World Wide Web (2019) 22:295-324 @ CrossMark
https://doi.org/10.1007/s11280-018-0566-1

Scalable and parallel sequential pattern mining
using spark

Xiao Yu"? - Qing Li? « Jin Liu'

Received: 14 November 2017 /Revised: 20 February 2018 / Accepted: 5 April 2018/
Published online: 10 May 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract The performance of the existing parallel sequential pattern mining algo-
rithms is often unsatisfactory due to high IO overhead and imbalanced load among
the computing nodes. To address such problems, this paper proposes two efficient
parallel sequential pattern mining algorithms based on Spark, i.e., GSP-S (GSP
algorithm based on Spark) and PrefixSpan-S (PrefixSpan algorithm based on Spark).
For both algorithms, multiple MapReduce jobs are implemented to complete a mining
task. To reduce IO overhead and take advantage of cluster memory, the first
MapReduce job loads sequence database from the Hadoop Distributed File System
(HDFS) into the Spark resilient distributed datasets (RDDs), and further MapReduce
jobs read the database from the RDDs and store intermediate results back into the
RDDs. Our findings suggest that a wise choice can be made between GSP-S and
PrefixSpan-S, depending on the user-specified minimum support threshold. Moreover,
theoretical analysis shows that GSP-S and PrefixSpan-S are sensitive to data distribu-
tion on the cluster. To further improve performance, we propose two database
partition strategies to balance load among the computing nodes in a cluster. Experi-
ment results demonstrate the high performance of GSP-S and PrefixSpan-S in terms of
load-balancing, speedup and scalability.

Keywords Sequential pattern mining - MapReduce - Load balance - Spark

P4 Jin Liu
jinliu@whu.edu.cn

Xiao Yu
xiaoyu_whu@yahoo.com

State Key Lab. of Software Engineering, School of Computer Science, Wuhan University,
‘Wuhan 430072, China

Department of Computer Science, City University of Hong Kong, Hong Kong 999077, China

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11280-018-0566-1&domain=pdf
mailto:jinliu@whu.edu.cn

296 World Wide Web (2019) 22:295-324

1 Introduction
1.1 Motivation

With the exponential growth of data and complexity of intelligent systems, fast
machine learning and computational intelligence techniques are needed. Sequential
pattern mining is an essential machine learning technique used in many domains,
such as the discovery of frequent trajectory patterns [33] and user behavior patterns
[47], the analysis of DNA sequence [19], and the study of customer purchase
behaviors [7]. The need for efficient and fast implementation of sequential pattern
mining algorithms for handling massive data poses some research challenges in these
domains. In particular, traditional sequential pattern mining algorithms, like GSP
algorithm [29], PrefixSpan algorithm [23, 24], and others [2, 4, 14, 44], face bottle-
necks in dealing with large-scale datasets. Therefore, many such algorithms are
parallelized based on some distributed frameworks better suited for handling massive
datasets. In recent years, Spark [42] has been a popular distributed computing
platform, which is a standard open source implementation for the MapReduce pro-
gramming framework [9].

Converting a serial sequential pattern mining algorithm into a parallel algorithm based on
Spark may sound non-challenging, but the following important factors must be considered in
order to achieve the high performance of parallel sequential pattern mining algorithms based
on Spark:

1) IO overhead. The multiple-database-scans feature of GSP necessitates multiple
MapReduce jobs. PrefixSpan’s recursive mining of projected databases also brings
with it the demand for multiple MapReduce jobs. The i-th MapReduce job needs
to read the output from the (i-1)-th MapReduce job as the input. Each
MapReduce job also needs to read sequence databases or projected databases. If
the output of each MapReduce job and databases are stored in the HDFS, it leads
to high IO overhead. Therefore, reducing the 10 overhead becomes a critical
aspect of algorithmic design.

2) Load balancing. In a Spark cluster, the master has to set the default configuration to
initialize each MapReduce job. Reducers cannot start until all mappers have finished the
assigned computing tasks. Imbalanced load forces reducers to wait for the slowest
mapper, thereby leading to pure waiting overhead. In reality, sequences in the sequence
database are often of different length and highly skewed. It is therefore important to study
how to split the database and distribute the computing load to different nodes in the cluster
so as to achieve good load-balancing performance.

1.2 Our work and contributions

Accordingly, we propose two efficient parallel sequential pattern mining algorithms
based on Spark, i.e., GSP-S (GSP algorithm based on Spark) and PrefixSpan-S
(PrefixSpan algorithm based on Spark). Compared with the existing parallel sequential
pattern mining algorithms, GSP-S and PrefixSpan-S have distinctive features, i.e., low
10 overhead and balanced load. From the 10 overhead perspective, for both GSP-S

@ Springer

World Wide Web (2019) 22:295-324 297

and PrefixSpan-S, multiple MapReduce jobs are implemented to complete the mining
task. To reduce IO overhead and take advantage of cluster memory, the first
MapReduce job loads the sequence database from the HDFS into the Spark RDDs,
and subsequent MapReduce jobs read the database from the RDDs and store inter-
mediate results back into the RDDs. Moreover, to tackle the problem of imbalanced
load among computing nodes, our theoretical analysis has shown that GSP-S and
PrefixSpan-S are sensitive to data distribution, because GSP-S needs multiple database
scans to identify the candidate sequence, and PrefixSpan-S needs to scan the previous
projected databases to construct new projected databases. To improve the algorithms’
performance, we propose two database partition strategies to well balance load among
the computing nodes in the cluster. Experiment results demonstrate that GSP-S and
PrefixSpan-S can reduce 10 overhead and balance load to achieve significant perfor-
mance in terms of load-balancing, speedup and scalability on Spark clusters.
The main contributions of our paper can be summarized as follows.

(1) We propose two efficient parallel sequential pattern mining algorithms based on Spark,
i.e., GSP-S and PrefixSpan-S, which have low 10 overhead by adopting in-memory
computation. The IO overhead of GSP-S and PrefixSpan-S are only O(|D|* I+
> (|Lk| % k)), where |D] is the number of sequences in the database D, [is the average

k=1
length of the sequences, and |L;| is the number of all k-sequential patterns.

(2) We conduct a theoretical investigation on the factors that incur the imbalanced load of
GSP-S and PrefixSpan-S, and propose two database partition strategies to balance load
well among computing nodes in Spark cluster. Compared with using the Spark default
settings to split the original sequence database, our database partition strategies can
reduce the runtime of GSP-S at least by 18.97%, and reduce the runtime of
PrefixSpan-S at least by 21.85%.

(3) We provide a thorough analytical study of the time complexity, IO overhead and network
overhead of the proposed algorithms, and theoretically prove that the time complexity of
GSP-S and PrefixSpan-S is reduced by » times approximately compared with the serial
algorithms, where 7 is the number of database partitions.

1.3 Organization

The remainder of this paper is organized as follows. Section 2 examines earlier works related
to our problem. Section 3 describes some background knowledge. Section 4 proposes the
GSP-S algorithm and describes the implementation details. Section 5 proposes the PrefixSpan-
S algorithm and provides the implementation details. Section 6 demonstrates the experimental
results and shows the comparisons with the state-of-the-art approaches. Finally, we conclude
this paper in Section 7.

2 Related work

In this section, we first review the related work on serial sequential pattern mining algorithms,
and then focus on parallel algorithms under distributed computing platforms.

@ Springer

298 World Wide Web (2019) 22:295-324

2.1 Sequential pattern mining

Serial sequential pattern mining algorithms can be divided into three camps, namely, Apriori-
based algorithms [2, 29] and pattern growth algorithms [14, 23, 24] and vertical format-based
algorithms [4, 44].

The AprioriAll [2] algorithm sets the basic for a variety of Apriori-based algorithms. In the
following year, the GSP algorithm [29] was proposed, and it outperforms AprioriAll because
of the more intelligent candidate sequence generation method. However, the main bottleneck
of these algorithms is that they need to scan the sequence database repeatedly to discover all
sequential patterns, thus leading to high time cost.

To improve the performance of Apriori-based algorithms, Han et al. proposed two projected
database-based algorithms, called FreeSpan [14] and PrefixSpan [23, 24], as a way to avoid
scanning the sequence database repeatedly. These algorithms construct the projected database,
and then recursively mine them to discover sequential patterns. FreeSpan and PrefixSpan
utilize the construction of projected databases and do not require multiple database scans to
discover the sequential pattern. But if the minimum support is low, they need to generate large
number of projected databases, and the cost is nontrivial [23].

The vertical format-based algorithms transform the original database into vertical
format to quickly find all sequential patterns. The SPAM algorithm [4] first transforms
the entire sequence database into a vertical bitmap representation, and then uses a
depth-first traversal strategy to discover all sequential patterns. The SPADE algorithm
[44] discovers all sequential patterns in only three database scans by using lattice
search techniques based on a vertical database format. However, the vertical format-
based algorithms need completely fit the sequence database into the main memory and
require more memory space.

In addition, there are various kinds of extensions for sequential pattern mining, including
multi-dimensional sequential pattern mining [25, 39], maximal sequential pattern mining [10,
11, 21, 22] and closed sequential pattern mining [18, 31, 32, 38].

2.2 Parallel mining of sequential patterns

With the exponential growth of data and complexity of systems, the above-mentioned serial
algorithms face bottlenecks in dealing with massive datasets. To solve the problem, some
parallel algorithms have been proposed for handling massive datasets.

Shintani et al. [27] proposed three parallel algorithms (NPSPM, SPSPM and HPSPM) for
mining sequential patterns on a shared- nothing environment. Among three algorithms,
HPSPM attains best performance. Zaki [45] extended his serial sequential pattern mining
algorithm (SPADE) to the shared memory parallel architecture, creating pSPADE. Experimen-
tal results showed that pSPADE can achieve good speedup and excellent scaleup. Gurainik
et al. [12] presented two parallel sequential pattern mining algorithms based on the distributed
memory system. Cong et al. [8] proposed the Par-CSP algorithm on the distributed memory
system to mine closed sequential patterns. Zhang et al. [46] proposed the FMGSP algorithm to
mine global sequential patterns on the distributed system. Experimental results indicated that
the performance of FMGSP was predominant for large databases. Wu et al. [35] proposed
parallel GSP algorithm based on the grid computing platform. Kessl et al. [16] proposed a
parallel PrefixSpan algorithm using static load-balancing on the distributed system. However,
these algorithms are without fault tolerance, because they are mainly implemented on the

@ Springer

World Wide Web (2019) 22:295-324 299

shared memory system, the distributed memory system or the grid computing platform that
provide little support for fault tolerance.

The MapReduce programming framework [9] and its implementation in Hadoop [13] offer
us an ideal environment for the implementation of parallel algorithms, because of the fault-
tolerant mechanism and the ease of use. These Hadoop-based algorithms can be mainly
divided into two camps, namely, iterative algorithms and non-iterative algorithms. Huang
et al. [15] proposed the DPSP algorithm based on Hadoop for progressive sequential pattern
mining. Chen et al. [6] proposed the SPAMC algorithm based on Hadoop for sequential
pattern mining. Yu et al. [40] proposed the BIDE-MR algorithm based on Hadoop for closed
sequential pattern mining. Wei et al. [34] and Puspita et al. [26] proposed parallel PrefixSpan
algorithm based on Hadoop to mine large-scale datasets. These iterative algorithms adopt
multiple MapReduce jobs to implement parallel sequential pattern mining on Hadoop. Each
job needs to perform a read-write operation to the HDFS, which leads to high IO overhead and
time cost. In addition, these algorithms do not take load balance into consideration, which is
quite important for mining massive datasets.

Moreover, DGSP [41] and PTDS [30] are non-iterative parallel algorithms based on
Hadoop, derived from GSP algorithm and PrefixSpan algorithm respectively. They first
decompose the sequence database, and then apply serial GSP algorithm or PrefixSpan
algorithm on the set of subsequences to generate local sequential patterns, finally combine
the mining results together. However, these non-iterative algorithms cannot efficiently main-
tain load balance, because it is difficult to ensure that each computing node is assigned with the
same amount of computing load. In addition, these algorithms generate redundant local
sequential patterns in the set of subsequences, thus leading to extra time cost.

In this paper, we develop two parallel sequential pattern mining algorithms based on Spark.
i.e., GSP-S (GSP algorithm based on Spark) and PrefixSpan-S (PrefixSpan algorithm based on
Spark). The reasons we parallelize GSP and PrefixSpan are as follows. GSP and PrefixSpan
are the most representative and classical Apriori-based and pattern growth approaches,
respectively. Most of extended sequential pattern mining algorithms (e.g., multi-dimensional
sequential pattern mining algorithms, maximal sequential pattern mining algorithms and
closed sequential pattern mining algorithms) are Apriori-based or pattern growth approaches
instead of vertical format-based [1]. For example, Pinto et al. [25] proposed Seq-Dim and Dim-
Seq algorithms to mine multi-dimensional sequential patterns, which divide the mining
process into two steps. Seq-Dim algorithm first mines sequential patterns, and then for each
sequential pattern, forms projected multi-dimensional database and finds multi-dimensional
patterns within the projected databases, while Dim-Seq algorithm uses the reverse procedure.
Yu and Chen [39] introduced two algorithms, the first of which is developed by modifying the
traditional Apriori algorithm and the second by modifying the PrefixSpan algorithm. The
first algorithm has different methods for candidate generation and support counting
compared with the original Apriori algorithm. The second algorithm has different
approaches for sequential pattern growth and projected database construction compared
with the original PrefixSpan algorithm. For both algorithms, different dimensional scopes
of each element are considered as the key factor for algorithm design. AprioriAdjust [21]
is an Apriori-based algorithm for mining maximal sequential pattern, while MaxSP [10]
is a pattern growth based algorithm inspired by PrefixSpan. For developers which desire
to develop parallel extended sequential pattern mining algorithms, they can refer to the
parallel frameworks of GSP-S and PrefixSpan-S without paying too much efforts in re-
designing new parallel architectures.

@ Springer

300 World Wide Web (2019) 22:295-324

3 Preliminary

In this section, we first review the definition of sequential pattern mining. Then, we briefly
introduce the MapReduce programming framework and Spark platform.

3.1 Sequential pattern mining

Definition 1 Let /= {item;, items,...,item,} be a set of n different items, which comprise the
alphabet. An itemset is a subset of items and denoted by (item; items. . .item;), where item, is an item.
It is assumed that items in an itemset are sorted in lexicographic order and can occur at most once in
an itemset. A sequence s = <sy,5,,.. .5, > is an ordered list of itemsets, where s; is an itemset.

Definition 2 A sequence database D is a set of tuples (sid,s), where sid is a sequence-id, and s
is a sequence. A sequence database is shown in Table 1.

Definition 3 A sequence =< by,b,,...,b, > is called a subsequence of another sequence a=
< ay,y,..,a, > if there exist integers 1<) <j> < ... <j,<n such that b, C @;;,b, C ajp,....by € Gy,
We also call « contains /3.

Definition 4 The support count of a sequence s in D is defined as the number of sequences in
D containing s, denoted as supp(s).

Definition 5 Given a minimum support threshold minsup, a sequence s is called a (frequent)
sequential pattern in sequence database D if supp(s) >minsup. A sequential pattern containing
k items is called a k-sequential pattern. The set of k-sequential patterns is defined as L.

Definition 6 Given a sequence [3=<by,b,...,b,>, a sequence a=<daj,aa,...ay > (M <n) is
called a prefix of 3 if and only if b;=a; (i<m-1,a,Chy,), and either b,-a,,, =P or all the
frequent items in (by,-ay,) are larger than those in a,, according to the total ordering. The
sequence ¥ = <by-dm,bm + 1. -.,bn > 1s called the suffix 3 of relative to prefixa.

For example, <a>, <a ¢>and <a ¢ g> are prefixs of sequence <a ¢ g h>. <c g h>is the
suffix relative to prefix <a>, <g & > is the suffix relative to prefix <a ¢>, and < & > is the suffix
relative to prefix <a ¢ g>.

Definition 7 Let « be a sequential pattern in D. The a-projected database is the collection of
suffixes of sequences in D with regard to prefix o, denoted as S|,.

Given an input sequence database D and a minimum support threshold minsup, sequential
pattern mining is to find all sequential patterns whose support is not less than minsup.

Table 1 A sequence database

sid S

S <acgh>

S, <(cd) (efg>
S <h>

S4 <cg>

Ss <g a>

Ss <(a b)a c>

@ Springer

World Wide Web (2019) 22:295-324 301

Example Table 1 shows a database with 6 sequences. With minsup =2, Table 2 shows 6
sequential patterns as well as the corresponding projected databases.

3.2 MapReduce and spark

MapReduce [9] is a programming framework that abstracts computation problems through two
functions: map and reduce. A computing node in MapReduce is called a mapper or a reducer.
A mapper takes in the input key/value pairs and applies the map function to generate a set of
intermediate key/value pairs. A reducer aggregates all the values with the same key and applies
the reduce function to the values [20, 36].

Apache Hadoop [13] was established as the standard open source implementation for the
MapReduce programming framework. However, it has been quickly succeeded by Apache
Spark [42], which proposed an improved data abstraction called the RDDs [43] to support in-
memory computation. Spark runs on top of existing Hadoop cluster and accesses the HDFS.
RDDs provide an interface based on coarse-grained transformations (e.g., map, filter and join)
that apply the same operation to many data items. This allows them to efficiently provide fault
tolerance by logging the transformations used to build a dataset (its lineage). If a partition of an
RDD is lost, the RDD has enough information about how it was derived from other RDDs to
recompute just that partition. Thus, lost data can be recovered, often quite quickly, without
requiring costly replication.

4 Parallelization of GSP

In this section, we first review the standard GSP algorithm [29] and then propose our GSP-S
algorithm. We also propose a sequence database partition strategy to balance load among the
computing nodes in a Spark cluster. Finally, the time complexity analysis, IO overhead and
network overhead analysis of GSP-S are conducted.

4.1 GSP algorithm

The GSP algorithm makes multiple database scans to find all sequential patterns. The first scan
computes the support of each item to find L;. From L;, the candidate 2-sequences (C) are
generated, and another database scan computes their support count to find L,. This process is
repeated until no more sequential patterns are found or no candidate sequences are generated.
There are two main steps in the candidate generation:

Table 2 Sequential pattern

sequential pattern (prefix) support count projected database
<a> 3 <c g h> <a c>
<c> 4 <g>, <g>, <g >
<g> 4 <a>

<h> 2 null

<c g> 3 null

<a c> 2 <g h>

@ Springer

302 World Wide Web (2019) 22:295-324

Join Phase- C; are generated by joining L;_; with L, ;. A sequence s; joins with s, if the
subsequence obtained by dropping the first item of s; is the same as the subsequence obtained
by dropping the last item of s,. The candidate sequence generated by joining s; with s, is the
sequence s; extended with the last item in s,.

Prune Phase- Candidate sequences that have a (k-1)-subsequence whose support is less than
the minimum support are deleted.

The pseudocode of GSP is given below as Algorithm 1.

Algorithm 1 GSP algorithm

Input: sequence database (D), minsup

Output: all sequential pattern (L)

1:L; = {I-sequential pattern};

2:for (k=2; L;.;70; k++) do

3: Cy=getCandidate(Ly.;);

4: for all sequence s in D do

5: increment the count of all candidates ¢ in C; that are contained in s;
6: end for

7. Li={cECy| c.sup_count> minsup};

8: end for

9: L= Uyl

The time complexity of GSP is O(|D| x [+ ¥, (|Lk| % |Li| + |Ck| + |D| x |Ck|)), where
ID| is the number of sequences in D, / is the averfigé length of the sequences, |L;] is the number
of sequential patterns in L, and |Cy| is the number of sequence in Cj.

Proof Line 1 requires O(|D| x /) time for scanning the database to find Z;. In further database
scan, line 3 requires O(|L;] % |L,| +|Cy]) time to generate candidate sequences and lines 4—6
require O(|D| x |Cy]) time to compute the count of the candidate sequences. Thus, the time
complexity of GSP is O(GSP) = O(|D| x [+ ¥ (|Li| x |Lx| + |Cx| + D] x |Ci]))-

k=2

The preceding analysis shows that GSP bears several disadvantages, such as generating a
huge number of candidate sequences and performing multiple database scans. The multiple-
database-scans feature of GSP necessitates multiple MapReduce jobs. However, the implement
of RDDs makes Spark especially suitable and useful for parallel processing of distributed data
with iterative algorithms [43]. In addition, GSP is level-wise in nature, and each stage in GSP
is loosely coupled [35]. Each stage in GSP accepts the outputs from its previous stage and
produces inputs for its next stage. Once launched with proper inputs, a stage goes individually
without interfering the previous one [35]. It is more convenient to parallel the GSP algorithm
based on Spark without considerable attention to re-design new parallel architecture. In the
following, we introduce our proposed GSP-S algorithm.

4.2 GSP-S

GSP-S consists of three important phases: database partition phase, preparation phase and
mining phase. Figure 1 shows the framework of GSP-S. In the database partition phase, GSP-S
splits a sequence database into » database partitions based on our proposed database partition
strategy. The details of the database partition phase will be discussed in Section 4.3. The

@ Springer

World Wide Web (2019) 22:295-324 303

Input database —

‘Partition 1 ‘ ‘Partition 2 * ‘Partition n‘

Database
Partition Phase

Mapper 1

Mapper 2 Mapper n

Reducer 1 Reducer 2 Reducer n Preparation Phase

1-sequential pattern

Mapper 1

Mapper 2 Mapper n

Reducer 1 Reducer 2 Reducer n

2-sequential pattern

‘ (k-1)-sequential pattern ‘

Mining Phase

Mapper 1 Mapper 2 Mapper n

Reducer 1 Reducer 2 Reducer n

k-sequential pattern —

Figure 1 Framework of GSP-S algorithm

preparation phase and mining phase perform the actual mining task to generate all sequential
patterns through iterative MapReduce jobs. The mappers of i-th job generate the candidate i-
sequences (C;) and compute the support count of the candidate sequences in each database
partition. The reducers of i-th job then obtain the final sequential pattern by aggregating their
local support count.

To reduce IO overhead and take advantage of cluster memory, the first MapReduce job
loads the sequence database from the HDFS into the Spark RDDs, and subsequent MapReduce
jobs read the sequence database from the RDDs and store sequential patterns generated in each
MapReduce job into the RDDs. Figure 2 shows the lineage graph for the RDDs in GSP-S. We
present the details of the preparation phase and the mining phase immediately below.

Preparation Phase In this phase, we use a MapReduce job to generate all 1-sequential
patterns (L;). Database partitions generated in the database partition phase are loaded into the
Spark RDDs from the HDFS, so as to reduce 10 overhead and take the advantage of the cluster
memory. As illustrated in the left-hand side of Figure 2, each mapper invokes the first
flatMap() function to read sequences in database partitions, where each sequence is stored in
the format of <LongWritable offset, Text sequence> key/value pair, and then invokes the other
flatMap() function to split the sequence into items. Next, each mapper applies map() function
to yield the <item, 1>key/value pairs. Note that identical items in a row of sequence are
counted as only one occurrence. These key/value pairs with the same key are merged in a
specific reducer. Finally, each reducer invokes the reducebyKey() function to aggregate the

@ Springer

304 World Wide Web (2019) 22:295-324

Preparation Phase Mining Phase

sequence database <Lk-1, count>

flatMap(_split(“\t\n”))

sequences

flatMap(_split(“ 7)) |

flatMap(_.getCandidate())

items ‘ ‘ sequences ‘

map(item=>(item, 1)) l map(Ci=>(Ck,1))

<item,1> ‘ <Ch, 1>
reduceBykey(_+) i reduceBykey(_+)
<item,count> ‘ <Lk,count>

Figure 2 Lineage graph for the RDDs in GSP-S

support count of the items, and output <item, sum > as 1-sequential patterns (L;) when the sum
is not less than minsup. The pseudocode of the preparation phase is detailed in Algorithm 2.

Algorithm 2 Preparation phase of GSP-S algorithm

Input: database partitions (D;), minsup

Output: /-sequential pattern (L)
: for all sequence s in D; do
SflatMap(offset,s);
for all item i in 5 do
output <item,1>;

1

2

3

4

S: end for
6: end for

7: reduceBykey(key=i, value=1);

8: sum=0;

9: for all item i do

10: for all value v in item /’s value list do
11: sum+=v;

12: end for

13: end for

14: if sum > minsup then

15: output<i,sum>;

16: end if

Example Figure 3 illustrates an execution example of the preparation phase. Three database
partitions generated in the database partition phase are assigned to three mappers. The first
mapper handles sequences <(c d) (e f'g)>and </ >and outputs <c,1>, <d,1>, <e,1>, <f,1>,
<g,1 >and < &,1 > key/value pairs. The other two mappers handle assigned database partitions
and output key/value pairs in the same manner. The reducer aggregates the support count and
outputs 1-sequential patterns <a,3>, <c,4>, <g4>and <h,2>.

@ Springer

World Wide Web (2019) 22:295-324 305

DataBase
Sequence 1> <d 1> <e,1> Output
<(cd)(e fg)> <f1> <g 1> <h,1> Sequence|
Pattern
<h> Reducer-1
= e
<(ab)ac>
s Mapper-2 ¢ 4
cg
<c¢ 1> <g 1> g 4
<481 1| apper-3) 12
<ga> <a,1> <c,1> <g,1>

<h1> <g 1> <a,1>

Figure 3 An execution example of the preparation phase

Mining Phase This phase discovers all sequential patterns through iterative MapReduce
jobs. The preparation phase generates 1-sequential patterns and stores them in the RDDs rather
than the HDFS to reduce 10 overhead. As illustrated in the right-hand side of Figure 2, at k-th
MapReduce job, each mapper reads L, ; from the RDDs to generate candidate k-sequences
(Cy) via the candidate sequence generation procedure. Then, a map() function is applied to read
each sequence s in the database partition from the RDDs, use the subsequence() function to
identify all candidates in Cj, and yield the <c,1 > key/value pairs for the candidate ¢ that is
contained in s. These key/value pairs with the same key are merged in a specific reducer.
Finally, each reducer invokes a reduceBykey() function to aggregate the support count
of the candidate sequences, and output the <c, sum >key/value pairs as k-sequential
patterns (L;) when the sum is not less than minsup. The pseudocode of the mining
phase is detailed in Algorithm 3.

Algorithm 3 Mining phase of GSP-S algorithm
Input: database partitions (D;),minsup, 1-sequential pattern (L)

Output: k-sequential pattern (L)
1: Read L;.; from the RDDs;

2: C= getCandidate (L.;);

3: for all sequence s in D; do

4 flatMap(offset,s);

5: for all candidate ¢ in Cy+;
6 if s.subsequence (c) then

7 output<c,1>;

8 end if

9 end for

10: end for

11: reduceBykey(key= c, value=1);

12: sum=0;

13: for all candidate ¢ do

14: for all value v in candidate ¢’s value list do
15: sum-+=v;

16: end for

17: end for

18: if sum > minsup then

19: output<c,sum>;

20: endif

@ Springer

306 World Wide Web (2019) 22:295-324

Example Figure 4 illustrates an execution example of the first MapReduce job of the
mining phase. Each mapper reads L; from the RDDs to generate C,. The first mapper
reads sequence <(c¢ d) (e f g)>from the RDDs, finds the sequence containing the
candidate 2-sequence <c g>, and outputs <c g, 1>key/value pair. Then, the mapper
reads sequence </ > from the RDDs, finds the sequence not containing any candidate
2-sequence and outputs nothing. The other two mappers read the assigned database
partitions from the RDDs and output key/value pairs in the same manner. The reducer
aggregates the support count of the candidate 2-sequences and outputs 2-sequential
patterns <c¢ g, 3>and<a ¢, 2>.

4.3 Load balance

In order to balance load among the computing nodes of a Spark cluster, we first need to
quantitatively measure the total computing load of each computing node. The computing cost
of GSP-S mostly occurs in scanning the database partition to identity the candidate sequences,
so the imbalance load problem of each computing node is mainly induced by the subse-
quence() function which has a significant impact on GSP-S. Therefore, we pay particular
attention to the subsequence() function in the mining phase.

The subsequence() function of the mining phase identifies whether a candidate
sequence c¢ is contained in s or not. Therefore, the time complexity of subsequence()
function is O(/ X m), where m is the length of ¢ and / is the length of 5. We consider
a sequence database split into n partitions across n computing nodes. As the i-th
computing node needs to scan the assigned i-th database partition D; to identify all
candidate sequences in Cj, the computing load of the i-th computing node is O(|Dj|
x|Cy] x I x m). Since the values of |C;] and m are fixed, the computing load of each
computing node is proportional to the total length of sequences in D;. However, in
real life, sequences in a sequence database are often of different length and highly
skewed. Therefore, care should be taken during the process of data partitioning.

L,
a
c
g
DataBase h
Sequence J/
<(cd)(efg)> Mapper-1)—<c 81> Output
<h> Sequential Count
<(ab)ac> <ac,1> Pattern
<o Mapper-2 cg 3
<cg,l>
<ga> Mapper-3 |- <ac l><ag 1>

<ah,l><cg, 1>
<ch,1><gh,1>
<ga,]>

Figure 4 An execution example of the mining phase

@ Springer

World Wide Web (2019) 22:295-324 307

In the database partition phase, GSP-S splits a sequence database into many database
partitions. To balance load, one strategy is to split the sequence database into n equal-sized
database partitions so that the total length of sequences in each database partition is almost the
same. It is worth noting that the number of database partitions is preferably equal to the
number of the computing nodes in a cluster in order to make the best of the cluster resources. If
the database partitions are large and not fitted into the memory of a computing node, we split
the sequence database so that the number of database partitions is several times than the
number of the computing nodes until the database partitions can be fitted into the memory of a
computing node.

The details of database partition are as follows. Firstly, all sequences in a sequence
database are sorted by length in descending order using the quick sorting algorithm.
Then, the front most n sequences form the initial » database partitions, one sequence
per database partition. The total sequence length of each database partition is initial-
ized with the length of the sequence it contains. Next, we build a min heap using the
initial database partitions based on their respective lengths of the assigned sequences.
Let ¥ ={D,D,,Ds,....D,} be the list of database partitions after building the min
heap. So, D, is assigned by the shortest sequence. We then add that non-assigned
sequence into D, which has the maximum length among all non-assigned sequences.
Next, we rearrange the min heap. Therefore, the database partition with the next
minimum total length of sequences will be the root of the min heap. We pick up the
database partition and assign a non-assigned sequence which has the maximum length
among all the remaining sequences. The same procedure is continued until all the
sequences in D are assigned to database partitions. Algorithm 4 presents the pseudo
code of the database partition phase.

Algorithm 4 Database partition phase of GSP-S algorithm

Input: sequence database (D), the number of database partitions (#)
Output: database partitions (D)

1: DescendSort(D);

2: Assign the front most n sequences to form initial » database partitions;

3: Build a min heap using the initial database partitions depending on their
respective length of the assigned sequence;
4: for all non-assigned sequence s in D do

S: Pick up the root node of the min heap say Dj;

6: Assign s to D; such that s has the maximum length;
7: Rearrange the min heap;
8: end for

Example Suppose GSP-S makes three partitions for the database in Table 1, such that the first
database partition contains S and S3, the second database partition contains S, and Sg, and the
third database partition contains S; and S5 through our proposed database partition strategy, the
input sequence database partitions are shown in Figure 5.

The time complexity of the database partition phase is O(|D|log |D|+| D|logn), where n is
the number of database partitions.

Proof Line 1 of Algorithm 4 requires O(|D| log |D|) time for sorting the sequences in

D by length in descending order using the quick sorting algorithm. Lines 2-3 require
O(n log n) time to build a min heap using n sequences. Lines 4-8 iterate |D|-n times

@ Springer

308 World Wide Web (2019) 22:295-324

Figure 5 Input sequence database Partition 1
partitions after database partition

<(cd)(efg)>

Partition 2
<(ab)ac>

Partition 3
<acgh>
< ga >

to assign the non-assigned sequences to database partitions. The time complexity of
each iteration is O(log n). Therefore, the total time complexity of the database
partition phase is O(|D| log |D|+|D| log n).

Note that in the database partition phase, each sequence in D can be represented by its
sequence-id and length, instead of copying the whole sequence when using the quick sorting
algorithm and rearranging the min heap. Therefore, the time cost of the database
partition phase is small. But the cost of the other two phases in GSP-S tends to
occupy a larger proportion of the total algorithm execution time. Therefore, we ignore
the time cost of the database partition phase when calculating the overall time
complexity of GSP-S.

4.4 Analysis

The time complexity of GSP-S is O(|Dy| x I+ I|+ ¥ (|Lk| % |Lk|+|Ck| + |Di]
k=2

X|Ck| + |C|)), where |Dj is the number of sequences in the database partition D;, and |]] is
the total number of items in the original database D.

Proof GSP-S adopts iterative MapReduce jobs. The time complexity of the first MapReduce

job to find L; is O(|D;| x 1+ |1]). In subsequent MapReduce jobs, the time complexity of

generating the candidate sequence is O(|Ly| x |L| +|Cy]), the time complexity of scanning the

database partition to compute the support count of the candidate sequences is O(|D;| x |Cy),

and the time complexity of aggregating the support count of C; is O(|C;|). Thus, the time

complexity of GSP-S is O(GSP-S) = O(|D;| x I +|I|+ ¥ (|Lk| X |Le|+|Ck| +|Di] x |Ck|
k=2

+|Ckl)). The time complexity analysis shows that the time complexity of GSP-S is reduced by
n time approximately compared with that of GSP, where # is the number of database partitions.
The 10 overhead of GSP-S is O(|D| x I + Y, (|Lx] X k)).
k>1

@ Springer

World Wide Web (2019) 22:295-324 309

Proof In GSP-S, the first MapReduce job loads the database partitions generated in the

database partition phase into the Spark RDDs from the HDFS, the 10 overhead is O(D)).

Subsequent MapReduce jobs read the database from the RDDs and store the obtained

sequential patterns into the RDDs, and we persist the RDDs in memory, so it incurs almost

no IO overhead (https://spark.apache.org/docs/2.2.0/rdd-programming-guide.html). Finally,

GSP-S writes all sequential patterns into the disk, and the 10 overhead is O(Y, (|Li| % k)).
k=1

As a result, the total IO overhead of GSP-S is O(|D| x [+ Y. (|Lk| x k)).
k=1

The 10 overhead is much lower than the iterative MapReduce jobs-based algo-
rithms (i.e., DPSP [15], BIDE-MR [40], and MR-PrefixSpan [26]), since these itera-
tive algorithms adopt multiple MapReduce jobs to implement parallel sequential
pattern mining on Hadoop and each job needs to perform a read-write operation to
the HDFS. However, reading the database from the RDDs and storing the obtained
sequential patterns into the RDDs in GSP-S also lead to time and resource
consumptions.

The network overhead of GSP-S is O(|D| +n x [I| +n x Y (|Li]| + |Ck]))-

k=1

Proof In the first MapReduce job, Master assigns n database partitions to n mappers,
the network overhead is O(|D|). Then, each mapper scans the database partition stored
in this mapper to find L;, it occurs no network overhead. Finally, mappers yield the
<item,l >key/value pairs, and the pairs with the same key are merged in a specific
reducer, the network overhead is O(n % |I]). In the k-th MapReduce job (k> 1), Master
first distributes Ly.; to n mappers, the network overhead is O(n x|L;4]). Then, each
mapper scans the database partition stored in this mapper to calculate the support
count of Cy, it occurs no network overhead. Finally, mappers yield the <c,1>key/
value pairs for the candidate ¢ in Cj, and the pairs with the same key are merged in a
specific reducer, the network overhead is O(n x |Cy|). As a result, the total network
overhead of GSP-S is O(|D| +n x |I| +n x Y (|Lk| + |Ck]))-
k>1

It is worth noting that we use the default Spark configurations and do not pay much attention to
the network overhead problem, since Spark has a high-performance networking framework [3].

5 Parallelization of prefixspan

In this section, we first review the standard PrefixSpan algorithm [23, 24] and then propose our
PrefixSpan-S algorithm. We also propose a projected database partition strategy to balance
load among the computing nodes in a Spark cluster. Finally, the time complexity analysis, IO
overhead and network overhead analysis of PrefixSpan-S are given.

5.1 Prefixspan algorithm
PrefixSpan is a pattern growth-based algorithm for mining sequential pattern. This algorithm

constructs the projected database and then recursively mines them to discover all sequential
patterns. The pseudocode for PrefixSpan is given as Algorithm 5.

@ Springer

https://spark.apache.org/docs/2.2.0/rdd-programming-guide.html

310 World Wide Web (2019) 22:295-324

Algorithm 5 PrefixSpan algorithm

Input: sequence database (D), minsup

Output: all sequential pattern(Ly)

1: Call PrefixSpan(<>,0,S)

2: procedure PrefixSpan(a,/,S|,)

3: The parameters are (1) a is a sequential pattern (2) / is the length of a (3)
S| is a-projected database if 0£<>, otherwise it is the sequence database D
4: Scan S|, once, find each frequent item b, such that:

5: (a) b can be assembled to the last element of « to form a sequential
pattern

6: (b) can be appended to « to form a sequential pattern

7: for each frequent item b, append it to « to form a sequential pattern o
8: for each o', construct a’'-projected database S|, and call
PrefixSpan(o’,/+1, S|»)

The time complexity of PrefixSpan is O(|D| x [+ m % |S],| x [+ m % |S],| x [x P), where |D| is
the number of sequences in D, [is the average length of the sequences, m is the number of
building projected databases, |S|,| is the number of sequences in S|, and P is the average
projecting time of an item.

Proof The time complexity of scanning the original sequence database to find L; is O(|D] x I).
The time complexity of scanning the projected database to find length-1 sequential pattern is
O(|S)] x I). The time complexity of constructing the corresponding projected database), for
each «a is O(|S|,]| * [x P). As a result, the total time complexity of PrefixSpan is O(|D| x [+
m % [S|o| X1+ m % [S],| xI % P).

The above analysis shows that the major time cost of PrefixSpan is the construction of
projected databases. If the projected databases cannot entirely fit into the memory at the same
time, PrefixSpan needs to write the projected databases into disk and read them from disk to
perform physical projection. Since the projected databases are independent, we can assign
them to different computing nodes for parallel mining of sequential patterns, which is the basis
of our proposed PrefixSpan-S algorithm to be described next.

5.2 Prefixspan-S

Prefixspan-S has three important phases: database partition phase, support counting phase and
projected database generation phase. The three phases are executed iteratively until no new
sequential pattern is found. Figure 6 shows the framework of PrefixSpan-S. In the database
partition phase, PrefixSpan-S splits the projected database into # database partitions based on our
proposed database partition strategy to balance load. The details of this phase will be discussed in
Section 5.3. The support counting phase generates the final sequential patterns through a
MapReduce job. The projected database generation phase uses a MapReduce job to generate
the projected database for each sequential pattern obtained in the support counting phase.

To reduce IO overhead and take advantage of cluster memory, the first MapReduce job
loads the sequence database from the HDFS into the Spark RDDs, and subsequent MapReduce
jobs read the projected databases from the RDDs and store the projected databases and
sequential patterns generated in the support counting phase into the RDDs. Figure 7 shows
the lineage graph for the RDDs in PrefixSpan-S. We present the details of the support counting
phase and projected database generation phase below.

@ Springer

World Wide Web (2019) 22:295-324

311

dem—c e ——————

----Part |

> [par1]

a-projected databases‘

‘PartZ‘ ‘Partn‘

Mapper 2

Reducer 1 Reducer 2

Mapper n

Reducer n

----- -* Sequential pattern o' ‘

‘PartZ‘ ‘Partn‘
[

Database
Partition Phase

Support
Counting Phase

- Mapper 1 Mapper 2 | ... | Mapper n

Projected Database
Generation Phase

Reducer 1

Reducer 2| ... |Reducern

e P

‘ o'~ projected databases ‘

Figure 6 Framework of PrefixSpan-S algorithm

Support Counting Phase In this phase, we use a MapReduce job to find length-1 sequential
patterns in S|, and append them to « to form new sequential patterns «". At the first execution
of the support counting phase, 5], is the original sequence database D. The MapReduce job is
the same as the MapReduce job of the preparation phase in GSP-S. In further execution of the
phase, each mapper invokes the first flatMap() function to read each sequence in the projected
database partition Sj|, generated in the database partition phase, and then invokes the other
flatMap() function to split the suffix into items. Next, each mapper appends these items to a
and yields the <a+ item, 1 >key/value pairs. These key/value pairs with the same key are
merged in a specific reducer. Finally, each reducer invokes the reducebyKey() function to

Support counting Phase

Projected database generation Phase

o-projected database

flatMap(__split(“\r\n”))

suffixes

SlatMap(_split(<))

map(item=>(+item,1))

reduceBykey(_+)

<otitem,sum>

Prefix o’

a-projected database

flatMap(_split(“\r\n”))

suffixes

map(a'=>(a’, suffix’)

<a’, suffix”™>

reduceBykey()

Figure 7 Lineage graph for the RDDs in PrefixSpan-S

@ Springer

312 World Wide Web (2019) 22:295-324

Projected databases

Prefix | Suffix <ac,l><ag,1>

a cgh <ah,1><cg,1> Output
¢ g [Map per-1) Sequential

Count
Mapper-2

ac 2

<cg,1><ch 1> Reducer-2 c 3
. < ; >{ j/' g

g a Mapper— <cg‘1><ga,l>

Figure 8 An execution example of the support counting phase

c gh

aggregate the support count of the items with prefix o and outputs <o+ item, sum > when the
sum 1is not less than minsup. The pseudocode of the support counting phase is detailed in
Algorithm 6.

Example Figure 8 illustrates an execution example of the support counting phase. Six
suffixes generated in the above projected database generation phase are assigned to three
mappers. The first mapper handles suffix <c g & > prefixed with <a>, appends the items in the
suffix to <a>, and outputs <a ¢, 1>, <a g, | >and < a h, 1>. Then the mapper handles suffix
<g > prefixed with <¢>, appends <g >to <c>, and outputs <c g, 1>. The other two mappers
handle assigned suffixes and output key/value pairs in the same manner. The reducer aggre-
gates the support count and outputs 2-sequential patterns <a ¢, 2>and<c g, 3>.

Algorithm 6 Support counting phase of Prefixspan-S algorithm
Input: database partitions (Si|,), minsup,

Output: sequential patterns (a')
1: for all suffix in S|, do
2 flatMap(oftset, suffix);
3 for all item b in suffix do
4 output <a+b,1>;

S: end for

6: end for

7: reduceBykey(key=a+ b, value=1);
8: sum=0;

Ne)

: for all key o+ b do

10: for all value v in a+b’s value list do
11: sum+=v;

12: end for

13: end for

14: if sum > minsup then

15: output<o+ b,sum>;

16: end if

Projected Database Generation Phase This phase constructs the corresponding
projected database for the sequential patterns generated in the above MapReduce
job. Note that sequences in the projected database of a prefix (e.g., prefix <a ¢>) is
only the member of sequences in the projected database of the earlier prefix (i.e.,

@ Springer

World Wide Web (2019) 22:295-324 313

prefix <a>). Therefore, the construction of o' -projected database does not refer to the
original sequence database but is based on a-projected database («' is a sequential
pattern with prefix «). In this way, the size of the database sequences that must be
parsed can be decreased drastically, because it refers only to the projected database of
the earlier prefix [26]. As illustrated in the right-hand side of Figure 7, each mapper
first invokes the flatMap() function to read suffix sequences in previous projected
database partitions S|, from the RDDs. Then a map() function is applied to compute
the suffix for the prefix o' generated by the above MapReduce job, and yield the
<a'.suffix’ > key/value pair. The process of generating suffix for prefix o' just reads
suffix sequences in S,|, from the RDDs, and computes the suffix only for the
sequential pattern o’ with prefix «. The subsequence prefixed with the last item of
sequential pattern o' is the suffix of o’ These key/value pairs with the same key are
merged in a specific reducer. Finally, each reducer invokes the reduceBykey() function
only to collect all suffix sequences and assemble them as the projected database. The
pseudocode of the first MapReduce job is detailed in Algorithm 7.

Algorithm 7 Projected database generation phase of Prefixspan-S algorithm
Input: database partitions (Si,), sequential patterns (')

Output: projected database(S|,)
1: for all suffix s in S|, do

2: flatMap(offset,s);

3 for all sequential pattern o’

4 if the last item of ¢’ in s then

S: String suffix=getsuffix(o’, s);
6 output<a’,suffix >;

7 end if

8: end for

9: end for

10: reduceBykey(key= o', value= suffix");
11: for all value suffix’ in value list do
12: output<d’, suffix’>;

13: end for

Example Figure 9 illustrates an execution example of the projected database generation
phase. Six suffixes generated in the above projected database generation phase are assigned

Projected databases |cg

Prefix | Suffix)
I' -------- 1
‘ ceh : <ac.gh> Output
c
g E Reducer—])\ Prefix Suffix
a ac }E - <
c gh !
E Reducer-2 I’ cg h
¢ g i
g a st '

Figure 9 An execution example of projected database generation phase

@ Springer

314 World Wide Web (2019) 22:295-324

to three mappers. The first mapper reads suffix <c g & > with prefix <a > from the RDDs, and
computes the suffix only for those sequential patterns with prefix <a>. So the mapper only
needs to compute the suffix for <a ¢>. The subsequence <g / > prefixed with the last item ¢ of
sequential pattern <a c¢>1is the suffix of sequential pattern <a ¢>. Thus, the first mapper
outputs <a ¢, g h > key/value pairs when reading the suffix sequence<c g 4 > with prefix <a >

from the RDDs. Then the first mapper reads suffix <g > prefixed with <c¢ > from the RDDs and
computes the suffix only for the sequential pattern with prefix <c>. So, the mapper only needs
to compute the suffix for <c¢ g>and find that the subsequence prefixed with the first
occurrence of the last item g of prefix <c¢ g>1is null, and output nothing. The other two
mappers handle assigned suffixes and output key/value pairs in the same manner. The reducers
only collect all key/value pairs and output <a ¢, g h>and < c¢ g, h > key/value pairs.

5.3 Load balance

In order to balance load among the computing nodes of a Spark cluster, we first need to
quantitatively measure the total computing load of each computing node. The computing cost
of PrefixSpan-S mostly occurs in the projected database generation phase. So we pay particular
attention to the getsuffix() function in the projected database generation phase. The function
reads suffix sequences in the assigned projected database partition of prefix a, and computes
the suffix only for the sequential pattern o' prefixed with «. That is to say, the computing load
of getsuffix() function is proportional to the number of sequential patterns prefixed with «
when reading the suffix sequence in a-projected database to compute the suffix for o'.

To balance load, for each sequential pattern « in Ly, we split the a-projected database into 7
partitions so that each database partition contains almost the same number of suffix sequences
prefixed with .. That is, we want to disperse the suffix sequences prefixed with « to different
mappers. While making these partitions, PrefixSpan-S filters the infrequent items. Note that if
it is the first time to split the database, the database is the original sequence database;
otherwise, it is the projected database. When it is the first time to split the database, the
partition strategy is the same as the strategy described in the Section 4.3.

The time complexity of the database partition phase is O(|D| log |D|+|D| log n+
k*|S|.]), where n is the number of database partitions, and & is the largest length of
the sequential pattern.

Proof When it is the first time to split database, the partition strategy is the same as the
strategy in the section 4.3, and the time complexity is O(|D|log |D|+| D|log n). In the further
partition phase, the time complexity is O(|S|,|). Thus, the total time complexity of database
partition phase is O(|D| log |D|+| D|logn + k < |S].|).

The cost of the database partition phase is small and the cost of the other two phases in
Prefixspan-S tends to occupy a larger proportion of the total algorithm execution time.
Therefore, we ignore the time cost of the database partition phase when calculating the overall
time complexity of PrefixSpan-S.

It is worth noting that Kessl [16] proposed a static load-balancing strategy for the parallel
PrefixSpan algorithm on the distributed memory system. The differences between the strategy
proposed by Kessl and ours are as follows. Our strategy is a dynamic load-balancing method,
which splits the a-projected database into n partitions in each MapReduce job. The strategy
first creates a sample of frequent sequences, and then use this sample for estimating the relative

@ Springer

World Wide Web (2019) 22:295-324 315

processing time of the algorithm, finally partitioned the sequence database. Compared with our
strategy, the static load-balancing strategy cannot modify the load of each mappers at run time.

Example As shown in Figure 10, suppose Prefixspan-S makes three partitions for the
projected databases of 1-sequential patterns <a>, <c¢ >and < g >in Table 1, such that the first
partition contains suffix <c g s> prefixed with <a >and suffix <g> prefixed with <c>, the
second partition contains suffix <a ¢ > prefixed with <a >and < g & > prefixed with <c>, and
the third partition contains suffix sequence <g > prefixed with <c¢>and suffix <a > prefixed
with <g > through our proposed database partition strategy.

5.4 Analysis

The time complexity of PrefixSpan-S is O(D;| x I + || + m x |Si|o| XI + mx| I| +m X |S}|,| X[x P),
where |Sj,| is the number of sequences in Sj .

Proof The time complexity of the first MapReduce job to find Z; is O(|Dj| x [+ |1]). The time
complexity of finding length-1 sequential pattern is O(|Sj|,| % /+ |1]). Since the reducers of
projected database generation phase only collect all the sequences and assemble them as the
projected database, the time complexity can be ignored. The time complexity of constructing
the corresponding project database S|, for each « is O(|Sj .| x [x P). Thus, the total time
complexity of the PrefixSpan-S algorithm is O(|D,| X I+ |I| + m X |Sj| | %I + mx| | +m X |S{||
x[x P). The time complexity analysis shows that the time complexity of PrefixSpan-S is
reduced by » time approximately compared with that of PrefixSpan, where # is the number of
projected database partitions.
The 10 overhead of PrefixSpan-S is O(D| x I+ Y. (|Li| X k)).
k=1

Proof In PrefixSpan-S, the first MapReduce job loads the database partitions generated in the
database partition phase into the Spark RDDs from the HDFS, and the IO overhead is O(|D)).

Figure 10 Projected database Partition 1
after partition phase
<a>-<cg h>
<c>-< g>
Partition 2~~~]
<a>-<aqc>
<c>-<g h>
Partition 3~~~]
<c>-< g>
< g> -<q>

@ Springer

316 World Wide Web (2019) 22:295-324

Since subsequent MapReduce jobs read the projected database from the RDDs and store the

obtained sequential patterns and projected databases into the RDDs, it incurs almost no 10

overhead. Finally, PrefixSpan-S writes all sequential patterns into disk, and the IO overhead is

O(Y. (|L| x k). As a result, the total 10 overhead of PrefixSpan-S is O(|D| x [+ Y,
k=1

k=1
(ILk| % K)).
The network overhead of PrefixSpan-S is O(|D| +n X |[I| +2 x n xm x |Sj|,| +2 x n
X Y |Lg])-
k=1

Proof In the first MapReduce job, Master assigns n database partitions to n mappers, the
network overhead is O(|D]). Then, each mapper scans the database partition stored in this
mapper to find L;, it occurs no network overhead. Finally, mappers yield the <item,1 >key/
value pair, and the pairs with the same key are merged in a specific reducer, the network
overhead is O(n x |1]). In the second MapReduce job, Master first distributes L; to » mappers,
the network overhead is O(n % |L,|). Then, each mapper scans the database partition stored in
this mapper to compute the suffix for the prefix sequence o in L, it occurs no network
overhead. Finally, mappers yield the <a,suffix > key/value pair, and the pairs with the same
key are merged in a specific reducer, the network overhead is O(|Sj,|). In the (2 k-1)-th
MapReduce job (k> 1), Master assigns n projected database partitions to n mappers, the
network overhead is O(]Si|.|). Then, each mapper scans the projected database partition stored
in this mapper to find length-1 sequential pattern, it occurs no network overhead. Finally,
mappers yield the <a + item, 1 >key/value pairs, and the pairs with the same key are merged
in a specific reducer, the network overhead is O(n x | Ly]). In the 2 k-th MapReduce job (k> 1),
Master first distributes Ly to n mappers, the network overhead is O(n x |Ly|). Then, each
mapper scans the projected database partition stored in this mapper to compute the suffix for
the prefix o’ in Ly, it occurs no network overhead. Finally, mappers yield the <o’ suffix’ > key/
value pair, and the pairs with the same key are merged in a specific reducer, the network
overhead is O(|Sj|). Therefore, the network overhead of PrefixSpan-S is O(|D| + n x |I| + 2

xn x m x |Si|,|+2xnx Y |L]).
k=1

6 Expriment analysis

We evaluate the performance of GSP-S and PrefixSpan-S on a 10-node cluster. Each node
possesses a single-core processor with 4 GB memory, and runs on the Ubuntu 14.04, on which
Hadoop 2.7 and Spark 2.2 are installed. We set the number of Map and Reduce tasks
by the default Hadoop parameter configurations and default Spark parameter config-
urations. Note that, if not specified, the number of data nodes is set as 4. This setting
is followed by the similar work [37], which proposed a parallel frequent itemsets
mining algorithm using MapReduce. The synthetic datasets as well as real-life datasets
are used in our experiments.

(1) Synthetic Datasets: We employed two synthetic datasets (i.e., C20D10k and C20D150k)
generated by the IBM Generator, which can be obtained from the SPMF repository [28].

@ Springer

World Wide Web (2019) 22:295-324 317

(2) Real life Datasets: Since the real-life datasets from the SPMF repository are not very
large, we apply GSP-S and Prefixspan-S to implement a data mining application for two
very large taxi trajectory datasets. Since the trajectory data is the raw GPS data, we
transform GPS position coordinates into trajectories expressed on a road segment level
by calling the Baidu API Geocoding [5]. Two taxi trajectory data sets used in our
experiments were generated by over 33,000 taxis in Beijing on November 1, 2012 and
November 2, 2012. The datasets in these 2 days are hereinafter referred to as dbl and
db2, respectively.

The characteristics of the four datasets are shown in Table 3.
6.1 Minimum support

We analyze the runtime of the proposed GSP-S and PrefixSpan-S for different mini-
mum support thresholds. We compare their runtime to DGSP [40] and MR-PrefixSpan
[26] in Hadoop using the four datasets mentioned above. In addition, we adapt DGSP
and MR-PrefixSpan in Spark and call them DGSP-S and MR-PrefixSpan-S, respec-
tively. Figure 1la—d shows the results. As shown in Figure 11, a low minimum
support degrades the mining performance of all algorithms. This is because the lower
the minimum support is, the more sequential patterns the algorithms generate. It takes
an increased amount of time to generate more sequential patterns. We observe that the
proposed GSP-S and PrefixSpan-S perform significantly better than the compared
algorithms. The reason for this is twofold. First, MR-PrefixSpan needs to read data
from the HDFS in every MapReduce job, thus causing huge IO overhead. In contrast,
GSP-S and PrefixSpan-S load the input dataset from the HDFS into the RDDs and
then just read the data and intermediate results from the RDDs later, thus reducing 10
overhead. Second, the efficient database partition strategies balance load well among
computing nodes in the cluster, which also enables GSP-S and PrefixSpan-S to
outperform other algorithms.

We also observe that PrefixSpan-S outperforms GSP-S when the minimum support is high.
But when it comes to the low minimum support, GSP-S is superior to PrefixSpan-S. The
performance trends are reasonable. The following reasons might cause the trends.

As stated above, the time complexity of PrefixSpan-S is O(|Dy| x [+ || + m x |Si|| XI + mX|
1| +m % |S}|o| xI < P), and the network overhead of PrefixSpan-S is O(|D| +n x |I|+2 x n
xm %X |Si|,| +2 xnx Y |L|). A great number of sequential patterns are generated, when

k=1

the minimum support is low. PrefixSpan-S needs to construct the projected database for every

sequential pattern, the cost is non-trivial [24]. The number of sequences in a-projected

database partition is also large, the cost to find length-1 sequential patterns is also high. In

addition, the network overhead (O(|D|4+n x [I|+2 xnxm X |Si|,|+2xnx Y |[L|)
k=1

Table 3 Data parameters

Name Number of sequences Average length of sequences Number of distinct items =~ Size of the dataset
C20D10K 10,000 20.0 192 0.81 MB
C20D150K 150,000 20.0 192 12.2 MB
dbl 139,984 189.35 8799 1026 MB
db2 176,129 189.44 9277 1310 MB

@ Springer

318

World Wide Web (2019) 22:295-324

¥ GspP-s ¥ GsP-s
T ~5— Prefixspan-S 1 R grg;;spaws
S DGSP o
. <} DGSP-s S <} DGSP-s
12 i |- MR-PrefixSpan 12 i |- MR-PrefixSpan
™ o -+ MR-PrefixSpan-S e ;E»\\ - MR-PrefixSpan-S

04 05 06 07 08 09 10 11 12 04 05 06 07 08 09 10 11 12
Minimum support(%) Minimum support(%)
(a) ao1 (b) av2
3ok 7
‘\f\ ¥ GsPs "% —¥ GsP-s
NN ~E3— Prefixspan-S 60 '\ ~E3— Prefixspan-S
25 "\ DGSP N DGSP
. NS, <} DGSP-S . 3 <} DGsP-s
& <1 % ~}-- MR-PrefixSpan » 50 N ~}-- MR-PrefixSpan
S 20t%, Ny - MR-PrefixSpan-S S % - MR-PrefixSpan-S
= % b= %
s ¥ < 4, Y
~— o MY
[4] N
£ £ 30)
= =
c = %
S S *
x @ 20
N
10

20
Minimum support(%)

24

28
Minimum support(%)

(c) c20p10k

(d) c20p150k

Figure 11 Runtime of algorithms with different minimum support on (a) dbl (b) db2 (¢) C20D10k (d)
C20D150k

increases dramatically and largely degrades the performance of PrefixSpan-S, when the value
of minimum support decreases.

As stated above, the time complexity of GSP-S is O(|D;| x I+ [I| + ¥ (|Li| X |Lg|+|Ck]
k=2

+|D;| x|Ck| + |Ckl)), which shows that scanning the database partition D; occupies a large

proportion of the algorithm execution time. In addition, the low minimum support leads it to

generate more candidate sequences. However, the network cost (O(|D|+n x ||+

nx Y (JLg| +|Ck]))) of GSP-S does not increase much dramatically than that of
k=1

PrefixSpan-S. As a result, GSP-S outperforms PrefixSpan-S for low minimum support.

When the value of minimum support increases, for PrefixSpan-S, the number of sequential
patterns decreases and so do the cost of constructing projected databases and network cost. But
for GSP-S, the time spent in scanning the database is so dominant that the overall runtime of
GSP-S does not decrease much despite the increase of minimum support.

6.2 Load balance

In this experiment, we test whether GSP-S and PrefixSpan-S can balance load to achieve optimal
performance. We conduct this experiment using the taxi trajectory datasets mentioned above,

@ Springer

World Wide Web (2019) 22:295-324 319

because sequences in taxi trajectory datasets are of different length and highly skewed. Recall that
our analysis shows the mining phase of GSP-S and the projected database generation phase of
PrefixSpan-S are more sensitive to data distributions than the other phases of the algorithms.
Therefore, we focus on the load-balancing performance of the mining phase of GSP-S and the
projected database generation phase of PrefixSpan-S. We analyze the runtime of mappers in the
second MapReduce job to test whether GSP-S and PrefixSpan-S are able to balance load. As
discussed in Section 2, the existing parallel sequential pattern mining algorithms based on
Hadoop are inefficient because they do not take load balance into consideration. We also compare
the load-balancing performance of GSP-S and PrefixSpan-S with DGSP and MR-PrefixSpan.
Since the time cost of the second MapReduce job in DGSP and MR-PrefixSpan tends to occupy a
larger proportion of the total algorithm execution time, we analyze the runtime of mappers in the
second MapReduce job of DGSP and MR-PrefixSpan.

We introduce the coefficient of variation (CV) to measure the load-balancing performance,
because it eliminates the effect of measurement scale and measurement unit. CV = o/u, where
o is the standard deviation of the runtimes of mappers in a MapReduce job, and u is the mean
runtime of mappers in a MapReduce job. Figure 12 presents the CV value on dbl and db2.

As shown in Figure 12, GSP-S and PrefixSpan-S have lower CV than other algorithms. We
also observe that load-balancing performance becomes more obvious when the value of
minimum support decreases. In other words, GSP-S and PrefixSpan-S have a growing
advantage in load-balancing performance when the load of each mapper increases.

We also conduct a more extensive experiment. We split the original sequence database using
the Spark default settings and our database partition strategy, respectively. Figures 13 and 14
show the impact of our database partition strategy. The experiment results indicate that our
database partition strategy brings significant improvements in performance, because our load-
balancing strategies significantly shorten the execution time of GSP-S and PrefixSpan-S. To be
specific, our database partition strategies reduce the runtime of GSP-S at least by 18.97%
(=(6.9-5.8)/5.8), and reduce the runtime of PrefixSpan-S at least by 21.85% (=(7.92—-6.5)/6.5).

6.3 Speedup

In this experiment, we study the speedup performance of GSP-S and PrefixSpan-S. Speedup
means the ratio of the runtime on a single computing node to the runtime for an identical data

o 0.1
- % GSP-S — % GSP-S
0:09 ~&— Prefixspan-S 0:08 ~&— Prefixspan-S
0.08 DGsP 0.08 DGSP
— == MR-PrefixSpan ~ 4= MR-PrefixSpan
0.07 0.07

004 05 06 07 08 09 10 14 12 004 05 0.6 07 08 09 10 11 12
Minimum support(%) Minimum support(%)
(a) b1 (b) b2

Figure 12 Coefficient of variation of runtimes with different minimum support on (a) dbl (b) db2

@ Springer

320 World Wide Web (2019) 22:295-324

10 s 10
o I O strategy 9 - I Our strategy
:De!aull setting \:Dela\m setting
8 8
n 0 M
g’ g’
~ 6 ~ 6
< =)
T ° T S
£. £.
c c
3, 3 3
x ¥
2 2
1 1
0 0
02 04 06 08 1 12 14 02 04 06 08 1 12 14
Minimum support(%) Minimum support(%)
(a) dor (b) a2

Figure 13 Runtime of GSP-S with the default settings and our database partition strategy on (a) dbl (b) db2

set on the cluster. The speedup = T/T,, where T} is the runtime of the serial algorithm on a
single computing node and 7}, is the runtime of the parallel algorithm on p data nodes for the
same dataset. We study the speedup performance by taking the ratio of baseline (GSP or
PrefixSpan) runtime on a single computing node to the runtime of GSP-S and PrefixSpan-S on
a Spark cluster for the same dataset. We study the speedup performance of GSP-S and
PrefixSpan-S by increasing the number of data nodes from 1 to 9 in the Spark cluster. We
conduct the experiment on dbl and db2, because these two datasets contain more sequence
than C20D10k and C20D150k. Here, we set the minimum support as 1% (little difference of
the scalability performance was observed with other minimum supports).

In Figure 15, we plot the speedup gained by the algorithms on dbl and db2. Recall from
Sections 4.4 and 4.5 the time complexity analysis shows that GSP-S and PrefixSpan-S can
achieve linear speedup compared with GSP and PrefixSpan, respectively. From these plots, we
observe that the speedup of GPS-S and PrefixSpan-S is close to the linear speedup. The reason
they cannot be linear is that the communication cost between mappers and reducers goes up
when more computing nodes are added. As the number of computing nodes increases, the size
of the assigned database partition per computing node decreases and so does the computation
cost for each computing node. But the communication cost among the computing nodes

12 12

I Our strategy I Our strategy
M :| Default setting \:Delaull selting

Runtime(in 100s)
Runtime(in 100s)

02 04 06 08 1 12 14 02 04 06 08 1 12 14
Minimum support(%) Minimum support(%)
(a) o1 (b) dv2
Figure 14 Runtime of PrefixSpan-S with the default settings and our database partition strategy on (a) dbl (b)
db2

@ Springer

World Wide Web (2019) 22:295-324 321

7 T T T T T T T 7

T T
——GsP-s
—=— Prefixspan-S 1

Nodes Nodes

(a) b (b) db2
Figure 15 Speedup performance of GSP-S and PrefixSpan-S on (a) dbl and (b) db2

degrades the overall performance of algorithms. In general, GSP-S and PrefixSpan-S gain
significant speedup on a Spark cluster.

6.4 Scalability

In this experiment, we study the scalability performance of GSP-S and PrefixSpan-S
when the size of input sequence database grows. We generate five synthetic datasets
each containing 50 k to 250 k input sequences with an increment of 50 k. Here, we
set the minimum support as 10% (little difference of the scalability performance was
observed with other minimum supports), and record the runtime of the evaluated
algorithms for different sizes of input sequence database.

As shown in Figure 16, the runtime of GSP-S and PrefixSpan-S goes up when the size of
input sequence database increases. The reason is twofold. First, the cost of loading the input
dataset from the HDFS into the RDDs grows. Second, the increased input dataset leads to a

—¥— GSP-S
—E— Prefixspan-S

'S
w

w
w [-
T T T

Runtime(in 100s)

50 100 150 200 250
Number of sequences(K)

Figure 16 Scalability of GSP-S and PrefixSpan-S when the size of input sequence database increases

@ Springer

322 World Wide Web (2019) 22:295-324

longer database scanning time of GSP-S. For PrefixSpan-S, the time cost of constructing
projected databases grows along with the size of the input dataset. Nevertheless, the overall
runtime increases at a sub-linear rate as the size of the input sequence database increases
because of the efficiency of our in-memory computation strategy and load balance strategies.

6.5 Analysis

The aforementioned experiment results conclude that GSP-S and PrefixSpan-S outperform the
existing approaches (see Figures 11 and 12). The reason for this is also twofold. First, GSP-S
and PrefixSpan-S load the input dataset from the HDFS into the RDDs and then just
read the data and intermediate results from the RDDs later, thus reducing IO over-
head. Second, the efficient database partition strategies balance load well among
computing nodes in the cluster, which also enables GSP-S and PrefixSpan-S to
outperform other algorithms. More importantly, we also observe that GSP-S outper-
forms PrefixSpan-S for the low minimum support. But when it comes to the high
minimum support, PrefixSpan-S is superior to GSP-S (see Figure 11). Our findings
suggest that a wise choice can be made between GSP-S and PrefixSpan-S, depending
on the user-specified minimum support threshold.

7 Conlusion and future work

In this paper, we propose two scalable and parallel sequential pattern mining algo-
rithms based on Spark, called GSP-S and PrefixSpan-S. Compared with the existing
parallel algorithms, GSP-S and PrefixSpan-S overcome the high 10 overhead problem
by adopting in-memory computation. In addition, we improve the performance of
GSP-S and PrefixSpan-S by balancing workload among computing nodes in the
cluster. Experimental results show the high performance of GSP-S and PrefixSpan-S
in terms of load-balancing, speedup and scalability. Moreover, our new findings
suggest that users can make a sensible choice between GSP-S and PrefixSpan-S
depending on the user-specified minimum support threshold.

In the further, we plan to explore other load-balancing strategies to improve the perfor-
mance even further. We also plan to apply the proposed algorithms suitable for mining
uncertain data [17], and other related applications.

Acknowlegement The authors would like to acknowledge the support provided by the
National Key Research and Development Program of China (No. 2017YFB1400602 and
No.2016YFB0800401), the grands of the National Natural Science Foundation of China
(61572374, U163620068, U1135005, 61572371) and Academic Team Building Plan for
Young Scholars from Wuhan University (WHU2016012).

References

1. Aggarwal, C.-C., Han, J.: Frequent pattern mining. Springer.
2. Agrawal, R., Srikant, R.: Mining sequential pattern. In: 11th International Conference on Data Engineering,
pp- 3—14. IEEE(1995)

@ Springer

World Wide Web (2019) 22:295-324 323

w

10.

11.
12.
13.
. Han, J., Pei, J., Mortazavi-Asl, B., et al.: FreeSpan: frequent pattern-projected sequential pattern mining. In:
15.

16.

18.
19.
20.
21.

22.

23.
24.
25.

26.
27.
28.

29.

30.

. Armbrust, M., Das, T., Davidson, A., Ghodsi, A., Or, A., Rosen, J., Zaharia, M.: Scaling spark in the real

world: performance and usability. Proceedings of the VLDB Endowment. 8(12), 1840-1843 (2015)
Ayres, J., Gehrke, J., Yiu, T., et al: Sequential pattern mining using a bitmap representation. In: Proceedings
of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
429-435(2002)

Baidu Geocoding: (2016). Available from: http://Ibsyun.baidu.com/

Chen, C.-C., Tseng, C.-Y., Chen, M.-S.: Highly scalable sequential pattern mining based on mapreduce
model on the cloud. In: 2013 LE. International Congress on Big Data, pp. 310-317. IEEE (2013)

Hu, Y., Cheng-Kui Huang, T.: Knowledge discovery of weighted RFM sequential patterns from customer
sequence databases. J. Syst. Softw., vol. 86, no. 3, pp. 779-788(2013)

. Cong, S., Han, J., Padua, D.: Parallel mining of closed sequential patterns. In: KDD '05 Proceedings of the

Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, pp. 562—
567(2005)

Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun. ACM. 51(1),
107-113 (2008)

Fournier-Viger, P., Wu, C.-W., Tseng, V.-S.: Mining maximal sequential patterns without candidate main-
tenance. In: International Conference on Advanced Data Mining and Applications, Springer, Berlin,
Heidelberg, pp. 169-180(2013)

Guan, E.-Z., Chang, X.-Y., Wang, Z., Zhou, C.-G.: Mining maximal sequential patterns.In: Proc of the
Second Int’l Conf. Neural Networks and Brain, pp. 525-528(2005)

Gurainik, V., Garg, N., Karypis, G.: Parallel tree projection algorithm for sequence mining. In: 7th
International Euro-Par Conference on Parallel Processing, pp. 310-320(2001)

Hadoop Website, http://hadoop.apache.org/

Proceedings of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 355-359(2000)

Huang, J., Lin, S., Chen, M.: DPSP: distributed progressive sequential pattern mining on the cloud.
Advances in Knowledge Discovery and Data Mining. 27-34 (2010)

Kessl, R.: Probabilistic static load-balancing of parallel mining of frequent sequences. IEEE Trans. Knowl.
Data Eng. 28(5), 1299-1311 (2016)

. Leung, C.-K.-S., MacKinnon, R.-K., Jiang, F.: Finding efficiencies in frequent pattern mining from big

uncertain data. World Wide Web. 20(3), 571-594 (2017)

Li, C., Yang, Q., Wang, J., Li, M.: Efficient mining of gap-constrained subsequences and its various
applications. ACM Trans. Knowl. Discov. Data. 6(1), 2:1-2:39 (2012)

Liao, V.-C.-C., Chen, M.-S.: DFSP: a depth-first SPelling algorithm for sequential pattern mining of
biological sequences. Knowl. Inf. Syst. 38(3), 623639 (2014)

Liu, C., Yao, L., Li, J., Zhou, R., He, Z.: Finding smallest k-compact tree set for keyword queries on graphs
using mapreduce. World Wide Web. 19(3), 499-518 (2016)

Lu, S., Li, C.: AprioriAdjust: an efficient algorithm for discovering the maximum sequential patterns. In:
Proc. 2nd Int’l Workshop Knowl. Grid and Grid Intell(2004)

Luo, C., Chung, S. M.: Efficient mining of maximal sequential patterns using multiple samples. In:
Proceedings of the 2005 SIAM International Conference on Data Mining, Society for Industrial and
Applied Mathematics, pp. 415-426(2005)

Pei, J.: Mining sequential patterns by pattern-growth: the PrefixSpan approach. IEEE Computer Society.
16(11), 1424-1440 (2004)

Pei, J., Han, J., Pinto, H.: PrefixSpan: mining sequential pattern efficiently by prefix-projected pattern
growth. In: 17th international conference on data. Engineering. 215-224 (2001)

Pinto, H., Han, J., Pei, J., Wang, K., Chen, Q., Dayal, U.: Multi-dimensional sequential pattern mining. In
CIKM Conference, pp. 81-88(2001)

Sabrina, P.-N.: Miltiple MapReduce and derivative projected database: new approach for supporting
prefixspan scalability. In: 2015 LE. International Conference on Data and Software Engineering, pp. 148—
153. IEEE (2015)

Shintani, T., Kitsuregawa, M.: Mining algorithms for sequential patterns in parallel: hash based approach.
In: Pacific-Asia Conference on Knowledge Discovery and Data Mining, Springer, Berlin, Heidelberg, pp.
283-294(1998)

SPME: http://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php

Srikant, R., Agrawal, R.: Mining sequential patterns: generalizations and performance improvements.
Advances in Database Technology — EDBT '96. 1057, 1-17 (1996)

Wang, X.: Parallel sequential pattern mining by transcation decompostion. The International Conference on
Fuzzy Systems and Knowledge Discovery. 4, 17461750 (2010)

@ Springer

http://lbsyun.baidu.com/
http://hadoop.apache.org/
http://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php

324

World Wide Web (2019) 22:295-324

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.
42.
43.
44,
45.

46.

47.

Wang, J., Han, J.: Bide:Efficientminingoffrequentclosedsequences. In: 20th International Conference on
Data Engineering, pp. 79-90. IEEE (2004)

Wang, J., Han, J., Li, C.: Frequent closed sequence mining without candidate maintenance. TKDE. 19(8),
1042-1056 (2007)

Wang, T., Zhang, D., Zhou, X., et al.: Mining personal frequent routes via road corner detection. IEEE
Trans. Syst. 46(4), 445-458 (2016)

Wei, Q.-Y., Liu, D., Duan, S.-L.: Distributed PrefixSpan algorithm based on MapReduce. In: 2012
International Symposium on Information Technology in Medicine and Education, pp. 901-904(2012)
Wu, C., Lai, C., Lo, Y.: An empirical study on mining sequential patterns in a grid computing environment.
Expert Syst. Appl. 39(5), 5748-5757 (2012)

Xin, J., Wang, Z., Chen, C., Ding, L., Wang, G., Zhao, Y.: ELM=: distributed extreme learning machine
with MapReduce. World Wide Web. 17(5), 1189-1204 (2014)

Xun, Y., Zhang, J., Qin, X.: FiDoop: parallel Mining of Frequent Itemsets Using MapReduce. IEEE
Transactions on Systems, Man, and Cybernetics: Systems. 46(3), 313-325 (2016)

Yan, X., Han, J., Afshar, R.: Clospan:Mining closed sequential patterns in large datasets. In: SDM
Conference, pp. 166—177(2003)

Yu, C.-C., Chen, Y.-L.: Mining sequential patterns from multidimensional sequence data. IEEE Trans.
Knowl. Data Eng. 17(1), 136-140 (2005)

Yu, D., Wu, W,, Zheng, S., Zhu, Z.: BIDE-based ParalleIMining of frequent closed sequences with
MapReduce. In: Proceedings of the 12th International Conference on Algorithms and Architecturesfor
Parallel Processing, pp.177-186(2012)

Yu, X,, Liu, J., Ma, C., Li, B.: A MapReduc reinforeced distirbuted sequential pattern mining algorithm.
Algorithms and Architectures for Parallel Processing. 9529, 183-197 (2015)

Zaharia, M., et al.: Spark: cluster computing with working sets. HotCloud, pp. 10-10(2010)

Zaharia, M., et al: Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster comput-
ing. In: Proceedings of the 9th USENIX conference on Networked Systems Design and Implementation,
USENIX Association(2012)

Zaki, M.: SPADE: an efficient algorithm for mining frequent sequences. Mach. Learn. 41(2), 31-60 (2001)
Zaki, M.J.: Parallel sequence mining on shared-memory machines. J. Parallel Distrib. Comput. 61(3), 401—
426 (2001)

Zhang, C., Hu, K., Liu, H.: FMGSP: an efficient method of mining global sequential pattern. In: 4th
International Conference on Fuzzy Systems and Knowledge Discovery, pp. 761-765(2007)

Zheng, Z., Wei, W., Liu, C., et al.: An effective contrast sequential pattern mining approach to taxpayer
behavior analysis. World Wide Web-internet & Web Information Systems. 19(4), 633-651 (2016)

@ Springer

	Scalable and parallel sequential pattern mining using spark
	Abstract
	Introduction
	Motivation
	Our work and contributions
	Organization

	Related work
	Sequential pattern mining
	Parallel mining of sequential patterns

	Preliminary
	Sequential pattern mining
	MapReduce and spark

	Parallelization of GSP
	GSP algorithm
	GSP-S
	Load balance
	Analysis

	Parallelization of prefixspan
	Prefixspan algorithm
	Prefixspan-S
	Load balance
	Analysis

	Expriment analysis
	Minimum support
	Load balance
	Speedup
	Scalability
	Analysis

	Conlusion and future work
	References

