, these three clustering techniques reduce the
average value of PofB@20% and Recall@20% by 19.4%, 25.4%, and
24.2%, respectively. On the average value of Precision@20%, these
three methods significantly increase by 7.2%, 4.2%, and 2.7% com-
pared to ManualUp.

14

(4) In terms of the average value of F1@20%, which combines the
performance of Recall@20% and Precision@20%, these three cluster-
ing techniques decrease by 6%, 8.4%, and 8.1% compared to Manu-
alUp.

Answer to RQ2: K-medoids, K-means++, and CURE can
significantly reduce the IFA and PMI@20% metrics of Man-
ualUp, without sacrificing too much performance on other
effort-aware metrics.

5.3. RQ3: How does the performance of unsupervised clustering techniques
compare to that of the state-of-the-art supervised EADP model?

Motivation: Due to the previous research have not explored the
extent to which the unsupervised clustering technique can achieve
the performance level of the supervised EADP methods, we conduct
a comparative experiment similar to the ManualUp, comparing K-
medoids, K-means++, and CURE with state-of-the-art EADP methods
including EALR, EATT, CBS+, CBS+(RF), CBS+(GB), and SERS.

Methods: The experimental methods of K-medoids, K-means++,
and CURE are consistent with RQ2. As for the supervised EADP meth-
ods, including EALR, EATT, CBS+, CBS+(RF), CBS+(GB), and SERS,
they first train the models using the training dataset, and then predict
on the testing dataset to obtain defect density, and rank software
modules accordingly. We have tuned the main hyperparameters of
CBS+, CBS+(RF), and CBS+(GB) in order to optimize their performance
capabilities. The performance of these EADP methods are recorded in

P. Yang et al.

Expert Systems With Applications 245 (2024) 123041

Table 4
The PMI@20% value of the ten methods on each cross-version experiment when inspecting the top 20% LOC.
Cross-version K-medoids.LOC K-means++.LOC CURE.LOC ManualUp EALR EATT CBS+ CBS+(RF) CBS+(GB) SERS
Antl.3-1.4 0.202 0.236 0.236 0.629 0.084 0.506 0.073 0.096 0.096 0.112
Antl1.4-1.5 0.222 0.253 0.338 0.666 0.41 0.625 0.239 0.433 0.137 0.587
Antl.5-1.6 0.199 0.217 0.447 0.655 0.177 0.573 0.071 0.071 0.199 0.14
Antl.6-1.7 0.216 0.421 0.421 0.647 0.086 0.609 0.101 0.119 0.115 0.114
Camell.0-1.2 0.207 0.321 0.321 0.645 0.191 0.423 0.403 0.158 0.505 0.176
Camell.2-1.4 0.172 0.345 0.345 0.654 0.446 0.653 0.119 0.226 0.211 0.092
Camell.4-1.6 0.199 0.316 0.316 0.66 0.382 0.617 0.326 0.106 0.096 0.065
Ivyl.1-1.4 0.207 0.344 0.344 0.743 0.39 0.714 0.357 0.34 0.32 0.423
Ivy1.4-2.0 0.173 0.384 0.384 0.736 0.531 0.716 0.628 0.193 0.534 0.122
Jedit3.2-4.0 0.18 0.376 0.376 0.745 0.376 0.68 0.232 0.252 0.245 0.229
Jedit4.0-4.1 0.734 0.356 0.356 0.734 0.391 0.718 0.122 0.176 0.163 0.333
Jedit4.1-4.2 0.237 0.281 0.281 0.695 0.346 0.657 0.139 0.161 0.161 0.174
Jedit4.2-4.3 0.23 0.268 0.268 0.703 0.181 0.6 0.063 0.069 0.087 0.108
Log4j1.0-1.1 0.193 0.22 0.459 0.569 0.193 0.495 0.156 0.156 0.165 0.156
Log4j1.1-1.2 0.215 0.478 0.478 0.605 0.351 0.58 0.156 0.161 0.151 0.166
Lucene2.0-2.2 0.664 0.219 0.219 0.664 0.348 0.64 0.227 0.271 0.283 0.409
Lucene2.2-2.4 0.7 0.368 0.368 0.7 0.482 0.641 0.7 0.421 0.494 0.515
Poil.5-2.0 0.637 0.229 0.229 0.637 0.42 0.602 0.43 0.43 0.347 0.497
P0i2.0-2.5 0.208 0.179 0.179 0.639 0.278 0.519 0.029 0.088 0.091 0.062
P0i2.5-3.0 0.204 0.4 0.4 0.661 0.45 0.586 0.475 0.428 0.416 0.477
Synapsel.0-1.1 0.216 0.207 0.221 0.577 0.252 0.545 0.072 0.171 0.158 0.302
Synapsel.1-1.2 0.215 0.305 0.305 0.598 0.305 0.57 0.137 0.125 0.113 0.109
Velocity1.4-1.5 0.22 0.336 0.336 0.748 0.332 0.748 0.729 0.724 0.729 0.734
Velocity1.5-1.6 0.188 0.336 0.336 0.755 0.498 0.747 0.707 0.489 0.507 0.345
Xalan2.4-2.5 0.22 0.217 0.2 0.73 0.478 0.707 0.056 0.08 0.08 0.086
Xalan2.5-2.6 0.218 0.2 0.292 0.731 0.508 0.711 0.654 0.379 0.35 0.582
Xalan2.6-2.7 0.197 0.194 0.216 0.722 0.415 0.704 0.224 0.307 0.277 0.453
Xerces1.1-1.2 0.868 0.141 0.141 0.868 0.489 0.861 0.636 0.411 0.407 0.757
Xerces1.2-1.3 0.865 0.34 0.34 0.865 0.34 0.857 0.344 0.117 0.091 0.071
Xerces1.3-1.4 0.833 0.214 0.451 0.833 0.449 0.818 0.071 0.068 0.097 0.112
Average 0.335 0.290 0.320 0.694 0.350 0.647 0.289 0.241 0.257 0.2836
0.593 0.453 0.001 0.658 0.001 0.275 0.109 0.170 0.271
P-value 0.593 0.025 0.001 0.022 0.001 0.719 0.098 0.299 0.614
0.453 0.025 0.001 0.212 0.001 0.478 0.022 0.072 0.237

the last columns of Tables 4-6. Consistent with RQ2, we employ the
Wilcoxon signed-rank test to examine significant differences in metrics,
and present the results at the end of the Tables 4 and 5.

Results analysis: (1) CBS+(RF) and CBS+(GB) are the most effec-
tive methods, with the lowest IFA average value of 4.6, followed by
CBS+ with 5.067. However, the IFA values of EALR and EATT are
significantly higher than that of CBS+, reaching 8.733 and 17.533,
respectively. Compared to the EALR method, K-medoids, K-means++,
and CURE reduce the IFA value by 1.3, 1.966, and 1.6, respectively.
Compared to the EATT method, K-medoids, K-means++, and CURE
significantly reduce the IFA values by 10.1, 10.766, and 10.4, respec-
tively. The IFA performance for K-medoids, K-means++, and CURE are
comparable to that of CBS+. This result indicates that unsupervised
clustering techniques can effectively reduce IFA and even outperform
some supervised EADP models to achieve results comparable to the best
supervised EADP model.

(2) As shown in Table 4, on the PMI@20% metric, K-medoids, K-
means++, and CURE reduce the value by 1.5%, 6.0%, and 3.0% respec-
tively compared to EALR and by 31.2%, 35.7%, and 32.7% respectively
compared to EATT. There is a significant difference between the three
unsupervised clustering techniques and EATT regarding PMI@20%.
Compared to CBS+, these unsupervised clustering techniques increase
the value by 4.6%, 0.01%, and 3.1%, respectively. But the differences
between K-medoids, K-mean++, CBS+, and SERS are not significant.
This indicates that unsupervised clustering can outperform some EADP
methods on the PMI@20% metric, meaning that it can significantly
reduce the number of modules that testers need to inspect for the same
number of LOCs, thereby saving the cost of switching modules. Further-
more, when contrasted with the optimal EADP method CBS+(RF), these
three unsupervised clustering techniques increase the average value of

15

PMI@20% by 9.4%, 4.9%, and 7.9%. There is still a little gap between
these unsupervised clustering techniques and the best EADP method.

(3) Table 5 shows that the best-performing unsupervised cluster-
ing technique K-medoids increases by 1.3% compared to EALR but
decreases by 8.1% compared to EATT on the average value of the
PofB@20% metric. K-medoids demonstrates a mere 0.04% deviation
from CBS+ in the PofB@20% metric, indicating an almost negligible
difference between the two methods. The other two unsupervised clus-
tering techniques perform slightly worse than the six EADP methods.
In comparison to the six EADP methods, these three unsupervised
clustering techniques lack a distinct advantage, particularly when EATT
stands out with its superior performance in the PofB@20% metric.
However, the three unsupervised clustering techniques perform better
on Precision@20% than EALR and EATT according to Table 6. In
terms of the overall F1@20% metric, the three unsupervised clustering
techniques bring about an increase in the average value, spanning a
range from 8.7% to 11.4%. The best-unsupervised clustering technique
K-medoids is 11.4% higher than the worst EADP method but 2.8%
lower than the best EADP method.

(4) These results all indicate that unsupervised clustering techniques
perform much better than some supervised EADP methods on certain
metrics such as IFA, PMI@20%, and F1@20% while not always per-
forming worse than the best-performing EADP method. For example,
although unsupervised clustering techniques are slightly worse than
EATT on PofB@20% and Recall@20%, they are much better than
EATT on IFA and PMI@20%. This reflects the effectiveness of the
unsupervised clustering approaches.

P. Yang et al. Expert Systems With Applications 245 (2024) 123041

Table 5
The PofB@20% value of the ten methods on each cross-version experiment when inspecting the top 20% LOC.
Cross-version K-medoids.LOC K-means++.LOC CURE.LOC ManualUp EALR EATT CBS+ CBS+(RF) CBS+(GB) SERS
Antl.3-1.4 0.171 0.308 0.308 0.525 0.043 0.441 0.125 0.150 0.125 0.225
Antl.4-1.5 0.172 0.212 0.273 0.312 0.343 0.254 0.281 0.281 0.219 0.312
Antl.5-1.6 0.213 0.187 0.228 0.261 0.141 0.161 0.185 0.152 0.163 0.25
Antl.6-1.7 0.189 0.236 0.236 0.277 0.281 0.186 0.253 0.247 0.253 0.265
Camel1.0-1.2 0.225 0.306 0.306 0.602 0.255 0.357 0.394 0.190 0.565 0.204
Camell.2-1.4 0.195 0.248 0.248 0.469 0.301 0.326 0.255 0.497 0.462 0.234
Camell.4-1.6 0.194 0.202 0.202 0.543 0.306 0.366 0.309 0.261 0.239 0.122
Ivyl.1-1.4 0.400 0.188 0.188 0.312 0.222 0.306 0.312 0.312 0.312 0.375
Ivyl.4-2.0 0.243 0.300 0.300 0.250 0.250 0.209 0.125 0.175 0.200 0.125
Jedit3.2-4.0 0.256 0.293 0.293 0.427 0.292 0.264 0.387 0.453 0.440 0.387
Jedit4.0-4.1 0.380 0.101 0.101 0.380 0.313 0.302 0.354 0.405 0.380 0.418
Jedit4.1-4.2 0.268 0.083 0.083 0.271 0.226 0.231 0.417 0.354 0.375 0.312
Jedit4.2-4.3 0.000 0.182 0.182 0.455 0.167 0.508 0.364 0.364 0.273 0.364
Log4j1.0-1.1 0.176 0.229 0.243 0.243 0.453 0.297 0.324 0.324 0.351 0.378
Log4j1.1-1.2 0.206 0.481 0.481 0.614 0.319 0.475 0.159 0.159 0.159 0.175
Lucene2.0-2.2 0.597 0.243 0.243 0.597 0.309 0.364 0.292 0.340 0.347 0.417
Lucene2.2-2.4 0.616 0.325 0.325 0.616 0.373 0.479 0.616 0.433 0.493 0.419
Poil.5-2.0 0.459 0.270 0.270 0.459 0.359 0.301 0.216 0.270 0.270 0.378
P0i2.0-2.5 0.226 0.145 0.145 0.569 0.143 0.318 0.040 0.101 0.101 0.073
P0i2.5-3.0 0.207 0.291 0.291 0.544 0.306 0.387 0.484 0.456 0.438 0.509
Synapsel.0-1.1 0.210 0.226 0.250 0.383 0.202 0.307 0.167 0.200 0.150 0.333
Synapsel.1-1.2 0.175 0.310 0.310 0.349 0.303 0.274 0.198 0.198 0.186 0.198
Velocity1.4-1.5 0.229 0.312 0.312 0.683 0.181 0.503 0.683 0.690 0.690 0.683
Velocity1.5-1.6 0.182 0.321 0.321 0.615 0.284 0.459 0.603 0.551 0.538 0.41
Xalan2.4-2.5 0.230 0.231 0.216 0.628 0.405 0.541 0.096 0.109 0.106 0.119
Xalan2.5-2.6 0.225 0.207 0.242 0.545 0.307 0.469 0.523 0.438 0.409 0.479
Xalan2.6-2.7 0.197 0.192 0.216 0.718 0.378 0.620 0.227 0.311 0.281 0.455
Xerces1.1-1.2 0.817 0.194 0.194 0.817 0.591 0.787 0.606 0.662 0.620 0.718
Xerces1.2-1.3 0.652 0.258 0.258 0.652 0.326 0.463 0.116 0.159 0.159 0.13
Xerces1.3-1.4 0.787 0.222 0.384 0.787 0.327 0.464 0.094 0.092 0.128 0.146
Average 0.303 0.243 0.255 0.497 0.290 0.381 0.307 0.311 0.314 0.320
0.600 0.781 0.001 0.967 0.052 0.738 0.719 0.658 0.393
P-value 0.600 0.025 0.001 0.041 0.001 0.125 0.068 0.038 0.035
0.781 0.025 0.001 0.123 0.001 0.192 0.122 0.080 0.075
Table 6
The average Precision@20%, Recall@20%, F1@20%, and IFA values of the ten methods.
Cross-version K-medoids.LOC K-means++.LOC CURE.LOC ManualUp EALR EATT CBS+ CBS+(RF) CBS+(GB) SERS
Precision@20% 0.353 0.333 0.318 0.291 0.326 0.299 0.477 0.476 0.462 0.456
Recall@20% 0.303 0.243 0.255 0.497 0.298 0.480 0.307 0.311 0.314 0.320
F1@20% 0.271 0.247 0.250 0.331 0.157 0.184 0.299 0.320 0.320 0.314
IFA 7.433 6.767 7.133 17.033 8.733 17.533 5.067 4.600 4.600 5.233
Answer to RQ3: Unsupervised clustering techniques perform Precision 0.99 0.1 = 0.0084 -0.39
bette}' than some supervised EADP methods, especTally' on ceeard 0,034 R ss PN oss . ™
metrics such as IFA and PMI@20%. Although there is still a
gap compared to the best EADP methods on some metrics, gy 071 055 0.65 -041
unsupervised clustering techniques do not always perform mrecisionazre I -0.061 039
worse.
) Recall@20% 1 0.1 0.88 -0.22
Fl@20% . 0.44 \5 .5 X -0.45

5.4. RQ4: Is the effort-aware performance of unsupervised clustering tech-
niques related to the classification performance?

PoB@20% 4 0.1

pMmi@20% - 0.0084

Motivations: As we initially employ the K-medoids to divide the FA- 030 -0.079 -041 -039 -022 -045 -022 0024
modules into defective and clean ones, and subsequently rank the ! ; : \ v ‘

S S e gk AN
software modules by each feature, we ponder over whether supe- Q@&‘ ¢ W& @ (@&
rior classification performance can lead to better effort-aware perfor- & ¥ g
mance. In our study, we employ three classification evaluation metrics —
(i.e., Precision, Recall, and F1) and six effort-aware evaluation metrics 025 000 025 050 075 100

(i.e., Precision@20%, Recall@20%, F1@20%, PofB@20%, PMI@20%,
and IFA). Therefore, we undertake a correlation analysis to examine
the connection between the three classification performances and the
six effort-aware performances.

Fig. 18. The correlation among all performance measures on K-medoids.

16

P. Yang et al.

Methods: We employ the Kendell correlation coefficient (denoted as
r) to assess the correlation among the evaluation metrics and represent
the results using a heatmap, depicted in Fig. 18. The intensity of
the color indicates the strength of the correlation between any two
evaluation metrics. According to Li, Lu, et al. (2023), we consider the
correlation coefficient to be negligible (|r| < 0.3), low (0.3 < |r| < 0.5),
moderate (0.5 < |r|] < 0.7), high (0.7 < |r| < 0.9), or very high
09<|rl < D.

Results analysis: The Precision metric exhibits a very high corre-
lation with Precision@20% (0.99) for K-medoids. Precision also has a
high correlation with F1@20% (0.72) for K-medoids. Regarding Recall,
it shows a high correlation with Recall@20% (0.88) for K-medoids.
Additionally, Recall shows a high correlation with PofB@20% (0.88)
and a very high correlation with PMI@20% (0.95) for K-medoids.
F1 demonstrates a low correlation with PMI@20% (0.46), a moder-
ate correlation with Precision@20% (0.65), Recall@20% (0.55), and
PofB@20% (0.55), and a very high correlation with F1@20% (0.94)
for K-medoids. The strong correlation between classification metrics
and effort-aware metrics highlights the evident interaction between
clustering quality and defect prediction accuracy. This emphasizes the
importance of achieving high-quality classifying under the specified
20% effort for accurate defect prediction.

Answer to RQ4: The better comprehensive classification
performance of the clustering techniques can bring better
effort-aware performance to some extent.

5.5. RQ5: Can the best-performing unsupervised clustering method be gen-
eralized to other datasets?

Motivations: To explore whether the K-medoids method, which has
the best performance on the PROMISE dataset, is applicable to other
software defect datasets, we apply the 22 unsupervised clustering meth-
ods from RQ1 to the 16 software projects in the NASA and SOFTLAB
datasets.

Methods: NASA is a widely used dataset in the field of software
engineering. We utilize the clean version collected and curated by Shep-
perd et al. (2013), which excludes duplicated and inconsistent in-
stances. Each selected dataset represents a NASA software system,
encompassing various metrics closely related to software quality. The
SOFTLAB dataset originates from a Turkish software company spe-
cializing in the development of embedded controllers for home appli-
ances (Jing et al., 2015). The SOFTLAB dataset contains five projects
(i.e., arl, ar3, ar4, ar5, and ar6), and each project’s data consists of 29
static code features.

Table 7 illustrates the number of modules (#Module), defective
modules (#Def), and the percentage of defective modules relative to
the total modules (%Def) for each project. In line with the experimental
setup of RQ1, we conduct experiments comparing 22 unsupervised
clustering algorithms on the NASA and SOFTLAB datasets. We use five
effort-aware metrics, including Precision@20%, F1@20%, PofB@20%,
PMI@20%, and IFA for evaluation. Recall@20% is omitted due to its
equivalence to PofB@20% in the absence of defect quantity informa-
tion. Figs. 19 to 23 depict the performance distribution of different
unsupervised clustering methods. Figs. 24 to 28 display the Scott-Knott
ESD rankings.

Results analysis: (1) K-medoids exhibits relatively low values on
IFA and PMI@20%. As seen in Figs. 22 and 23, K-medoids has an
average value close to 0.2 for PMI@20% and an average value around
4 for IFA, both at low levels (lower values are preferable for the two
metrics). Figs. 27 and 28 show K-medoids’ Scott-Knott ESD rankings
as 15 for PMI@20% and as 8 for IFA, indicating its relatively good
performance among the 22 unsupervised clustering methods.

(2) K-medoids consistently demonstrates superior performance in
PofB@20%, Precision@20%, and F1@20%. Figs. 24 and 25 clearly

17

Expert Systems With Applications 245 (2024) 123041

Table 7
The details of the NASA and SOFTLAB datasets.
Dataset Project #Module #Def %Def
CM1 327 42 12.8
JM1 7720 1612 20.8
KC1 1162 294 25.2
KC3 194 36 18.5
MC2 124 44 35.4
NASA MW1 250 25 10.0
PC1 679 55 8.1
PC2 722 16 2.2
PC3 1053 130 12.3
PC4 1270 176 13.8
PC5 1694 458 27.0
arl 121 9 7.4
ar3 63 8 12.7
SOFTLAB ar4 107 20 18.7
ar5 36 8 22.2
ar6 102 15 14.7

show that K-medoids consistently ranks at the top, signifying its best
performance in Precision@20% and F1@20%. Additionally, from Figs. 21
and 26, in the Scott-Knott ESD ranking for PofB@20%, K-medoids
is either equal to or outperforms all other unsupervised clustering
methods, followed by BANG.

Answer to RQ5: The best-performing unsupervised clustering
method on the PROMISE dataset, K-medoids, is applicable to
NASA and SOFTLAB datasets and exhibits quite good predic-
tive performance compared to other unsupervised clustering
methods.

6. Threats to validity

(1) Our findings are based on 41 releases from 11 open-source
software projects of the PROMISE dataset collected by Jureczko and
Madeyski (2010), which have been used and validated by numerous
EADP studies (Chen et al., 2018; Ni, Xia, Lo, Chen, & Gu, 2022; Yan
et al., 2017). We have not selected those datasets previous studies
used without the number information, such as SOFTLAB (Turhan
et al,, 2009), RELINK (Wu et al., 2011), NASA (Shepperd et al.,
2013), Change-level datasets (Kamei et al., 2012), and Android datasets
(Catolino et al., 2019), since the goal of EADP is to predict defect den-
sity (i.e., the ratio between the number of defects and LOC) and rank
software modules based on the density (Yu et al., 2024). Therefore, we
only utilize the PROMISE dataset, which comprises information on the
number of defects as our experimental dataset. The PROMISE dataset is
one of the datasets utilized by Xu, Li, et al. (2021) in their experiment,
which belongs to different application fields and has different numbers
of modules with different levels of defective proportions. However,
many other software projects in other fields with other characteristics
or programming languages are not used in our work. In addition, all
software projects used in our work are developed by the open-source
community, and it is not clear whether our conclusions can apply to
commercial projects. In future work, we will further reduce the threat
by analyzing more modules from other defect datasets.

(2) We employ 22 clustering techniques in our empirical study,
because they have been widely investigated in previous EADP studies
and can be easily invoked using Python library functions. In addition,
we acknowledge the existence of some other unsupervised clustering
techniques. The adoption of the unused methods in our work is left for
future work.

(3) We employ not only widely used Precision, Recall, and F1
metrics in the classification scenario (Huang et al., 2018; Xia et al.,
2016), but also Precision@20%, Recall@20%, F1@20%, PofB@20%,
PMI@20%, and IFA in the effort-aware scenario (Huang et al., 2019;

P. Yang et al.

Expert Systems With Applications 245 (2024) 123041

PBC HBC DBC SBC GBC
1.00 - - : . : ¥
H 3 ! : H
i : : : :
° i : : : :
2 osot T - P oL -
2 1 1 H 1 - 2 ! T
2 ' ! i ! R S : I
o2k T T = & XTid I : :
el aPHayenT80HRY nfujall=
i : : F
0.00 £ - T T = - e 1 I T Hl I el
F F F S F F S F & F & o & ®
& {-&@0 ey & & ¢ &£ & C Q-& s S ¢ & & T
~ <
Fig. 19. The Precision@20% of each clustering technique on NASA and SOFTLAB datasets. The ranks corresponding to the colors in descending order: 1: ‘red’, 2: “green”, 3:
‘blue’, 4: ‘orange’, 5: ‘purple’, 6: ‘yellow’, 7: ‘pink’, 8: ‘gray’.
PBC HBC DBC MBC SBC GBC
06F 1 5 : :
H - 1 : il
T : = FTT : LT
:] . : . 1 | . : b 1
N oar v : = | P : T T — i
1 - —_ T - 1 1 .] 1 1 (-
g) T | P -]) - H - T 1 1 : [
= 02F E Q : : : i :
1 : : : = 1 :
i i : 2 . i : :
i i i | i i ao: T : i i i I R I
0.0t - - I - - T T T I - T T - . T 1 il Bl Bl i -
F OF S F P S FFE FE S ST F S o
$w 45@ .‘5& < o« \&@ow @@& & & & v Q%%u oq\ e %&\ .&G% S & & & &
s

Fig. 20. The F1@20% of each clustering technique on NASA and SOFTLAB datasets. The ranks corresponding to the colors in descending order: 1: ‘red’, 2: “green”, 3: ‘blue’, 4:

‘orange’, 5: ‘purple’, 6: ‘yellow’, 7: ‘pink’, 8: ‘gray’.

PBC HBC DBC MBC GTBC SBC GBC
0.6 0 i
T T 7 T
° - H
goar b T b b
[\] T] — H
® ! :
e D Q :
S S '
£ 02 | T . :
) < i 3
H | [
1 H 1 ! T
1 1 1 1 1 .
0.0t e e L + ke e ol
S 6\&' < CF\ & & %
& & & K & R &
3 & 4+ & ‘&% @4@
Fig. 21. The PofB@20% of each clustering technique on NASA and SOFTLAB datasets. The ranks corresponding to the colors in descending order: 1: ‘red’, 2: “green”, 3: ‘blue’,
4: ‘orange’, 5: ‘purple’, 6: ‘yellow’, 7: ‘pink’, 8: ‘gray’.
PBC HBC GTBC SBC GBC
0.4 ; 7 7
T -
i £ 0
1 . 1
1 . 1
2 03F ! _ _ T T .
8 i - . [
® T _ T =
A | H 1 :
1 —_ H I 1 1 b
L 4 i N B i ! ! P
3 §
o1t i Lid i L4 4
| 1 L 1 | 1 N N L N 1 N 1 N 1
f & &£ & © SO SR S S LK K - 4
4.@’ %&@b" 4 < 0&@ ‘gt-@db & & & © & @Q’% & F
~ &
Fig. 22. The PMI@20% of each clustering technique on NASA and SOFTLAB datasets. The ranks corresponding to the colors in descending order: 1: ‘red’, 2: “green”, 3: ‘blue’,

4: ‘orange’, 5: ‘purple’, 6: ‘yellow’, 7: ‘pink’, 8: ‘gray’.

Ni, Xia, Lo, Chen, & Gu, 2022; Yu et al.,, 2023). Since the EADP
model is designed to find more defects and defective modules, we use
PofB@20% and Recall@20%. We use Precision@20%, because Preci-
sion@20% and Recall@20% are usually paired. F1@20% balances the
tradeoff between Precision@20% and Recall@20%, so we use F1@20%
to correct the bias that may result from using Precision@20% and
Recall@20%. We use PMI@20% because checking too many modules
introduces additional effort costs. In addition, we use IFA because

18

previous studies (Huang et al., 2019; Kochhar et al., 2016; Li, Lu, et al.,
2023; Li, Yang, et al., 2023) have concluded that if the IFA value is too
large, it will severely reduce software testers’ confidence. In addition,
we use the non-parametric statistical Wilcoxon signed-rank test and
the Scott-Knott ESD test to compare the performance of the different
clustering techniques to ensure that the differences are statistically

significant.

Expert Systems With Applications 245 (2024) 123041

P. Yang et al.
PBC HBC DBC MBC GTBC SBC GBC

L

: r : H :
20 : | i e : | =
_ i iT] .
10 T N M P ' = I N

geopgn. adodHoggel |
(s Q E 1 I T 1 1 : 1 I 1 1 : I 1 E 1 E @ : I E E 5 il
F FF O F S Y T sy STy RS S S
@/\\e p ‘&bo 4 < o § P& Q& S o S v QQ’%&/ O‘{\ @a‘b‘\% %&\ é@& < 5 & & X

Fig. 23. The IFA of each clustering technique on NASA and SOFTLAB datasets. The ranks corresponding to the colors in descending order: 1: ‘red’, 2: “green”, 3: ‘blue’, 4: ‘orange’,

5: ‘purple’, 6: ‘yellow’, 7: ‘pink’, 8: ‘gray’.

© _
o
wn
=6 _
]
=) ®
§F
S
i
1T 71T T T T T T T T T T T T T T T T T T T
-) e S n v < T ©° 'z ynn oy LU [oOSs 9
7§<§<%Ef<<§u§<gfé<x:f§
g K s A M M H g ¥~ B % o 2 B % = g
Q FM::U - Mm = @©2@ a4 m g o o
5 > o 'z = - Y a0 VIR, R
> A
N

indicate different ranking levels.

MBKmeans

The higher ranking

Fig. 24. The rankings of clustering techniques in terms of Precision@20% on NASA and SOFTLAB datasets. Different colors
value indicates the better performance of each clustering technique on Precision@20%.

. _
on
oo
¥ o
®
g
m e
o
S T T T T T T T T T T T T T T T T T T T 1
-V = a7 N7 T AR/ N (o N @ N S @ B - N B~ &0
E<§§E§§o<<<oz<<£:ua?‘za
< S E 9 2 ¥ g L LIE LS §<O 2R 0 2
0] = gEQ'—*mCng_‘mf—(::’ &~ £ o £
5 G g = M = @ O n & g M M
= 7 2 a o
wn =

Fig. 25. The Rankings of clustering techniques in terms of F1@20% on NASA and SOFTLAB datasets. Different colors indicate different ranking levels. The higher ranking value

indicates the better performance of each clustering technique on F1@20%.

(4) In order to alleviate the technical defects in our experiments as
much as possible, we implement the classifiers based on the SKlearn
library? and Pyclustering library.> We carefully implement the code for
EADP methods (i.e., EALR, EATT, and CBS+) by strictly following the
original papers’ descriptions.

(5) The projects from the PROMISE dataset used in our paper have
20-dimensional features, each outcome generated by the clustering
technologies can be sorted based on each feature. Consequently, each
technology could potentially yield 20 distinct sorting possibilities. How-
ever, due to constraints on space, it is impractical to list all outcomes.

2 https://github.com/scikit-learn
3 https://pyclustering.github.io/docs/0.10.1/html/index.html

19

Therefore, we have chosen the feature (i.e., LOC) that leads to the best
results. Whether other features might result in superior outcomes for
different projects remains uncertain. When it comes to sorting new
projects, it is possible that the LOC might not be the best sorting
criterion, but we lack an automated way to determine the ideal feature.
We leave the feature selection process as a future work.

7. Implications

We present here some practical implications that researchers can
draw from our experimental outcomes.

(1) By utilizing the best-performing unsupervised clustering al-
gorithms, testing teams can optimize resource allocation without
relying on labels. Software testers can use the three best-performing

https://github.com/scikit-learn
https://pyclustering.github.io/docs/0.10.1/html/index.html

P. Yang et al. Expert Systems With Applications 245 (2024) 123041
g‘) —
g 9 _|
4 ° ® !
[s+]
[-
e
-
[I I [I I I I I I I I I I I I [I I I I I
1) 27} wn C - A 7 B ¢ v < o W % o m w
S 85282823852 E8E88228 48328
8§ = 9 = U B 4 S = O £ 9 g v wv 8 s o v 5
28] g g 8 -8 R B q f — g = Mm M g 2 0 = 2
o B m O A M 3 < = M V. =
— A %
175] =

Fig. 26. The Rankings of clustering techniques in terms of PofB@20% on NASA and SOFTLAB datasets. Different colors indicate different ranking levels. The higher ranking value

indicates the better performance of each clustering technique on PofB@20%.

™ _
()
wn
=
o p— Q
4 N
s O
7
o T T T T T T T T T T T T T T T T T T T
O Z VO O K8 < 2 7 2 v Y E 8 S i 2 T M w
22023 S EESE2LEE 2 EETE <
< U = < 5 2 @ Eméﬁé%cwaggvﬁ
25a5° " §8§ 572 5E9¢EfE ek
A A E EQEM
= 72

AP —

Fig. 27. The Rankings of clustering techniques in terms of PMI@20% on NASA and SOFTLAB datasets. Different colors indicate different ranking levels. The lower ranking value

indicates the better performance of each clustering technique on PMI@20%.

©
Q_
0
" |
&
v;—qq:_‘
é@ ® ¢ 9
<
& _
o
& (11 1 17 17 17 1T 1T 17 1T 1T 17 T ©T T T T T "©T 1T
M O v Vv w8z wnn YU 2 U AN LBE < 2 22
SRS E2802 862823 8 E 2
SEgEgdgitgEzit<s fzaitig
QF S E2 6T E 2§ & % 2
Mo = > >
P> N

BIRCH —

Fig. 28. The Rankings of clustering techniques in terms of IFA on NASA and SOFTLAB datasets. Different colors indicate different ranking levels. The lower ranking value indicates

the better performance of each clustering technique on IFA.

unsupervised clustering techniques we have identified, namely
K-medoids, Kmeans++, and CURE, to conduct EADP research. Com-
pared to ManualUp, these three unsupervised clustering techniques
exhibit superior performance in several key metrics (i.e., PMI@20%
and IFA). This implies that applying the three best-performing un-
supervised clustering techniques to test software modules for bugs
significantly reduce the number of tester attempts to identify the first
defective module. It also substantially decreases the time testers spend
switching between modules, thus saving testing resources. Further-
more, they do not consistently fall short compared to some supervised

20

EADP methods. They outperform some EADP methods, such as EALR
and EATT, in specific metrics. In addition, these clustering technologies
provide efficient defect prediction for projects lacking labels in real-
world scenarios. By sorting modules based on the LOC feature, testers
can prioritize examining smaller modules and optimizing resource
allocation.

(2) The effective unsupervised clustering techniques could po-
tentially find application in other related software engineering do-
mains. For instance, these techniques might prove valuable in software
vulnerability detection. The task of identifying software vulnerabilities

P. Yang et al.
Commits Branch graph
\\\
I \
— D, CI @,
I
Code platform |j|

(1) Extract commits (2) Build branch graph

(3) SZZ label commits

Expert Systems With Applications 245 (2024) 123041

clusters

]

C] clean

(4) Clustering commits (5) Human analysis

Fig. 29. The process of improved SZZ approach.

is fundamental and critical in fields like information security and soft-
ware engineering (Croft et al., 2023). Numerous methods employed in
vulnerability detection require substantial amounts of well-labeled code
fragments as training sets (Lin et al., 2020). However, gathering data
for vulnerability detection tasks is often challenging (Xie et al., 2020),
making establishing efficient supervised models quite difficult. An al-
ternative approach involves extracting vulnerability-related features
from code snippets and then clustering them through the unsupervised
techniques recommended in our paper. The clustering process divides
code snippets into two clusters, with and without vulnerabilities. Then,
according to the LOC characteristics, the code snippet with less LOC
is prioritized for detection, so that more vulnerabilities can be de-
tected with less effort. Another potential application of unsupervised
clustering algorithms is to enhance the labeling performance of the
SZZ approach. Fig. 29 introduces the process of the improved SZZ
approach. Specifically, the process begins by extracting commits from
the code platform. A branch graph of these commits is established based
on the Git version control system. Subsequently, the SZZ technique
is employed to label the commits. Following this labeling, clustering
techniques are employed to group the commits that have been labeled
for the first time. Lastly, commits that were initially labeled as clean but
are clustered as defective are subject to manual verification, thereby
enhancing the labeling performance of the SZZ approach.

(3) Not all clustering techniques are effective for unsupervised
EADP. Researchers should utilize the K-medoids method in the field
of unsupervised EADP, and refrain from employing the methods of
DBSCAN, OPTICS, AP, and BANG. Xu, Li, et al. (2021) investigated
the performance of various unsupervised clustering techniques, and
they identified several clustering techniques, such as DBSCAN, OPTICS,
AP, and ROCK, that performed well on F1@20%. However, these
clustering techniques exhibited very high IFA values in our study,
which is unacceptable for the testing team. Therefore, their study is
not sufficiently persuasive as they lacked exploration of the impact
of IFA on unsupervised EADP. Thus, based on their study, we have
reexamined 22 clustering techniques. Section 5 displays the results of
our experiments, in which the best clustering technique, K-medoids, is
able to effectively reduce IFA and PMI@20% compared to ManualUp,
EALR, and EATT. K-medoids also demonstrates superior performance
on other effort-aware indicators, and are not always inferior to the su-
pervised EADP method. However, according to the results in Section 5,
we consider that the methods of DBSCAN, OPTICS, AP, and BANG are
unsuitable for unsupervised EADP research, as previous studies have
suggested that the IFA must be less than 10.

(4) Future research should explore better clustering techniques
to further enhance the performance of unsupervised EADP. Sec-
tion 5 examines the relationship between the classification performance

21

and effort-aware performance of the three best-performing cluster-
ing techniques. The experimental results indicate a strong correlation
between the classification indicators and the effort-aware indicators,
indicating the evident interaction between clustering quality and defect
prediction accuracy. This suggests that improving clustering classifica-
tion capabilities is highly beneficial in unsupervised EADP research.
Moreover, based on our experimental results, we find that two of the
top-performing unsupervised clustering methods belong to the PBC
type. Therefore, we recommend future researchers focus on exploring
clustering methods of this type to establish unsupervised EADP models.

8. Conclusion and future works

This paper explores the relative value of clustering techniques for
unsupervised EADP. We investigate the impact of 22 clustering tech-
niques for unsupervised EADP on 41 versions of eleven projects from
the PROMISE dataset. To provide a comprehensive assessment, we
compare these unsupervised clustering techniques with the advanced
supervised EADP methods. Firstly, we identify the top three unsu-
pervised clustering techniques. We then subject these methods to a
comparison with supervised techniques, including ManualUp, EALR,
EATT, CBS+, CBS+(RF), and CBS+(GB). We examine the relationship
between the classification performance and effort-aware performance
of these three clustering techniques. Finally, we use Precision, Recall,
F1, Precision@20%, Recall@20%, F1@20%, PofB@20%, PMI@20%,
and IFA to evaluate the performance and apply the Scott-Knott ESD
test, Wilcoxon signed-rank test, and Kendell correlation coefficient to
analyze the experimental results.

* We observe that K-medoids has the best overall performance
and can significantly reduce the IFA and PMI@20% values of
ManualUp, even better than those of supervised EADP methods
EALR and EATT. Therefore, we suggest that researchers use the
K-medoids to enhance unsupervised EADP performance further.
According to the correlation results, we find that better clustering
ability can achieve higher effort-aware performance. Therefore,
we suggest that future research could focus on exploring bet-
ter clustering techniques to further improve unsupervised EADP
performance.

In the future, our efforts will be directed toward proposing enhanced
unsupervised methods to further improve the performance of EADP.
Moreover, we will manage to explore approaches for automatically
selecting optimal features to rank software modules, even without the
use of labels. Meanwhile, we will try to apply these techniques to
different software engineering scenarios (e.g., software vulnerability
detection) to further explore the possibility of unsupervised techniques.

P. Yang et al.
CRediT authorship contribution statement

Peixin Yang: Data curation, Methodology, Formal analysis, Writ-
ing — original draft. Lin Zhu: Data curation, Methodology, Writing
— original draft. Yanjiao Zhang: Resources, Software, Visualization.
Chuanxiang Ma: Project administration, Software, Validation. Liming
Liu: Resources, Software, Visualization, Writing — review & editing.
Xiao Yu: Supervision, Formal analysis, Methodology, Writing — original
draft. Wenhua Hu: Supervision, Software, Visualization, Writing —
review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability
Data will be made available on request.
Acknowledgments

This work is partially supported by the National Natural Science
Foundation of China (62272356, 61977021) and the Natural Science
Foundation of Chongqing, China (cstc2021jcyj-msxmX1115).

References

Ahmadi, N., & Berangi, R. (2008). A basic sequential algorithmic scheme approach
for classification of modulation based on neural network. In 2008 international
conference on computer and communication engineering (pp. 565-569). IEEE.

Amasaki, S., Aman, H., & Yokogawa, T. (2022). An evaluation of effort-aware fine-
grained just-in-time defect prediction methods. In 2022 48th euromicro conference
on software engineering and advanced applications (pp. 209-216). IEEE.

Angel, L., & Viola, J. (2016). Payload estimation for a robotic system using unsupervised
classification. In 2016 XXI symposium on signal processing, images and artificial vision
(pp. 1-5). IEEE.

Askari, S. (2021). Fuzzy C-means clustering algorithm for data with unequal cluster
sizes and contaminated with noise and outliers: Review and development. Expert
Systems with Applications, 165, Article 113856.

Balaram, A., & Vasundra, S. (2022). Prediction of software fault-prone classes using
ensemble random forest with adaptive synthetic sampling algorithm. Automated
Software Engineering, 29(1), 6.

Bennin, K. E., Keung, J., Monden, A., Kamei, Y., & Ubayashi, N. (2016). Investigating
the effects of balanced training and testing datasets on effort-aware fault prediction
models. In 2016 IEEE 40th annual computer software and applications conference, vol.
1 (pp. 154-163). IEEE.

Bennin, K. E,, Toda, K., Kamei, Y., Keung, J., Monden, A., & Ubayashi, N. (2016).
Empirical evaluation of cross-release effort-aware defect prediction models. In 2016
IEEE international conference on software quality, reliability and security (pp. 214-221).
IEEE.

Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization.
Journal of Machine Learning Research, 13, 2.

Bishnu, P. S., & Bhattacherjee, V. (2011). Software fault prediction using quad tree-
based k-means clustering algorithm. IEEE Transactions on Knowledge and Data
Engineering, 24(6), 1146-1150.

Boetticher, G. (2007). The PROMISE repository of empirical software engineering data.
URL: http://promisedata.org/repository.

Carka, J., Esposito, M., & Falessi, D. (2022). On effort-aware metrics for defect
prediction. Empirical Software Engineering, 27(6), 1-38.

Catolino, G., Di Nucci, D., & Ferrucci, F. (2019). Cross-project just-in-time bug
prediction for mobile apps: An empirical assessment. In 2019 IEEE/ACM 6th
international conference on mobile software engineering and systems (pp. 99-110). IEEE.

Chen, Y., Huang, J., Mou, L., Jin, P., Xiong, S., & Zhu, X. X. (2023). Deep saliency
smoothing hashing for drone image retrieval. IEEE Transactions on Geoscience and
Remote Sensing, 61, 1-13.

Chen, Y., Lu, X., & Wang, S. (2020). Deep cross-modal image-voice retrieval in remote
sensing. IEEE Transactions on Geoscience and Remote Sensing, 58(10), 7049-7061.

Chen, L.-q., Wang, C., & Song, S.-l. (2022). Software defect prediction based on nested-
stacking and heterogeneous feature selection. Complex & Intelligent Systems, 8(4),
3333-3348.

Chen, X., Zhao, Y., Wang, Q., & Yuan, Z. (2018). MULTI: Multi-objective effort-aware
just-in-time software defect prediction. Information and Software Technology, 93,
1-13.

22

Expert Systems With Applications 245 (2024) 123041

Cheng, T., Zhao, K., Sun, S., Mateen, M., & Wen, J. (2022). Effort-aware cross-project
just-in-time defect prediction framework for mobile apps. Frontiers of Computer
Science, 16(6), 1-15.

Cho, Y., Kwon, J. H., Yi, J, & Ko, I. Y. (2022). Extending developer experience
metrics for better effort-aware just-in-time defect prediction. IEEE Access, 10,
128218-128231.

Croft, R., Babar, M. A., & Kholoosi, M. M. (2023). Data quality for software vulnerability
datasets. In 2023 IEEE/ACM 45th international conference on software engineering (pp.
121-133). IEEE.

Deng, D. (2020). DBSCAN clustering algorithm based on density. In 2020 7th
international forum on electrical engineering and automation (pp. 949-953). IEEE.
Ding, C., & He, X. (2002). Cluster merging and splitting in hierarchical clustering
algorithms. In 2002 IEEE international conference on data mining, 2002. Proceedings.

(pp. 139-146). IEEE.

Feng, S., Keung, J., Xiao, Y., Zhang, P., Yu, X., & Cao, X. (2024). Improving the
undersampling technique by optimizing the termination condition for software
defect prediction. Expert Systems with Applications, 235, Article 121084.

Feng, S., Keung, J., Yu, X., Xiao, Y., Bennin, K. E., Kabir, M. A., & Zhang, M. (2021).
COSTE: Complexity-based OverSampling technique to alleviate the class imbalance
problem in software defect prediction. Information and Software Technology, 129,
Article 106432.

Frey, B. J., & Dueck, D. (2007). Clustering by passing messages between data points.
Science, 315(5814), 972-976.

Fu, W., & Menzies, T. (2017). Revisiting unsupervised learning for defect prediction.
In Proceedings of the 2017 11th joint meeting on foundations of software engineering
(pp. 72-83).

Gong, L., Jiang, S., & Jiang, L. (2019). Tackling class imbalance problem in software
defect prediction through cluster-based over-sampling with filtering. IEEE Access,
7, 145725-145737.

Gong, L., Jiang, S., Wang, R., & Jiang, L. (2019). Empirical evaluation of the impact of
class overlap on software defect prediction. In 2019 34th IEEE/ACM international
conference on automated software engineering (pp. 698-709). IEEE.

Gong, L., Rajbahadur, G. K., Hassan, A. E., & Jiang, S. (2021). Revisiting the impact
of dependency network metrics on software defect prediction. IEEE Transactions on
Software Engineering, 48(12), 5030-5049.

Gong, L., Zhang, H., Zhang, J., Wei, M., & Huang, Z. (2022). A comprehensive
investigation of the impact of class overlap on software defect prediction. IEEE
Transactions on Software Engineering, 49(4), 2440-2458.

Guha, S., Rastogi, R., & Shim, K. (2000). ROCK: A robust clustering algorithm for
categorical attributes. Information Systems, 25(5), 345-366.

Guha, S., Rastogi, R., & Shim, K. (2001). Cure: an efficient clustering algorithm for
large databases. Information Systems, 26(1), 35-58.

Ha, D. A.,, Chen, T. H.,, & Yuan, S. M. (2019). Unsupervised methods for software
defect prediction. In Proceedings of the 10th international symposium on information
and communication technology (pp. 49-55).

Herbold, S., Trautsch, A., & Grabowski, J. (2017). Global vs. local models for cross-
project defect prediction: A replication study. Empirical Software Engineering, 22,
1866-1902.

Huang, Q., Shihab, E., Xia, X., Lo, D., & Li, S. (2018). Identifying self-admitted technical
debt in open source projects using text mining. Empirical Software Engineering, 23,
418-451.

Huang, Q., Xia, X., & Lo, D. (2017). Supervised vs unsupervised models: A holistic look
at effort-aware just-in-time defect prediction. In 2017 IEEE international conference
on software maintenance and evolution (pp. 159-170). IEEE.

Huang, Q., Xia, X., & Lo, D. (2019). Revisiting supervised and unsupervised models
for effort-aware just-in-time defect prediction. Empirical Software Engineering, 24(5),
2823-2862.

Ikotun, A. M., Ezugwu, A. E., Abualigah, L., Abuhaija, B., & Heming, J. (2022). K-means
clustering algorithms: A comprehensive review, variants analysis, and advances in
the era of big data. Information Sciences, http://dx.doi.org/10.1016/j.ins.2022.11.
139.

Jin, C. (2021). Cross-project software defect prediction based on domain adaptation
learning and optimization. Expert Systems with Applications, 171, Article 114637.

Jing, X., Wu, F., Dong, X., Qi, F., & Xu, B. (2015). Heterogeneous cross-company defect
prediction by unified metric representation and CCA-based transfer learning. In
Proceedings of the 2015 10th joint meeting on foundations of software engineering (pp.
496-507).

Jureczko, M., & Madeyski, L. (2010). Towards identifying software project clusters
with regard to defect prediction. In Proceedings of the 6th international conference
on predictive models in software engineering (pp. 1-10).

Kamei, Y., Matsumoto, S., Monden, A., Matsumoto, K. i., Adams, B., & Hassan, A. E.
(2010). Revisiting common bug prediction findings using effort-aware models. In
2010 IEEE international conference on software maintenance (pp. 1-10). IEEE.

Kamei, Y., Shihab, E., Adams, B., Hassan, A. E., Mockus, A., Sinha, A., & Ubayashi, N.
(2012). A large-scale empirical study of just-in-time quality assurance. IEEE
Transactions on Software Engineering, 39(6), 757-773.

Khalid, A., Badshah, G., Ayub, N., Shiraz, M., & Ghouse, M. (2023). Software defect
prediction analysis using machine learning techniques. Sustainability, 15(6), 5517.

http://refhub.elsevier.com/S0957-4174(23)03543-1/sb1
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb1
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb1
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb1
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb1
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb2
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb2
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb2
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb2
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb2
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb3
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb3
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb3
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb3
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb3
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb4
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb4
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb4
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb4
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb4
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb5
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb5
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb5
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb5
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb5
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb6
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb6
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb6
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb6
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb6
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb6
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb6
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb7
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb7
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb7
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb7
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb7
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb7
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb7
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb8
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb8
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb8
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb9
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb9
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb9
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb9
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb9
http://promisedata.org/repository
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb11
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb11
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb11
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb12
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb12
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb12
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb12
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb12
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb13
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb13
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb13
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb13
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb13
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb14
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb14
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb14
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb15
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb15
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb15
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb15
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb15
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb16
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb16
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb16
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb16
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb16
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb17
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb17
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb17
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb17
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb17
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb18
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb18
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb18
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb18
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb18
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb19
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb19
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb19
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb19
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb19
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb20
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb20
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb20
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb21
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb21
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb21
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb21
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb21
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb22
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb22
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb22
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb22
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb22
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb23
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb23
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb23
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb23
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb23
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb23
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb23
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb24
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb24
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb24
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb25
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb25
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb25
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb25
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb25
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb26
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb26
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb26
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb26
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb26
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb27
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb27
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb27
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb27
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb27
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb28
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb28
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb28
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb28
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb28
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb29
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb29
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb29
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb29
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb29
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb30
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb30
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb30
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb31
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb31
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb31
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb32
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb32
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb32
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb32
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb32
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb33
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb33
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb33
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb33
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb33
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb34
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb34
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb34
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb34
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb34
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb35
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb35
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb35
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb35
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb35
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb36
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb36
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb36
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb36
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb36
http://dx.doi.org/10.1016/j.ins.2022.11.139
http://dx.doi.org/10.1016/j.ins.2022.11.139
http://dx.doi.org/10.1016/j.ins.2022.11.139
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb38
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb38
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb38
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb39
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb39
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb39
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb39
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb39
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb39
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb39
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb40
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb40
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb40
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb40
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb40
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb41
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb41
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb41
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb41
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb41
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb42
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb42
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb42
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb42
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb42
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb43
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb43
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb43

P. Yang et al.

Khatri, Y., & Singh, S. K. (2022). Towards building a pragmatic cross-project defect
prediction model combining non-effort based and effort-based performance mea-
sures for a balanced evaluation. Information and Software Technology, 150, Article
106980.

Kochhar, P. S., Xia, X., Lo, D., & Li, S. (2016). Practitioners’ expectations on automated

fault localization. In Proceedings of the 25th international symposium on software

testing and analysis (pp. 165-176).

D., Liang, M., Xu, B., Yu, X., Zhou, J., & Xiang, J. (2021). A cross-project aging-

related bug prediction approach based on joint probability domain adaptation and

k-means SMOTE. In 2021 IEEE 21st international conference on software quality,
reliability and security companion (pp. 350-358). IEEE.

i, F., Lu, W., Keung, J. W., Yu, X., Gong, L., & Li, J. (2023). The impact of feature

selection techniques on effort-aware defect prediction: An empirical study. IET

Software, 17(2), 168-193.

H.,, & Wang, J. (2022). Collaborative annealing power k-means++ clustering.

Knowledge-Based Systems, 255, Article 109593.

i, F., Yang, P., Keung, J. W., Hu, W., Luo, H., & Yu, X. (2023). Revisiting ‘revisiting
supervised methods for effort-aware cross-project defect prediction’. IET Software,
17(4), 472-495.

Li, W., Zhang, W., Jia, X., & Huang, Z. (2020). Effort-aware semi-supervised just-in-time

defect prediction. Information and Software Technology, 126, Article 106364.

Li, F., Zou, K., Keung, J. W., Yu, X., Feng, S., & Xiao, Y. (2023). On the relative value
of imbalanced learning for code smell detection. Software - Practice and Experience,
53(10), 1902-1927.

Liang, M., Li, D., Xu, B., Zhao, D., Yu, X., & Xiang, J. (2021). Within-project
software aging defect prediction based on active learning. In 2021 IEEE international
symposium on software reliability engineering workshops (pp. 1-8). IEEE.

Lin, G., Wen, S., Han, Q. L., Zhang, J., & Xiang, Y. (2020). Software vulnerability
detection using deep neural networks: a survey. Proceedings of the IEEE, 108(10),
1825-1848.

Liu, X., Xu, Z., Yang, D., Yan, M., Zhang, W., Zhao, H., Xue, L., & Fan, M. (2022).
An unsupervised cross project model for crashing fault residence identification. IET
Software, 16(6), 630-646.

Lund, B., & Ma, J. (2021). A review of cluster analysis techniques and their uses
in library and information science research: k-means and k-medoids clustering.
Performance Measurement and Metrics, 22(3), 161-173.

Ma, X., Keung, J., He, P., Xiao, Y., Yu, X., & Li, Y. (2023). A semi-supervised approach
for industrial anomaly detection via self-adaptive clustering. IEEE Transactions on
Industrial Informatics.

Ma, X., Keung, J., Yang, Z., Yu, X., Li, Y., & Zhang, H. (2022). CASMS: Combining
clustering with attention semantic model for identifying security bug reports.
Information and Software Technology, 147, Article 106906.

Ma, X., Keung, J. W., Yu, X., Zou, H., Zhang, J., & Li, Y. (2023). AttSum: A
deep attention-based summarization model for bug report title generation. IEEE
Transactions on Reliability.

Majd, A., Vahidi-Asl, M., Khalilian, A., Poorsarvi-Tehrani, P., & Haghighi, H. (2020).
SLDeep: Statement-level software defect prediction using deep-learning model on
static code features. Expert Systems with Applications, 147, Article 113156.

Mehta, R., Garain, J., & Singh, K. K. (2022). Cohort selection using mini-batch k-means
clustering for ear recognition. In Advances in intelligent computing and communication:
Proceedings of ICAC 2021 (pp. 273-279). Springer.

Mende, T., & Koschke, R. (2010). Effort-aware defect prediction models. In 2010 14th
European conference on software maintenance and reengineering (pp. 107-116). IEEE.

Menzies, T., Butcher, A., Cok, D., Marcus, A., Layman, L., Shull, F., Turhan, B., &
Zimmermann, T. (2012). Local versus global lessons for defect prediction and effort
estimation. IEEE Transactions on Software Engineering, 39(6), 822-834.

Menzies, T., Butcher, A., Marcus, A., Zimmermann, T., & Cok, D. (2011). Local vs.
global models for effort estimation and defect prediction. In 2011 26th IEEE/ACM
international conference on automated software engineering (pp. 343-351). IEEE.

Menzies, T., Milton, Z., Turhan, B., Cukic, B., Jiang, Y., & Bener, A. (2010). Defect
prediction from static code features: current results, limitations, new approaches.
Automated Software Engineering, 17, 375-407.

Mughnyanti, M., Efendi, S., & Zarlis, M. (2020). Analysis of determining centroid clus-
tering x-means algorithm with davies-bouldin index evaluation. In IOP conference
series: materials science and engineering, vol. 725, no. 1. IOP Publishing, Article
012128.

Ni, C., Xia, X., Lo, D., Chen, X., & Gu, Q. (2022). Revisiting supervised and unsupervised
methods for effort-aware cross-project defect prediction. IEEE Transactions on
Software Engineering, 48(3), 786-802.

Ni, C., Xia, X., Lo, D., Yang, X., & Hassan, A. E. (2022). Just-in-time defect prediction on
JavaScript projects: A replication study. ACM Transactions on Software Engineering
and Methodology, 31(4), 1-38.

Novikov, A., & Benderskaya, E. (2014). SYNC-SOM. In Proceedings of the 3rd international
conference on pattern recognition applications and methods (pp. 305-309).

Oztiirk, M. M., Cavusoglu, U., & Zengin, A. (2015). A novel defect prediction method for
web pages using k-means++. Expert Systems with Applications, 42(19), 6496-6506.

Pachouly, J., Ahirrao, S., Kotecha, K., Selvachandran, G., & Abraham, A. (2022). A sys-
tematic literature review on software defect prediction using artificial intelligence:
Datasets, data validation methods, approaches, and tools. Engineering Applications
of Artificial Intelligence, 111, Article 104773.

Li

23

Expert Systems With Applications 245 (2024) 123041

Pandey, S. K., Mishra, R. B., & Tripathi, A. K. (2020). BPDET: An effective software
bug prediction model using deep representation and ensemble learning techniques.
Expert Systems with Applications, 144, Article 113085.

Park, M., & Hong, E. (2014). Software fault prediction model using clustering algo-
rithms determining the number of clusters automatically. International Journal of
Software Engineering and Its Applications, 8(7), 199-204.

Peng, T., & Nie, Q. (2017). SOMSC: Self-organization-map for high-dimensional single-cell
data of cellular states and their transitions. Cold Spring Harbor Laboratory, Article
124693, bioRxiv.

Qu, Y., Chi, J.,, & Yin, H. (2021). Leveraging developer information for efficient
effort-aware bug prediction. Information and Software Technology, 137, Article
106605.

Qu, Y., Zheng, Q., Chi, J., Jin, Y., He, A,, Cui, D., Zhang, H., & Liu, T. (2019). Using
K-core decomposition on class dependency networks to improve bug prediction
model’s practical performance. IEEE Transactions on Software Engineering, 47(2),
348-366.

Ranjbarzadeh, R., & Saadi, S. B. (2020). Automated liver and tumor segmentation
based on concave and convex points using fuzzy c-means and mean shift clustering.
Measurement, 150, Article 107086.

Rao, J., Yu, X., Zhang, C., Zhou, J., & Xiang, J. (2021). Learning to rank software
modules for effort-aware defect prediction. In 2021 IEEE 21st international conference
on software quality, reliability and security companion (pp. 372-380). IEEE.

Sandhu, A. K., & Batth, R. S. (2021). Software reuse analytics using integrated random
forest and gradient boosting machine learning algorithm. Software - Practice and
Experience, 51(4), 735-747.

Schikuta, E., & Erhart, M. (1998). BANG-clustering: A novel grid-clustering algorithm
for huge data sets. In Advances in pattern recognition: Joint IAPR international
workshops SSPR’98 and SPR’98 Sydney, Australia, August 11-13, 1998 Proceedings
(pp. 867-874). Springer.

Shao, Y., Liu, B., Wang, S., & Li, G. (2018). A novel software defect prediction based on
atomic class-association rule mining. Expert Systems with Applications, 114, 237-254.

Shepperd, M., Song, Q., Sun, Z., & Mair, C. (2013). Data quality: Some comments on
the nasa software defect datasets. IEEE Transactions on Software Engineering, 39(9),
1208-1215.

Shivaji, S., Whitehead, E. J., Akella, R., & Kim, S. (2012). Reducing features to improve
code change-based bug prediction. IEEE Transactions on Software Engineering, 39(4),
552-569.

Subudhi, A., Dash, M., & Sabut, S. (2020). Automated segmentation and classifica-
tion of brain stroke using expectation-maximization and random forest classifier.
Biocybernetics and Biomedical Engineering, 40(1), 277-289.

Subudhi, S., & Panigrahi, S. (2022). Application of OPTICS and ensemble learning
for database intrusion detection. Journal of King Saud University-Computer and
Information Sciences, 34(3), 972-981.

Sudakov, O., & Dmitriev, D. (2022). Comparison of G-means algorithms and kohonen
network in solving clustering problems. In Graphicon-conference on computer graphics
and vision, vol. 32 (pp. 1147-1156).

Tantithamthavorn, C., McIntosh, S., Hassan, A. E., & Matsumoto, K. (2018). The impact
of automated parameter optimization on defect prediction models. IEEE Transactions
on Software Engineering, 45(7), 683-711.

Theodoridis, S., & Koutroumbas, K. (2006). Pattern recognition. Elsevier.

Thirumoorthy, K., & Britto, J. J. J. (2022). A clustering approach for software defect
prediction using hybrid social mimic optimization algorithm. Computing, 104(12),
2605-2633.

Turhan, B., Menzies, T., Bener, A. B., & Di Stefano, J. (2009). On the relative value of
cross-company and within-company data for defect prediction. Empirical Software
Engineering, 14(5), 540-578.

Wu, R., Zhang, H., Kim, S., & Cheung, S. C. (2011). Relink: recovering links between
bugs and changes. In Proceedings of the 19th ACM SIGSOFT symposium and the 13th
European conference on foundations of software engineering (pp. 15-25). ACM.

Xia, X., Lo, D., Pan, S. J., Nagappan, N., & Wang, X. (2016). Hydra: Massively
compositional model for cross-project defect prediction. IEEE Transactions on
Software Engineering, 42(10), 977-998.

Xiang, C., Yuxiang, S., Shaoqing, M., Zhanqi, C., Xiaolin, J., & Zan, W. (2018).
Multi-objective optimization based feature selection method for software defect
prediction. Journal of Frontiers of Computer Science & Technology, 12(9), 1420.

Xie, Q., Dai, Z., Hovy, E., Luong, T., & Le, Q. (2020). Unsupervised data augmentation
for consistency training. Advances in Neural Information Processing Systems, 33,
6256-6268.

Xu, Z., Li, L, Yan, M., Liu, J., Luo, X., Grundy, J., Zhang, Y., & Zhang, X.
(2021). A comprehensive comparative study of clustering-based unsupervised defect
prediction models. Journal of Systems and Software, 172, Article 110862.

Xu, Z., Zhao, K., Zhang, T., Fu, C., Yan, M., Xie, Z., Zhang, X., & Catolino, G.
(2021). Effort-aware just-in-time bug prediction for mobile apps via cross-triplet
deep feature embedding. IEEE Transactions on Reliability, 71(1), 204-220.

Yan, M., Fang, Y., Lo, D., Xia, X., & Zhang, X. (2017). File-level defect prediction:
Unsupervised vs. supervised models. In 2017 ACM/IEEE international symposium on
empirical software engineering and measurement (pp. 344-353). IEEE.

Yang, Z., Keung, J. W., Yu, X., Xiao, Y., Jin, Z., & Zhang, J. (2023). On the significance
of category prediction for code-comment synchronization. ACM Transactions on
Software Engineering and Methodology, 32(2), 1-41.

http://refhub.elsevier.com/S0957-4174(23)03543-1/sb44
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb44
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb44
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb44
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb44
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb44
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb44
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb45
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb45
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb45
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb45
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb45
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb46
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb46
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb46
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb46
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb46
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb46
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb46
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb47
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb47
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb47
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb47
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb47
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb48
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb48
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb48
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb49
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb49
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb49
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb49
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb49
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb50
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb50
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb50
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb51
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb51
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb51
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb51
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb51
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb52
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb52
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb52
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb52
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb52
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb53
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb53
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb53
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb53
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb53
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb54
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb54
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb54
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb54
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb54
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb55
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb55
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb55
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb55
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb55
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb56
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb56
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb56
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb56
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb56
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb57
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb57
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb57
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb57
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb57
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb58
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb58
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb58
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb58
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb58
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb59
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb59
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb59
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb59
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb59
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb60
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb60
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb60
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb60
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb60
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb61
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb61
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb61
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb62
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb62
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb62
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb62
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb62
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb63
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb63
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb63
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb63
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb63
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb64
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb64
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb64
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb64
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb64
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb65
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb65
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb65
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb65
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb65
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb65
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb65
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb66
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb66
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb66
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb66
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb66
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb67
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb67
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb67
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb67
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb67
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb68
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb68
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb68
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb69
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb69
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb69
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb70
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb70
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb70
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb70
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb70
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb70
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb70
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb71
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb71
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb71
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb71
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb71
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb72
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb72
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb72
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb72
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb72
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb73
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb73
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb73
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb73
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb73
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb74
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb74
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb74
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb74
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb74
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb75
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb75
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb75
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb75
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb75
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb75
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb75
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb76
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb76
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb76
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb76
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb76
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb77
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb77
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb77
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb77
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb77
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb78
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb78
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb78
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb78
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb78
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb79
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb79
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb79
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb79
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb79
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb79
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb79
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb80
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb80
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb80
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb81
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb81
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb81
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb81
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb81
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb82
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb82
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb82
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb82
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb82
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb83
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb83
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb83
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb83
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb83
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb84
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb84
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb84
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb84
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb84
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb85
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb85
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb85
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb85
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb85
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb86
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb86
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb86
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb86
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb86
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb87
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb88
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb88
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb88
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb88
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb88
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb89
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb89
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb89
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb89
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb89
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb90
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb90
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb90
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb90
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb90
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb91
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb91
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb91
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb91
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb91
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb92
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb92
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb92
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb92
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb92
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb93
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb93
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb93
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb93
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb93
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb94
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb94
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb94
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb94
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb94
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb95
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb95
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb95
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb95
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb95
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb96
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb96
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb96
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb96
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb96
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb97
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb97
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb97
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb97
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb97

P. Yang et al.

Yang, X., Yu, H., Fan, G., & Yang, K. (2020). A differential evolution-based approach for
effort-aware just-in-time software defect prediction. In Proceedings of the 1st ACM
SIGSOFT international workshop on representation learning for software engineering and
program languages (pp. 13-16).

Yang, X., Yu, H., Fan, G., & Yang, K. (2021). DEJIT: a differential evolution algorithm
for effort-aware just-in-time software defect prediction. International Journal of
Software Engineering and Knowledge Engineering, 31(03), 289-310.

Yang, Y., Zhou, Y., Liu, J., Zhao, Y., Lu, H., Xu, L., Xu, B., & Leung, H. (2016). Effort-
aware just-in-time defect prediction: simple unsupervised models could be better
than supervised models. In Proceedings of the 2016 24th ACM SIGSOFT international
symposium on foundations of software engineering (pp. 157-168).

Yin, S., Li, H., Liu, D., & Karim, S. (2020). Active contour modal based on density-
oriented BIRCH clustering method for medical image segmentation. Multimedia
Tools and Applications, 79, 31049-31068.

Yu, X., Bennin, K. E., Liu, J., Keung, J. W., Yin, X., & Xu, Z. (2019). An empirical
study of learning to rank techniques for effort-aware defect prediction. In 2019
IEEE 26th international conference on software analysis, evolution and reengineering
(pp. 298-309). IEEE.

Yu, X., Dai, H., Li, L., Gu, X., Keung, J. W., Bennin, K. E., Li, F., & Liu, J. (2023).
Finding the best learning to rank algorithms for effort-aware defect prediction.
Information and Software Technology, 157, Article 107165.

Yu, X., Keung, J., Xiao, Y., Feng, S., Li, F., & Dai, H. (2022). Predicting the precise
number of software defects: Are we there yet? Information and Software Technology,
146, Article 106847.

24

Expert Systems With Applications 245 (2024) 123041

Yu, X, Liu, J., Keung, J. W,, Li, Q., Bennin, K. E., Xu, Z., Wang, J., & Cui, X. (2019).
Improving ranking-oriented defect prediction using a cost-sensitive ranking SVM.
IEEE Transactions on Reliability, 69(1), 139-153.

Yu, X., Liu, J., Yang, Z., Jia, X., Ling, Q., & Ye, S. (2017). Learning from imbalanced
data for predicting the number of software defects. In 2017 IEEE 28th international
symposium on software reliability engineering (pp. 78-89). IEEE.

Yu, X., Rao, J., Hu, W., Keung, J., Zhou, J., & Xiang, J. (2024). Improving effort-aware
defect prediction by directly learning to rank software modules. Information and
Software Technology, 165, Article 107250.

Yu, X., Wu, M., Jian, Y., Bennin, K. E., Fu, M., & Ma, C. (2018). Cross-company defect
prediction via semi-supervised clustering-based data filtering and MSTrA-based
transfer learning. Soft Computing, 22, 3461-3472.

Zain, Z. M., Sakri, S., & Ismail, N. H. A. (2023). Application of deep learning in software
defect prediction: Systematic literature review and meta-analysis. Information and
Software Technology, http://dx.doi.org/10.1016/j.infsof.2023.107175.

Zhang, Y., Lo, D., Xia, X., & Sun, J. (2018). Combined classifier for cross-project defect
prediction: an extended empirical study. Frontiers of Computer Science, 12, 280-296.

Zhang, F., Zheng, Q., Zou, Y., & Hassan, A. E. (2016). Cross-project defect prediction
using a connectivity-based unsupervised classifier. In Proceedings of the 38th
international conference on software engineering (pp. 309-320).

Zhao, K., Xu, Z., Yan, M., Xue, L., Li, W., & Catolino, G. (2022). A compositional model
for effort-aware just-in-time defect prediction on android apps. IET Software, 16(3),
259-278.

Zheng, W., Shen, T., Chen, X., & Deng, P. (2022). Interpretability application of the
just-in-time software defect prediction model. Journal of Systems and Software, 188,
Article 111245.

http://refhub.elsevier.com/S0957-4174(23)03543-1/sb98
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb98
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb98
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb98
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb98
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb98
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb98
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb99
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb99
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb99
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb99
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb99
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb100
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb100
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb100
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb100
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb100
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb100
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb100
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb101
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb101
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb101
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb101
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb101
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb102
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb102
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb102
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb102
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb102
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb102
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb102
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb103
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb103
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb103
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb103
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb103
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb104
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb104
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb104
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb104
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb104
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb105
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb105
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb105
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb105
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb105
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb106
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb106
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb106
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb106
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb106
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb107
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb107
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb107
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb107
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb107
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb108
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb108
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb108
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb108
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb108
http://dx.doi.org/10.1016/j.infsof.2023.107175
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb110
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb110
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb110
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb111
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb111
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb111
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb111
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb111
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb112
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb112
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb112
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb112
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb112
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb113
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb113
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb113
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb113
http://refhub.elsevier.com/S0957-4174(23)03543-1/sb113

	On the relative value of clustering techniques for Unsupervised Effort-Aware Defect Prediction
	Introduction
	Motivation
	Our Work and Contributions
	Organization

	Related Work
	Effort-Aware Defect Prediction
	Clustering Techniques for Unsupervised Classification-based Defect Prediction

	Preliminaries
	Process of Clustering Techniques for Unsupervised EADP
	Clustering Techniques
	Partition-Based Clustering (PBC)
	Hierarchy-Based Clustering (HBC)
	Density-Based Clustering (DBC)
	Model-Based Clustering (MBC)
	Graph-Theory-Based Clustering (GTBC)
	Sequence-Based Clustering (SBC)
	Grid-Based Clustering (GBC)

	Experiment Setup
	Dataset
	Evaluation Metrics
	Effort-Aware Evaluation Metrics
	Classification Evaluation Metrics

	Experimental Process
	Supervised EADP methods
	Statistic test

	Experimental Results
	RQ1: Which unsupervised clustering techniques exhibits the most exemplary performance?
	RQ2: Could unsupervised clustering techniques enhance the performance of the unsupervised EADP model ManualUp?
	RQ3: How does the performance of unsupervised clustering techniques compare to that of the state-of-the-art supervised EADP model?
	RQ4: Is the effort-aware performance of unsupervised clustering techniques related to the classification performance?
	RQ5: Can the best-performing unsupervised clustering method be generalized to other datasets?

	Threats to validity
	Implications
	Conclusion and Future Works
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

