
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. 13, NO. 2, APRIL-JUNE 2025 283

NegCPARBP: Enhancing Privacy Protection for
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Abstract—The emergence of Aging-Related Bugs (ARBs)
poses a significant challenge to software systems, result-
ing in performance degradation and increased error rates in
resource-intensive systems. Consequently, numerous ARB
prediction methods have been developed to mitigate these
issues. However, in scenarios where training data is limited,
the effectiveness of ARB prediction is often suboptimal.
To address this problem, Cross-Project Aging-Related Bug
Prediction (CPARBP) is proposed, which utilizes data from
other projects (i.e., source projects) to train a model aimed
at predicting potential ARBs in a target project. However,
the use of source-project data raises privacy concerns and
discourages companies from sharing their data. Therefore,
we propose a method called Cross-Project Aging-Related
Bug Prediction based on Negative Database (NegCPARBP)
for privacy protection. NegCPARBP first converts the fea-
ture vector of a software file into a binary string. Second,
the corresponding Negative DataBase (NDB) is generated
based on this binary string, containing data that is signif-
icantly more expressive from the original feature vector.
Furthermore, to ensure more accurate prediction of ARB-
prone and ARB-free files based on privacy-protected data
(i.e., maintain the data utility), we propose a novel negative
database generation algorithm that captures more infor-
mation about important features, using information gain
as a measure. Finally, NegCPARBP extracts a new feature
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vector from the NDB to represent the original feature vector,
facilitating data sharing and ARB prediction objectives. Ex-
perimental results on Linux, MySQL, and NetBSD datasets
demonstrate that NegCPARBP achieves a high defense
against attacks (privacy protection performance reaching
0.97) and better data utility compared to existing privacy
protection methods.

Index Terms—Aging-related bugs prediction, privacy
protection, negative database.

I. INTRODUCTION

PROLONGED operation of software systems can lead to
performance degradation and increased error rates, ulti-

mately resulting in system failures [1], [2]. This phenomenon,
known as software aging, has been observed in several systems
and fields such as operating systems, telecommunications sys-
tems, web servers, database systems, and embedded systems [3].
Software aging can cause serious damage, including economic
losses, damage to company credibility, compromised security,
increased maintenance costs, and potential risks to human lives
in extreme cases [4], [5]. Aging-Related Bug (ARB) is one
of the key factors that cause software aging, which can lead
to issues such as resource leaks, memory fragmentation, and
performance degradation, thereby exacerbating the degree of
software aging [6], [7]. Therefore, detecting and predicting
ARBs automatically is crucial, as it can help developers iden-
tify potential issues early and mitigate the effects of software
aging [1], [8].

Recent studies have explored the feasibility of using static
source code features to build machine learning models to pre-
dict ARBs [9], [10]. However, these methods mainly focus on
within-project ARB prediction, which requires a large amount of
training data to build models in order to perform well [1]. How-
ever, in practice, collecting the training data for ARB prediction
is challenging [6]. First, unlike many other types of software
bugs, ARBs often lead to the accumulation of errors, which may
eventually result in system failures, requiring prolonged execu-
tion times to observe [7], [10]. Second, ARBs account for a small
proportion of all analyzed bugs, necessitating the analysis of a
large number of bug reports to select ARBs, which increases the
difficulty of collecting a sufficient amount of training data [7],
[11]. Third, for projects in the initial development stage or for

2168-6750 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and similar technologies.
Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html

for more information.

Authorized licensed use limited to: Wuhan University. Downloaded on July 02,2025 at 12:41:55 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-4697-6901
https://orcid.org/0009-0005-3345-0627
https://orcid.org/0000-0002-0965-417X
https://orcid.org/0009-0009-9632-4678
https://orcid.org/0000-0002-3803-9600
https://orcid.org/0000-0002-4473-3068
mailto:zdd@whut.edu.cn
mailto:zhihuil@whut.edu.cn
mailto:fengji.zhang@my.cityu.edu.hk
mailto:jacky.keung@cityu.edu.hk
mailto:lei.liu@stu.xjtu.edu.cn
mailto:lei.liu@stu.xjtu.edu.cn
mailto:xiao.yu@zju.edu.cn
mailto:xiao.yu@zju.edu.cn


284 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. 13, NO. 2, APRIL-JUNE 2025

Figure 1. The process of CPARBP.

smaller companies, there may be insufficient historical data or
the cost of collecting training data may be high [6].

To overcome these challenges, several researchers [1], [6]
have proposed Cross-Project Aging-Related Bugs Prediction
(CPARBP), which involves training a model by using data from
source projects, and use it to predict ARBs in target projects.

Figure 1 shows the process of CPARBP. In the first phase,
software files are extracted from one or more other projects.
Moving on to the second phase, the software features and cor-
responding class labels (i.e., ARB-prone or ARB-free) of these
files are extracted. These two steps contribute to the construction
of a software ARB dataset. The third phase involves building
a CPARBP model using the constructed dataset. Finally, in
the fourth and fifth phases, after extracting the same software
features from the target software file, the CPARBP model trained
in the third phase is employed to predict the class label of the
target software file.

A. Motivation

CPARBP effectively resolves the issue of insufficient train-
ing data and demonstrates impressive defect prediction per-
formance [12], [13], [14]. However, the utilization of source-
project data also presents an increased risk of sensitive infor-
mation leakage, as highlighted in prior Cross-Project Defect
Prediction (CPDP) research [15], [16], [17], [18]. These pri-
vacy concerns often discourage companies from sharing their
data, especially when it involves sensitive features [15]. For
example, features such as lines of code, which measure the
size and complexity of a software program, can potentially
reveal business-sensitive information such as project develop-
ment efforts [19]. Additionally, features like McCabe’s com-
plexity that measure code complexity can inadvertently expose
sensitive proprietary logic or project intricacies [16]. Hence,
protecting the privacy of data owners is crucial for enabling data
sharing.

Currently, there is no relevant work on privacy protection
in the CPARBP field. However, several privacy protection
methods have been proposed for traditional CPDP, including
the perturbation-based MORPH method proposed by Peters
et al. [15], the LACE method based on generalization and
perturbation that outperformed MORPH in maintaining de-
fect prediction performance [16], LACE2 designed for security
concerns in multi-party CPDP scenarios [17], and the SRDO
method by Li et al. [18], which enhanced the LACE method

using sparse matrices and double perturbation. However, al-
though their methods exhibited relatively good privacy protec-
tion capabilities (with the best privacy protection rate being
0.95) in the experiments, they may not necessarily meet the
requirements of some scenarios with higher privacy protection
demands.

B. Our Work and Contributions

To enhance privacy protection, we propose a privacy protec-
tion method named NegCPARBP (Cross-Project Aging-Related
Bug Prediction based on Negactive Database).

NegCPARBP is inspired by the negative selection mechanism
in the field of artificial immune systems, which has the ability
to distinguish between self and non-self antigens. The NegC-
PARBP method involves three main steps: data preprocessing,
Negative DataBase (NDB) generation, and NDB data extraction.
First, we convert the feature vector of a software file into a
binary string. Second, we generate the corresponding NDB for
the binary string, where the NDB contains data that significantly
differs from the original feature vector. Furthermore, to maintain
data utility (i.e., the CPARBP models established based on
privacy-protected data can accurately predict ARB-prone and
ARB-free files), we propose a novel NDB generation algorithm
that can capture more information about important features for
CPARBP (measured by information gain). Finally, we extract
a new feature vector from the NDB to represent the original
feature vector for data sharing and ARB prediction purposes. In
our experiments, conducted on the Linux, MySQL, and NetBSD
datasets, we demonstrate that the probability of successfully
defending against attacks surpasses 0.97, which is better than
the performance of MORPH [15], LACE [16], and SRDO [18]
by 8.1%–10.9%, 8.4%–10.7%, and 7.2%–10.5%. Moreover,
compared to MORPH, LACE, SRDO, and the latest NDB gen-
eration algorithm QK-hidden, CPARBP models trained on data
processed by NegCPARBP achieve better PD (3.6%–1161.3%
higher than other methods), G-measure (0.5%–618.3%), and
Balance (0.7%–135.2%).

Our contributions are summarized as follows:
• We propose a novel privacy-preserving method called

NegCPARBP, marking the first attempt to introduce NDB for
generating privacy-preserving data intended for sharing and
ARB prediction.
•We propose a novel NDB generation algorithm named IK-

hidden, which can capture more information about important
features for CPARBP based on information gain.
• We conduct experiments on three datasets to compare the

privacy-preserving capability and data utility of our method with
three existing privacy-preserving methods in the CPDP domain
and the latest NDB generation method. Experimental results
demonstrate that our method achieves better privacy protection
and data utility.
•We have made the code of our work publicly available, in-

cluding the NDB generation and NDB data extraction program1.

1https://github.com/AtLeastIAmHere/IK-hidden.git
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C. Organization

The rest of this paper is organized as follows. Section II
introduces the background of CPARBP, related work for privacy
protection in CPDP, and the background of NDB. In Section III,
we describe the proposed method. In Sections IV and V, we
present the experimental setup and our experimental results.
Section VI discusses the impact of feature selection, highlights
the key findings of our study, and potential threats to the validity
of our study. Section VII concludes this work.

II. RELATED WORK AND BACKGROUND

This section introduces the existing CPARBP methods and the
privacy-preserving methods in CPDP. Meanwhile, we describe
NDB with its relevant applications in the security field in recent
years.

A. Cross-Project Aging-Related Bug Prediction

In recent years, numerous CPARBP methods have been pro-
posed. Qin et al. [12] introduced the TLAP (Transfer Learning
based Aging-related bug Prediction) method, which pioneered
the fusion of transfer component analysis with random over-
sampling to deal with the severe class imbalance issue in
cross-project scenarios. Subsequently, Qin et al. [6] additionally
investigated the ARBs prediction with the Apache HTTPD
server project using the TLAP method. The experimental re-
sults showed that the number of ARBs in susceptible files and
the similarity of their distribution can affect ARB prediction
performance. Wan et al. [1] proposed the SRLA (Supervised
Representation Learning Approach) method, leveraging deep
autoencoder techniques to enhance label-enriched representa-
tions and mitigate class imbalance through random oversam-
pling. Xu et al. [13] proposed the JDA-ISDA (Joint Distribution
Adaptation and Improved Subclass Discriminant Analysis)
method, which utilized JDA to jointly reduce marginal and
conditional distribution differences, and then applied ISDA to
alleviate severe class imbalance issues. Kaur et al. [14] achieved
CPARBP in cloud computing applications by automatically ex-
tracting and predicting ARBs. The results showed that the Naive
Bayes classifier can exhibit great performance when handling
imbalanced data.

B. Privacy Protection for Cross-Project Defect Prediction

Generally, data owners express concerns about the privacy
and security of their data. Currently, there is no research about
privacy protection for ARB data. However, research has been
conducted on privacy protection in traditional CPDP domain.

Peters et al. [15] proposed the MORPH method, which per-
turbed data using other data with the closest euclidean distance
but encountered challenges in maintaining the data utility for
defect prediction in some datasets. MORPH performed data
perturbation based on Formula (1),

x′ = x± (x− z)× r, (1)

where x represented the feature vector of the software file M,
z was the feature vector of that file closest to M which has a
different label, r was a randomly generated number within the

range of [0.15, 0.35], and x′ denoted the new feature vector of
M after processing, which replaced x for sharing purposes.

Peters et al. [16] proposed the LACE method, which combined
the newly proposed CLIFF data pruner and the MORPH method.
LACE starts by employing the CLIFF algorithm to remove a cer-
tain percentage of data from the original dataset. Subsequently,
it applies the MORPH method to perturb the remaining data.
CLIFF utilizes the approach introduced by Jalali et al. [20] to
calculate weights for each file, and removes the subset of data
with lower weights.

To enhance the privacy protection capabilities in multi-party
scenarios, Peters et al. [17] introduced the LACE2 method,
which integrated LeaF technology [21]. LeaF, based on the
leader-follower algorithm for data clustering, enabled a multi-
party environment where data owners can progressively incor-
porate “interesting” data into a shared private cache, leveraging
the existing content within the cache.

Additionally, Li et al. [18] proposed the SRDO method as
an improvement over LACE [16]. SRDO is similar to LACE
but improves the MORPH method. SRDO uses the CLIFF
method to remove some data with lower weights. Then the data
perturbation is performed using Formula (2),

x′ = x+ (x− zsame)× r1 − sign(r1)(x− zdiff )× |r2|,
(2)

where x and x′ have the same meaning as in Formula (1). The
values of r1 and r2 are randomly chosen from the range of
[−0.35, −0.15] or [0.15, 0.35]. zsame represents the feature
vector of that file closest to the software file M which has the
same class label, while zdiff represents the feature vector of
that file closest to the software file M which has a different class
label.

Additionally, SRDO applied the sparse representation tech-
nique [22], where a software file’s feature vector with T dimen-
sions is encoded as a sparse linear combination of dictionary
atoms. This technique is robust against noisy data and requires
solving the following optimization problem to achieve a sparse
representation:

min
µ≥0
||x−Bη||22 + μ||η||1, (3)

where B ∈ RT×n denoted the dictionary atoms, typically con-
structed using the feature vectors of the n training software files.
The parameter μ controlled the sparsity of the solution. The
coefficient vector η was sparse, containing only a few non-zero
values, where the feature vector, which is the most similar to x,
corresponds to the largest non-zero value.

Despite these advanced privacy protection methods for CPDP,
the level of privacy protection achieved may still fall short of
expectations.

C. Negative Database

The NDB is an information representation approach inspired
by the negative selection mechanism in the artificial immune
system. In the artificial immune system, the negative selection
mechanism is used to exclude data that is highly similar to known
patterns in order to highlight relatively rare or anomalous data.
Similarly, an NDB is constructed by excluding data from the
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TABLE I
AN EXAMPLE OF THE NDB WITH THE CORRESPONDING DB

universal set that is similar to known patterns, thus emphasizing
data with distinctive features or significantly differing from the
known patterns. The NDB is capable of storing the complement
of the original data and can perform operations similar to those
of the original database. Esponda et al. [23], [24] demonstrated
that attacking the NDB is equivalent to solving the boolean sat-
isfiability problem, which is known to be an NP -hard problem.
Therefore, utilizing the NDB can effectively prevent attackers
from directly accessing sensitive information, ensuring robust
data security.

To illustrate an example of the NDB, we consider a positive
database DB consisting of the two strings “001” and “010”.
Table I presents the corresponding NDB. In the case of binary
strings with a length of L=3, the size of the universal set
U={000, 001, 010, 011, 100, 101, 110, 111} is 2L (=8). By
excluding the original data “001” and “010” from this universal
set, we derive the U −DB={000, 011, 100, 101, 110, 111}.
Since the size of the NDB is usually large, compression becomes
necessary in practical applications. Compression is achieved
using the symbol ‘*’, allowing strings like “000” and “100”
to be compressed and represented as “*00”.

NDB is capable of representing the original data in an equiv-
alent manner and provides robust privacy protection. It has
demonstrated impressive performance across various fields,
such as data mining [25], secure multi-party computing [26],
and deep learning model [27].

Currently, the widely used generation algorithms for NDB
primarily consist of q-hidden [28], p-hidden [29], K-hidden [30],
and QK-hidden [25]. K-hidden utilized the parameters K and
[p1, p2, . . ., pK ] to control the hardness of the resulting NDB.
The QK-hidden improved the K-hidden algorithm by introduc-
ing a set of parameters [q1, q2, . . ., qL], which controlled the
probabilities of choosing bits when generating a specific type
of record. The parameters [q1, q2, . . ., qL] enabled QK-hidden to
capture more information about important bits for classification
and clustering.

III. OUR APPROACH

A. Overview

A software withT features can be represented asM = (x, y),
where x = (x1, x2, . . ., xT ) represents the feature vector of the
software file M and y is the class label (i.e., 1 represents ARB-
prone or 0 represents ARB-free). The primary objective of our
methods is to transform the feature vector x of each file in the
ARB dataset into a new feature vector x′. Since the new feature
vector x′ is challenging to reverse to the original feature vector

Algorithm 1: IK-Hidden.
Input: an m-bits string s; the number of specified bits in
record K; the number of features T; the length of the
binary representation of each feature L; a constant r; the
probability parameters p = [p1, p2, . . ., pK ],
q = [q1, q2, . . ., qL], and f = [f1, f2, . . ., fT ].

Ouput: NDBs.
1: NDBs ← ∅;
2: N ← m× r;
3: P = [P0, P1, . . ., PK ] : P0 ← 0, Pi ← p1 + · · ·+ pi;
4: Q = [Q0, Q1, . . ., QL]: Q0 ← 0, Qi ← q1 + · · ·+ qi;
5: F = [F0, F1, . . ., FT ] : F0 ← 0, Fi ← f1 + · · ·+ fi;
6: while(|NDBs|< N )
7: Initialize a record τ with m ‘*’;
8: rndp← random([0, 1));
9: Find type: Ptype−1 ≤ rndp < Ptype;

10: for idx from 1→ type:
11: rndf ← random([0, 1));
12: Find i: Fi−1 ≤ rndf < Fi;
13: Select the ith feature in τ ;
14: rndq ← random([0, 1));
15: Find j: Qj−1 ≤ rndq < Qj ;
16: Select the jth bit of the ith feature in τ ;
17: if this bit has been selected: goto to line 11;
18: else: Make the selected bit different from s;
19: end for
20: Randomly select other K − type bit(s) of τ to be
same with s;

21: NDBs ← NDBs ∪ τ ;
22: end while
23: return NDBs.

x, we can employ it to replace x for data sharing and ARB
prediction.

The NegCPARBP method consists of three main steps: data
preprocessing, NDB generation, and NDB data extraction.

1) In the data preprocessing phase, NegCPARBP employs
max-min normalization to scale all feature values of
a software file into the [0, 1] range. Subsequently, it
converts the decimal digits of feature values into binary
strings for feature representation. These binary strings
from all features are concatenated to create a new string
s.

2) In the second step, the NDB of the string s is generated
using our proposed IK-hidden algorithm.

3) Finally, we extract a new feature vector x′ from the NDB
to represent the software file M for data sharing and ARB
prediction.

B. IK-Hidden Algorithm

In most cases of ARB prediction, different features usually
have different impacts on the prediction performance and some
important software features contribute more to prediction per-
formance [10]. However, the latest NDB generation algorithm,
QK-hidden, treats all features equally, including some important
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features [25]. Therefore, the data utility of ARB datasets may
be compromised.

To solve the above problem, we make improvements to
the QK-hidden algorithm and propose a new NDB generation
algorithm, IK-hidden. We employ a set of new parameters
[f1, f2, . . ., fT ] to control the probability of selecting different
features, which can capture more information about important
features for CPARBP.

As shown in Algorithm 1, in IK-hidden, the input is the hidden
string s, the number of specified bits in record K, the number
of features T, the length of the binary representation of each
feature L, the parameter r which controls the size of NDBs,
and the probability parameters [p1, p2, . . ., pK ], [q1, q2, . . ., qL],
and [f1, f2, . . ., fT ]. The output is the negative database NDBs

of the hidden string s.
The following is the main flow of the IK-hidden algorithm:
1) Initialize NDBs as the empty set (Line 1), and initialize

the other parameters (Lines 2-5).
2) Randomly choose which type (the number of specified

bits in the record that are opposite to the hidden string s)
of the record to generate based on probability parameters
[p1, p2, . . ., pK ] (Lines 8-9).

3) Generate a record, where type bit(s) is/are randomly
selected based on probability parameters [f1, f2, . . ., fT ]
and [q1, q2, . . ., qL]. In this step, a random number rndf
is generated (Line 11). Next, a value of i such that
f1 + · · ·+ fi−1 ≤ rndf < f1 + · · ·+ fi is found (Line
12). Then, the ith feature is selected (Line 13), and the
jth bit of the ith feature is selected by [q1, q2, . . ., qL] in
the same way (Lines 14-16). If this bit has been selected
previously, then proceed to reselect the bit (Line 17). If
the bit has not been selected before, then set the selected
bit to be the opposite of the jth bit of the ith feature of
s (Line 18). This process is iterated until type different
bit(s) is/are chosen to construct the new record (Lines
10-19). The remaining K − type bit(s) is/are randomly
selected with the same probability for each bit (Line 20).
Finally, the record is added to NDBs (Line 21).

4) Repeat 2) and 3) until the size of NDBs reaches N.
For the parameter setting of [f1, f2, . . ., fT ], we employ the

classical information gain [31] calculation method to assess the
contribution of each feature to ARB prediction (i.e., identify
the important software features). Information gain measures
the reduction in entropy achieved by partitioning a dataset
based on a specific feature, aiding algorithms in selecting the
most informative splitting attributes [31]. Information gain is
defined as

IG(xi) = H(C)−H(C|xi), (4)

where xi is the ith feature of files, and C is the set of class labels
{0, 1}. And H() represents the entropy, which can bey defined
as

H(C) = −
∑
c∈C

P (c)× log2P (c) (5)

and

H(C|xi) = −
∑

a∈D(xi)

P (a)
∑
c∈C

P (c|a)× log2P (c|a), (6)

where P () represents the probability of a specific feature value
occurring within the dataset, and D(xi) is the set of values of
featurexi. If a feature consists of floating-point values, we divide
the range of values for that feature in the dataset into 10 intervals.
When computing information gain, values within each interval
are considered the same.

Meanwhile, the average information gain across all fea-
tures can be calculated by avgIG = 1

T

∑T
i=1 IG(xi). In the

IK-hidden algorithm, we establish the probability of selecting
each feature to satisfy fi = 2fj if IG(xj) < avgIG ≤ IG(xi),
where features with information gain values greater than or equal
to avgIG are chosen with double the probability compared to
those with information gain values less than avgIG. This step
selectively generates the bits of records in the NDB for different
features, allowing it to capture more information about important
features for CPARBP.

It is worth noting that the parameters [f1, f2, . . ., fT ] in the IK-
hidden algorithm only affect the probability of selecting certain
bits when generating a record of a specific type, and do not
impact the distribution of different types of records.

The distribution of records is determined by the parameters
[p1, p2, . . ., pK ] [30]. Specifically, it employs K parameters to
control the generation probabilities of K types of records, where
a type i record has exactly i bits that differ from the hidden
string (i.e., the original data). For each time to generate a
record, there is a probability pi that a type i record will be
generated. The probabilities [p1, p2, . . ., pK ] are ordered such
that p1 corresponds to the probability of generating a record
with one different bit, p2 for two different bits, and so on. To
make the generated NDBs difficult to reverse with respect to
the local search strategy, the parameters K and [p1, p2, . . ., pK ]
need to satisfy the hardness condition in (7) [30].

K∑
i=1

(K − 2i)pi > 0 (7)

C. Data Extraction

After generating NDBs of the hidden string s, the next step
is to perform data extraction on NDBs. The process for data
extraction is shown in Algorithm 2. In this algorithm, the input
consists of the NDB of a software file, denoted as NDBs, along
with the corresponding class label y. Then, we denote the length
of records in NDBs as m (Line 1), and initialize two counting
arrays, one and zero, with all elements set to 0 (Lines 2-3).
These two arrays serve the purpose of storing the frequency of
‘1’ and ‘0’ at each position across all records in NDBs (Lines
4-9). For each record in NDBs, if the jth bit in the record is
‘1’, the value of onej is incremented by 1 (Line 6). Similarly,
if the bit is ‘0’, the value of zeroj is incremented by 1 (Line
7). After processing all records, the final result of the counting
arrays one and zero is obtained. Then, the counting arrays, one
and zero, are concatenated to create data with 2m dimensions.
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Figure 2. The example of NegCPARBP.

Algorithm 2: Data Extraction.
Input: NDBs, class label y
Ouput: x′

1: m← length of record in NDBs;
2: Initialize one=[one1, . . . onem]=[0,..., 0];
3: Initialize zero=[zero1, . . . zerom]=[0,..., 0];
4: for each record in NDBs:
5: for j from 1→ m:
6: if record[j] == ‘1’: onej += 1;
7: if record[j] == ‘0’: zeroj += 1;
8: end for
9: end for

10: x′ = [one1, . . . onem, zero1, . . . zerom, y];
11: return x′.

The original class label y is also included in this new data (Line
10). The extracted privacy-preserving data, denoted asx′, is then
used to replace the original data for sharing and ARB prediction.

D. Example

In this subsection, we provide illustrative examples of the
NegCPARBP method and the IK-hidden algorithm to enhance
comprehension. The examples provided here are merely for the
convenience of readers to understand the algorithmic process.
Hence, we have omitted the steps for max-min normalization
and information gain calculation.

(1) NegCPARBP Method
First, we demonstrate the conversion process of the original

software file data into privacy-preserving data using the NegC-
PARBP method, as shown in Figure 2.

� We assume that the feature vector of a software file is
(x1, x2, x3) = (4, 1, 4), and the class label y is 0.

The NegCPARBP method first performs max-min normal-
ization on the feature vectors and converts them into binary
strings. In this example, we omit the normalization step
and directly convert the data (4, 1, 4) into binary strings
as (100, 001, 100). By concatenating these binary strings,
we obtain s = 100001100, as shown in step (a).

� Next, we generate the NDBs of the string s using the
IK-hidden algorithm. The detailed procedure of this step
will be provided in the IK-hidden algorithm example.

� For demonstration purposes, we set the parameter r (con-
trolling the size of NDB) to 1, yielding theNDBs depicted
in step (c). In the data extraction step, we count the number
of each bit (0 or 1) from each record in the NDBs. In the
example depicted in step (c), the last bit of the fourth record
is ‘1’, while the bits of other records are not ‘1’, resulting
in one9 = 1. The last bits of the third, fifth, and seventh
records are ‘0’, leading to zero9 = 3. Similar counting
procedures are applied to the other positions.

� Finally, in step (d), the one and zero arrays of length 9
are concatenated, and the original class label of the soft-
ware file is added. This concatenation produces privacy-
preserving data of length 2 × 9 + 1. This privacy-
preserving data will replace the original data for sharing
purposes, and it can effectively preserve the data utility
for ARB prediction while masking private values.

(2) IK-hidden Algorithm
Figure 3 shows an illustrative example of the IK-hidden

algorithm.
� In step (a), we start by generating a string consisting of

asterisks ‘*’ of equal length to the original string s.
� Moving on to step (b), we generate a random decimal

value, denoted as rndp, within the range of [0, 1). As-
suming the parameter K = 3 and p=[0.35, 0.5, 0.15],
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Figure 3. The example of IK-hidden.

given that rndp = 0.5, we determine that rndp falls within
the interval p1 ≤ rndp < p1 + p2, indicating type = 2
(Similarly, if the random number rndp falls within the
range [0, 0.35), i.e., 0 ≤ rndp < p1, the NegCPARBP
method will generate a record with one opposite bit and
two same bits. If rndp falls within the range [0.85,1), satis-
fying p1 + p2 ≤ rndp < p1 + p2 + p3, the NegCPARBP
method will generate a record with three opposite bits).
In the currently generated record, there are type=2 de-
termined bits that are opposite to the string s. Since K
= 3, indicating there are three determined bits in each
record, the remaining K − type (3− 2 = 1) determined
bit is the same as the string s. Apart from these three bits,
the remaining bits remain unchanged.

� In step (c), based on the number of features and the length
of the binary representation of each feature, we set T=3
and L=3. Assuming the information gain values for these
three features are [0.056, 0.244, 0.581], with an average
value of 0.297. Since only the information gain of x3

exceeds the average value, the probability parameter f3

for x3 is twice that of f1 and f2, and they sum up to 1,
thus resulting in f=[0.25, 0.25, 0.5]. According to the
work of [25], different bits in the binary representation
of features may capture varying information for classi-
fication. Since we set the same length L for the binary
representation of each feature, padding with zeros in the
higher bits for those shorter than L, we consider the data
information to be more concentrated in the lower bits.
Therefore, we set q=[0.5, 0.3, 0.2].
According to f=[0.25, 0.25, 0.5], we know that dur-
ing the random selection of features, the probability of
choosing the 1st, 2nd, and 3 rd feature is 0.25, 0.25, and
0.5, respectively. Suppose we randomly select the first
feature according to these probabilities. Then we need

to randomly select a bit in the first feature. q=[0.5, 0.3,
0.2] indicates that the probability of choosing the lowest,
2nd, and highest bit of this feature is 0.5, 0.3, and 0.2,
respectively. Suppose we randomly select the lowest bit
according to these probabilities (i.e., the third bit of the
string s). Since the third bit of s is ‘0’, the third bit in the
record will be set to ‘1’. Similarly, we follow this process
to generate another bit (e.g. the 8th bit) opposite to s in
the record. Since the 8th bit of s is ‘0’, the 8th bit of the
generated record will be set to ‘1’.

� In step (d), we randomly select K − type bits from the
remaining uncertain bits with equal probability. Here, the
K − type (3− 2 = 1) bit will be set to be the same as s.
For instance, we choose the 4th bit of the record to be the
same as the corresponding bit in the string s, which is ‘0’.

� Finally, as shown in step (e), the resulting record is added
to NDBs.

� We repeat steps (a-e) in Figure 3 until the number of
records in NDBs reaches N = m× r = 9, thereby com-
pleting the NDB generation for the original string s.

E. Privacy Protection Capability Analysis

According to the work of [27], we analyze the probability
of an attacker successfully attacking a single feature in the
file processed by the NegCPARBP method. We also provide a
comprehensive theoretical derivation of this process and outline
the calculation procedure.

Since the NDB is generated based on a probability distribu-
tion, reverse attacks could be conducted using Bayes’ theorem.
Therefore, we assume that the attacker has access to the en-
crypted dataset and is familiar with all the steps and parameters
of the IK-hidden algorithm to estimate the probability of suc-
cessfully compromising the target feature within the target file.
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From the attacker’s perspective, his goal is to obtain the original,
unprocessed value of a specific feature of a file. However, the
attacker can only access the parameters of the NegCPARBP
algorithm and the results of NegCPARBP, which are statistical
data ofNDBs, as illustrated in step (d) of Figure 2. The attacker
cannot access the intermediate data of the NegCPARBP method,
such as the specific details of each record in NDBs.

Therefore, based on the information available to the attacker,
we have developed the following attack model.

(1) Attack Method
First of all, the attacker can calculate a Pdiff [i][j] for the jth

bit of the ith feature in IK-hidden, which is the probability that
the jth bit of the ith feature is different from the hidden string s
when generating NDB records. According to the process of the
IK-hidden algorithm, we can find that Pdiff [i][j] is controlled
by the probability parameters fi, qj , and p=[p1, p2, . . ., pK ],
which can be calculated as Formula (8).

Pdiff [i][j] =
Ndiff [i][j]

Ndiff [i][j] +Nsame[i][j]
(8)

where Ndiff [i][j] denotes the expected number of bits different
from the hidden string s at the jth bit of the ith feature in the
NDBs, which can be calculated as Formula (9). Meanwhile,
Nsame[i][j] denotes the expected number of bits same to the
hidden string s at the jth bit of the ith feature in NDBs, which
can be calculated as Formula (10).

Ndiff [i][j] = m× r × fi × qj ×
K∑
k=1

pk × k (9)

Nsame[i][j] = m× r × T−1 × L−1 ×
K∑
k=1

pk × (K − k)

(10)

Additionally, Psame[i][j] is the probability that the jth bit
of the ith feature is the same as the hidden string s when
generating NDB records. It can be calculated as Psame[i][j] =
1− Pdiff [i][j]. The attacker can calculate the frequency of ‘0’
and ‘1’ in NDBs to guess the value of s[i][j] by (11).

s[i][j]

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0
(n0 > n1 and Psame[i][j] > Pdiff [i][j]) or

(n0 < n1 and Psame[i][j] < Pdiff [i][j])

1
(n0 < n1 and Psame[i][j] > Pdiff [i][j]) or

(n0 > n1 and Psame[i][j] < Pdiff [i][j])

rand{0, 1} otherwise,

(11)

where n0 is the number of records with ‘0’ at the jth bit of the
ith feature and n1 is the number of records with ‘1’ at the jth bit
of the ith feature in NDBs.

(2) Success Rate of the Attack
In this part, we calculate the success rate of the above attack

method.
Assume P (s[i][j] = 0) is the probability that the attacker

infers s[i][j] = 0 based on the observation that there are n0

records with ‘0’ at the jth bit of the ith feature and n1 records

with ‘1’ at the jth bit of the ith feature in NDBs, then it can be
calculated as:

P (s[i][j] = 0) =
1

1 +
(

T−1×L−1×∑K
k=1 pk×(K−k)

fi×qj×
∑K

k=1 pk×k

)n1−n0
. (12)

The following is the derivation process of the Formula (12).
Assume there are three events:

1) Event A0: The attacker infers that the jth bit of the ith
feature of the hidden string s is ‘0’ (i.e., s[i][j] = 0).

2) Event A1: The attacker infers that the jth bit of the ith
feature of the hidden string s is ‘1’ (i.e., s[i][j] = 1).

3) Event B: In NDBs, there are n0 records with ‘0’ at the
jth bit of the ith feature, and n1 records with ‘1’ at the jth
bit of the ith feature.

In Bayes’ theorem, the probability of the event “based on the
observation that there are n0 records with ‘0’ at the jth bit of
the ith feature, and n1 records with ‘1’ at the jth bit of the ith
feature in NDBs, the attacker infers that s[i][j] = 0” can be
represented as P (A0|B). The probability of the event “given
that the jth bit of the ith feature of the hidden string s is ‘0’,
obtaining n0 records with ‘0’ and n1 records with ‘1’ at the jth
bit of the ith feature in NDBs” can be represented as P (B|A0).

In NDBs, there are n0 + n1 records with the jth bit of the ith
feature being determined, either ‘0’ or ‘1’ (where NDBs has a
total of m× r records, and the remaining m× r − (n0 + n1)
records have the jth bit of the ith feature marked with the
compression symbol ‘*’). In the situation that event A0 is
observed (i.e. s[i][j] = 0), the jth bit of the ith feature is
chosen for constructing records n0 + n1 times when generating
the records of NDBs, where the probability of generating ’0’
and ‘1’ is Psame[i][j] and Pdiff [i][j] respectively at each time,
and we suppose this process satisfies the binomial distribution.
Therefore, the total number of cases generating n0 ‘0’s and
n1 ‘1’s is Cn0

n0+n1
(binomial coefficient), and the probability

P (B|A0) is Cn0
n0+n1

× (Psame[i][j])
n0 × (Pdiff [i][j])

n1 . Sim-
ilarly, P (B|A1) can be calculated as:

P (B|A1) = Cn1
n0+n1

(Psame[i][j])
n1 × (Pdiff [i][j])

n0 . (13)

Consequently, according to Bayes’ theorem, we can calculate
P (A0|B) as:

P (A0|B) =
P (A0)P (B|A0)

P (A0)P (B|A0) + P (A1)P (B|A1)
, (14)

where P (A0) and P (A1) represent the prior probability of the
attacker inferring that the jth bit of the ith feature of the hidden
string s is ‘0’ and ‘1’, respectively. In the case that the attacker
has no prior knowledge about the hidden string s, we assume
that from the attacker’s perspective, each bit follows a uniform
distribution, meaning that each bit has an equal probability of
being ‘0’ or ‘1’. Thus, the prior probabilities should be equal,
and we have P (A0) = P (A1) = 1/2.

Hence, we derive P (A0|B), representing P (s[i][j] = 0),
which simplifies to the form shown in Formula (12).
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Similarly, the probability of the jth bit of the ith feature of the
hidden string being ‘1’ can be calculated as:

P (s[i][j] = 1) =
1

1 +
(

T−1×L−1×∑K
k=1 pk×(K−k)

fi×qj×
∑K

k=1 pk×k

)n0−n1
. (15)

Therefore, if the actual value of the target feature s[i] is b, the
probability that the attacker successfully guesses s[i] according
to Formula (11) can be calculated by Formula (16):

P (s[i] = b) =

L∏
j=1

P (s[i][j] = b[j]), (16)

where b[j] represents the jth bit of the binary representation
of b.

The success probability can be used for evaluating the privacy
protection capability of NDBs.

IV. EXPERIMENTS SETUP

A. Research Questions

To examine the performance of data privacy protection and
the ability to maintain data utility (the capability to accurately
predict ARB-prone and ARB-free files) of the NegCPARBP
method, we organize the experiments based on the following
two Research Questions (RQs):

RQ1: Does NegCPARBP improve privacy protection capa-
bilities?

To assess the privacy-preserving capability of NegCPARBP,
we employ the methods detailed in Section E to simulate attacks
on the data protected by NegCPARBP, computing the probability
of our method successfully resisting attacks. Additionally, we
compare the privacy protection effectiveness of the proposed
IK-hidden method with three existing CPDP privacy-preserving
methods (MORPH [15], LACE [16], and SRDO [18]) and the
latest NDB generation method (QK-hidden [25]).

RQ2: Can NegCPARBP better maintain data utility compared
to existing methods?

We propose the NegCPARBP method, which transforms the
original feature vectorx of a software file into a new feature vec-
tor x′ to achieve privacy protection. To investigate whether the
data obtained by NegCPARBP can be effectively used to train an
ARB prediction model (i.e., maintain data utility), we compare
NegCPARBP with MORPH [15], LACE [16], SRDO [18], and
QK-hidden [25].

B. Dataset

The experiments are conducted on three datasets: Linux2,
MySQL3, and NetBSD4, renowned for their large, complex, and
long-running software systems. These datasets are widely used
for CPARBP in previous studies [1], [6]. Linux is a famous open-
source operation system. MySQL is a well-known database
with lots of users. NetBSD is a free and exceptionally portable

2Linux: http://www.kernel.org
3MySQL: http://www.mysql.com
4NetBSD: http://www.netbsd.org

TABLE II
THE DETAILS OF THE EXPERIMENTAL DATASETS

open-source operating system rooted in UNIX. The ARBs in
these datasets are all from long-running systems, which can lead
to performance degradation and eventual system crashes [1].

In Table II, “Files” represents the number of files in the dataset,
“ARB-prone files” signifies the total number of files that contain
ARBs, and “ARB-prone files%” denotes the percentage of files
that contain ARBs.

The datasets comprise 82 features, which can be divided
into four types: program size, McCabe’s complexity, Halstead
features, and aging-related features, as shown in Table III. Cotro-
neo et al. [10] defined the six aging-related features aimed at
enhancing ARB prediction performance, which are presented at
the end of Table III. Specifically, AllocOps and DeallocOps refer
to counts of memory allocation and deallocation operations,
respectively. DerefSet and DerefUse represent counts of pointer
variable dereferences during reading and writing operations.
UniqueDerefSet and UniqueDerefUse are used to measure the
unique dereference sets and use sets in the software, respectively.
A detailed description of all the features used in our study can
be found in [32].

C. Attack Strategies for Evaluating Privacy Protection
Baselines

To assess the privacy protection capabilities of MORPH,
LACE, and SRDO, the authors in [16], [18] employed the
Increased Privacy Ratio (IPR) [16] to calculate the probability
of the attacker obtaining the original value of a feature. A
higher IPR denotes superior privacy protection, with IPR=1
indicating resistance against all attacks and IPR=0 suggest-
ing vulnerable to any attack. In the process of calculating
the IPR, they divide feature values into 10 bins using Equal
Frequency Binning (EFB) [33]. Based on EFB, the target fea-
ture can be represented as S=[s1, s2, . . ., s10]. Given queries
Q = {q1, q2, . . ., q|Q|}, where qi represents an attack (i.e. query)
such as {Fknow1 = [1-2], Fknow2 = (4-6]}, and the IPR can be
calculated as Formula (17):

IPR = 1− 1
|Q|

|Q|∑
i=1

Breach(S,G∗i ), (17)

where G∗i is a group of subranges of target feature of files from
a dataset which matches the attack qi, and Breach(S,G∗i ) can
be calculated as Formula (18):

Breach(S,G∗i ) =
{

1, if smax(Gi) = smax(G
′
i),

0, otherwise,
(18)

whereGi is the group from the original data,G′i is the group from
the encrypted data, and smax(G

∗
i ) is the most common target

feature value in G∗i . For example, if G∗i = {[1-3], [1-3], (4-5]}
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TABLE III
THE SUMMARY OF FEATURES IN ARB DATASETS

represents the results of the ith attack returned from a dataset,
then smax(G

∗
i ) = {[1-3]}.

Thus, the process of an attack is as follows:
1) Given a set of features, F (i.e., all the features except for

the target feature and class label), and all their possible
subranges (created using EFB with 10 bins for each
attribute in the dataset), we randomly select k feature(s)
from F. For example, if k = 2, the selected features and
their respective subranges could be Fknow1 with {[1-2],
[4-9], (13-14]} and Fknow2 with {(4-6], (7-9]}.

2) Based on the original dataset, we randomly select a
file M . From its feature vector x, we identify the val-
ues corresponding to the selected features Fknow1 and
Fknow2. For example, if the feature vector x for file M
contains FM

know1 = 1 and FM
know2 = 4.5, then we have

F ′know1 = [1−2] and F ′know2 = (4−6].
According to this procedure, we generate the attack q =

{F ′know1 = [1−2], F ′know2 = (4−6]}. Suppose the attacker uses
the partially known feature values to search within the encrypted
data, satisfying the condition in the Formula (18) (i.e., the
interval for Ftarget searched by the attacker in the encrypted
data matches the interval for Ftarget obtained from the original
dataset using attack q), suggesting that the attack is successful.

We will use the methods mentioned above to test how well
MORPH, LACE, and SRDO protect privacy. At the same time,
we will apply the methods in Formulas (11), (12), (15), and (16)
to evaluate how well NegCPARBP protects privacy.

D. Evaluation Metrics

We employ four metrics, PD, PF, G-measure, and Balance, to
assess the ability to accurately predict ARB-prone and ARB-free
files, as these metrics are recommended for software engineering
tasks involving imbalanced data classification [34], [35], [36].

These metrics can be computed using the confusion matrix as
illustrated in Table IV. TP represents the number of predicted
ARB-prone files that are genuinely ARB-prone, while FP de-
notes the number of predicted ARB-prone files that are actually
ARB-free. FN records the number of predicted ARB-free files
that are genuinely ARB-prone, and TN records the number of
predicted ARB-free files that are truly ARB-free.

TABLE IV
THE CONFUSION MATRIX OF ARB PREDICTION

(1) PD (Probability of Detection) represents the proportion
of files correctly predicted as ARB-prone among those that are
actually ARB-prone:

PD =
TP

TP + FN
. (19)

(2) PF (Probability of False alarms) represents the proportion
of files incorrectly predicted as ARB-prone among those that
are actually ARB-free:

PF =
FP

FP + TN
. (20)

(3) G-measure is the harmonic mean of the proportions of
true positives (PD) and true negatives (1− PF ) within the total
samples:

G-measure =
2× PD × (1− PF )

PD + (1− PF )
. (21)

(4) Balance is determined by computing the euclidean dis-
tance from the actual (PF, PD) point to (0, 1), where the point
(PF=0, PD=1) represents the optimal position on the ROC
curve, indicating perfect ARBs recognition:

Balance = 1−
√
(0− PD)2 + (1− PF )2

√
2

. (22)

E. Statistic Test

The Wilcoxon signed-rank test [37] is a non-parametric sam-
ple test, which is used to compare pairs of results and is able
to compare the difference against zero. The null hypothesis
of the Wilcoxon signed-rank test posits that the methods have
no significant difference, with a predefined significance level
of 0.05. If the p-value is less than 0.05, the null hypothesis
is rejected, indicating that there exists statistical significance
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between the pairwise methods. Otherwise, the null hypothesis
cannot be rejected. Then if the test shows a significant difference,
we employ Cliff’s δ [38] to examine whether the magnitude of
the difference is of practical importance or not. The effect size
is considered negligible (0 <|Cliff’s δ | <0.147), small (0.147
≤ |Cliff’s δ | <0.33), medium (0.33 ≤ |Cliff’s δ | <0.474), or
large (|Cliff’s δ | ≥ 0.474), respectively. In summary, a method
performs significantly better or worse than another method, if
the p-value is less than 0.05 and the effect size is not negligible
based on Cliff’s δ. The difference between the two methods is
not of practical importance, if the p-value is not less than 0.05
or the p-value is less than 0.05 and the effect size is negligible
(less than 0.147) [39].

F. Experimental Design

(1) The NegCPARBP method normalizes and converts the
feature values of all files to the range [0, 1]. We multiply each
normalized feature value by 108, discard the decimal part to
convert it into an integer, and then represent it in binary with
a length of 27 bits. Since the datasets have T=82 features, the
length of string s is m = 82 × 27 = 2214. For the parameters
in IK-hidden, we set K=3, r=15, and p=[p1, p2, p3]=[0.752,
0.226, 0.022] as default, satisfying Formula (7) to make the
generated NDB difficult to reverse w.r.t the local search strategy.
Additionally, according to [25], we set qi = 2qj (1 ≤ i ≤ L/2,
L/2 <j ≤ L), while ensuring that

∑L
i=1 qi = 1.

(2) The experimental setup in this study follows the general
steps of cross-project experiments [6], where two datasets are
combined as a training set, and the remaining one serves as
the test set. To address data distribution disparities between the
training and test sets, as well as the class imbalance problem,
we apply the classic CPARBP method TLAP [6] with three
distinct classifiers, Naive Bayes (NB) [40], Support Vector
Machines (SVM) [41], and Random Forest (RF) [42]. TLAP
combines Transfer Component Analysis (TCA) with random
oversampling to alleviate data distribution differences and class
imbalance issues. Since the training and testing data come from
different projects with different data distributions, TCA mini-
mizes these differences by transforming the data into a common
feature space where they are more similar. This improves the
accuracy of predictions, and makes the model to generalize
better from the training data to the testing data. To mitigate
potential biases during hyperparameter tuning, we repeat the
entire process 10 times. These ten-run results are utilized for
statistical significance analysis using the Wilcoxon signed-rank
test [37] and Cliff’s δ [38]. The average of ten results is shown
in Tables VI, VII, VIII, and IX.

V. EXPERIMENTAL RESULTS

A. RQ1: Does NegCPARBP Improve Privacy Protection
Capabilities?

Methods: Following previous privacy protection studies [16],
[18], we design a simulated attack scenario to evaluate the re-
silience of our encrypted dataset against attacks. In this scenario,

we assume that the attacker possesses knowledge of the NegC-
PARBP algorithm and all its parameters, as well as access to
the encrypted dataset. Additionally, we assume that the attacker
has some knowledge of the original value (i.e., unprocessed
values) of a single feature F1 (i.e., F1 = valueF1 ) of a software
file M from the original dataset. The attacker’s objective is to
obtain (attack) the original value of another feature (referred
to as target feature Ftarget) of the file M from the encrypted
dataset. Therefore, the attacker undertakes the following steps:

1) The attacker needs to obtain the original values of the
feature F1 for all files in the encrypted dataset.

2) The attacker uses the knowledge that the file M has
F1 = valueF1 to find all files with F1 = valueF1 in the
encrypted dataset, resulting in files {M ′

1,M
′
2, . . .}.

3) The attacker retrieves the values of the target featureFtarget

from the files {M ′
1,M

′
2, . . .}.

In the above steps, each time the attacker obtains the original
value of a feature from the data encrypted by NegCPARBP, they
must perform an attack using Formulas (11), (12), (15), and (16).
In step 2, if the list of files obtained by the attacker contains
only one file (i.e., {M ′

1}), it indicates that the attacker can use
the original value of only one feature of the target file M for a
successful attack, representing the scenario, where the number
of known features required for the attack is k=1. If multiple files
in the encrypted dataset have the same value of feature F1, the
attacker cannot identify which file matches the target file M. At
this point, we assume the attacker knows the original value of
another feature F2 in file M. Then, the attacker simultaneously
uses both F1 and F2 to conduct attacks (representing the case
of k=2). If there are still multiple matching files even using two
known features, we consider that the attacker may need to know
the values of more features (representing the case of k>2) to
identify the target file M.

The probability of successfully attacking F1 (i.e., obtaining
the original values of the feature F1) can be represented as P1,
for F2 it is P2, and for F3 it is P3. Assuming the probability
of successfully attacking the target feature Ftarget is Ptarget,
the probability of successfully obtaining the original value of
the target feature of file M using the original value of a single
feature F1 can be calculated as P1 × Ptarget. Using two known
features, F1 and F2, the probability of a successful attack can be
calculated as P1 × P2 × Ptarget. Similarly, for all three, it can
be calculated as P1 × P2 × P3 × Ptarget.

Furthermore, we employ the method outlined in Formula
(17) to compute the privacy protection capabilities of three
CPDP privacy-preserving methods (MORPH, LACE, and
SRDO).

In simulated attacks, within CPDP datasets, attackers target
the “LineOfCode” feature according to [16], [18]. Correspond-
ingly, in CPARBP datasets, we set the “CountLineCode” feature
as the attacker’s target feature.

Result: We can draw the following conclusions from Table V:
1) When compared to the three methods (MORPH, LACE,

and SRDO) in CPDP, which achieve privacy protection
rates between 0.898 and 0.907, IK-hidden consistently
achieves privacy protection rates exceeding 0.97 across
various scenarios. Hence, it can be inferred that IK-hidden
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TABLE V
THE PRIVACY-PRESERVING CAPABILITIES OF MORPH, LACE, SRDO,

QK-HIDDEN, AND IK-HIDDEN

significantly enhances privacy protection compared to
MORPH, LACE, and SRDO.

2) When using IK-hidden and QK-hidden as NDB genera-
tion algorithms in the NegCPARBP method, the prob-
ability of effectively preventing attackers from access-
ing feature values consistently surpasses 0.97. Based
on the average privacy protection rates across the
three datasets, although the IK-hidden algorithm demon-
strates inferior privacy protection capability compared
to QK-hidden, its overall performance remains highly
satisfactory.

3) After processing with the IK-hidden method, it becomes
exceedingly difficult for attackers to obtain the orig-
inal value when the attacker uses one feature (k=1)
for simulating attacks, with privacy protection perfor-
mance reaching 0.973, i.e., the attacker fails 973 out
of 1000 attempts to access the original value of the
target feature in the target file. Meanwhile, when k=2
(0.995) or k=3 (0.998), the attack becomes even more
challenging. If the attacker simultaneously uses k fea-
tures for simulating attacks, the probability of success is
Ptarget × P1 × . . .× Pk. It is evident that the probability
of a successful attack will increase exponentially with
the number of features used by the attacker. Hence, the
IK-hidden method demonstrates robust privacy protection
effectiveness.

Answer to RQ1: While the privacy protection capability of
the IK-hidden algorithm is slightly lower than that of the
QK-hidden algorithm, it still exceeds 0.97. Moreover, our
method achieves better privacy protection capabilities than
existing privacy protection methods in CPDP (their privacy
protection capabilities range from 0.898 to 0.907).

B. RQ2: Can NegCPARBP Better Maintain Data Utility
Compared to Existing Methods?

Methods: We analyze the results of CPARBP using the origi-
nal data and five methods in terms of the four evaluation metrics

TABLE VI
THE PD VALUES OF THE SIX METHODS (ORIGINAL DATA, IK: NEGCPARBP
WITH IK-HIDDEN, QK: NEGCPARBP WITH QK-HIDDEN, MORPH, LACE,

AND SRDO) ON THE THREE DATASETS (LINUX, MYSQL, AND NETBSD)
UNDER THE THREE CLASSIFIERS (NB, SVM, AND RF)

TABLE VII
THE PF VALUES OF THE SIX METHODS ON THE THREE DATASETS UNDER

THREE CLASSIFIERS

TABLE VIII
THE G-MEASURE VALUES OF THE SIX METHODS ON THE THREE DATASETS

UNDER THREE CLASSIFIERS

under three classifiers. Tables VI, VII, VIII, and IX show the
detailed PD, PF, G-measure, and Balance values across Linux,
MySQL, and NetBSD datasets. The column “O” signifies using
the original training set without involving any privacy protection
process. The columns “IK” and “QK” represent NegCPARBP
methods with IK-hidden and QK-hidden algorithms, respec-
tively. Meanwhile, the columns “M”, “L”, and “S” correspond
to MORPH, LACE, and SRDO methods, respectively. Further-
more, the bold part represents the best value among all com-
parison methods. The results highlighted in green indicate that
IK-hidden performs significantly better than the corresponding
methods. Conversely, the results highlighted in red indicate
that IK-hidden is significantly worse than the corresponding
methods. For results without color annotation, IK-hidden is not
significantly better or worse than the corresponding methods.

(1) PD Result: As shown in Table VI, it is evident that the IK-
hidden method consistently demonstrates significantly better PD
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TABLE IX
THE BALANCE VALUES OF THE SIX METHODS ON THE THREE DATASETS

UNDER THREE CLASSIFIERS

values compared to the method using original data, except when
using the RF classifier on the Linux dataset. Across all three
classifiers, the average PD values of IK-hidden outperform that
of the original method by 15.7%–48.4%. Furthermore, the IK-
hidden method exhibits significantly better PD values compared
to MORPH, LACE, and SRDO. On the NB classifier, the average
PD value of IK-hidden across all three datasets surpasses those
of MORPH, LACE, and SRDO by 134.1%–1161.3%. Similarly,
on the SVM classifier, IK-hidden outperforms MORPH, LACE,
and SRDO by 143.7%–661.6%. On the RF classifier, IK-hidden
achieves an average PD value higher than those of MORPH,
LACE, and SRDO by 79.6%–684.5%. Compared to the QK-
hidden method, IK-hidden may exhibit lower PD values in some
cases, but its average performance across all three datasets is
superior to QK-hidden. Specifically, IK-hidden surpasses QK-
hidden by 11.2%, 3.6%, and 6.3% on the NB, SVM, and RF
classifiers, respectively.

(2) PF Result: For the PF metric, a higher value indicates
a higher likelihood of misidentifying ARB-free files as ARB-
prone. Therefore, lower PF values indicate better results. As
shown in Table VII, for the NB classifier, IK-hidden has the sec-
ond worst average PF value across the three datasets. IK-hidden
only significantly outperforms SRDO on Linux and is superior
to QK-hidden on both Linux and MySQL. In most other cases,
IK-hidden performs significantly worse. For the SVM classi-
fier, IK-hidden achieves the worst average PF value. IK-hidden
is only significantly superior to QK-hidden and MORPH on
MySQL. In most other cases, IK-hidden performs significantly
worse. For the RF classifier, IK-hidden achieves the third worst
average PF value. IK-hidden method demonstrates significant
superiority over the original method and SRDO on Linux, as
well as over the QK-hidden, MORPH, and SRDO on MySQL.
Additionally, IK-hidden exhibits no significant difference com-
pared to LACE across all three datasets. In other cases, IK-hidden
performs significantly worse on the RF classifier. Overall, across
all three datasets, IK-hidden consistently exhibits significantly
worse performance when compared to other methods.

(3) G-measure and Balance Result: In Tables VIII and IX,
the IK-hidden method consistently shows significantly better
G-measure and Balance values compared to the original method,
except when using the NB and RF classifiers on the Linux
dataset. Across all three classifiers, the average G-measure and
Balance values of IK-hidden outperform the original method

by 3.3%–20.7% and 2.3%–17.7%, respectively. Additionally,
IK-hidden exhibits significantly better G-measure and Balance
values compared to MORPH, LACE, and SRDO. On the NB
classifier, the average G-measure value of IK-hidden across
all three datasets outperforms those of MORPH, LACE, and
SRDO by 86.3%–618.3%, and the average Balance value of
IK-hidden outperforms those of MORPH, LACE, and SRDO
by 59.4%–125.4%. Similarly, on the SVM classifier, IK-hidden
outperforms MORPH, LACE, and SRDO by 73.4%–338.0%
on G-measure and surpasses MORPH, LACE, and SRDO by
50.3%–135.2% on Balance. On the RF classifier, IK-hidden
achieves an average G-measure value higher than those of
MORPH, LACE, and SRDO by 62%–409%, and achieves an
average Balance value higher by 42%–125%. Compared to the
QK-hidden method, IK-hidden exhibits lower G-measure or
Balance values in some scenarios, but its average G-measure
and average Balance performance across all three datasets are
superior to QK-hidden. Specifically, for G-measure, IK-hidden
surpasses QK-hidden by 12.5%, 0.5%, and 9.2% on NB, SVM,
and RF classifiers. For Balance, IK-hidden outperforms QK-
hidden by 11.2%, 0.7%, and 8.2% on the NB, SVM, and RF
classifiers, respectively.

(4) Summary: Although the IK-hidden method tends to predict
more ARB-free files as ARB-prone compared to other methods
based on the analysis of PF values, the primary objective of
CPARBP is to accurately identify ARB-prone files to enhance
system reliability. Therefore, when considering the combined
analysis of PD, PF, G-measure, and Balance, the increase
in PF value by the IK-hidden method is deemed acceptable.
Overall, in terms of maintaining data utility, we can conclude
that the IK-hidden method outperforms QK-hidden, MORPH,
LACE, and SRDO. The main reason for better data utility of
IK-hidden can be attributed to its negative database generation
process, which aims to generate the complement of the original
feature vector that can perform operations similar to those of the
original feature vector. In addition, IK-hidden can capture more
information about important features (measured by information
gain) for CPARBP. By doing so, it ensures that the overall
distribution and characteristics of the features in the original data
are preserved. This preservation of feature distribution ensures
that the privacy-protected data retains the essential information
for the accurate prediction of ARBs.

Answer to RQ2: NegCPARBP can better maintain data utility
compared to existing methods in terms of PD, G-measure,
and Balance.

VI. DISCUSSION

A. The Impact of Feature Selection

Since the ARB dataset contains 82 features to describe each
software file, there may be irrelevant or redundant features that
affect the accuracy of predicting software aging bugs. Therefore,
we use the feature selection method SVMF [43], which is shown
to perform the best among 22 feature selection methods for the
ARB dataset, according to Zhang et al.’s study [44]. Following
Zhang et al.’s approach, when using two datasets for training
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TABLE X
THE PD, PF, G-MEASURE, AND BALANCE VALUES WHEN TRAINING ON THE

DATASETS PROCESSED WITH SVMF AND THE NEGCPARBP

and another for testing, we apply SVMF separately to each
of the two training datasets. SVMF ranks features based on
their classification performance, with higher-ranked features
being considered more important. We select the top 20 features
from each of the two training datasets, and the union of these
features forms the final set selected by SVMF. We then apply
the NegCPARBP method to the feature-selected training set for
privacy protection. The test dataset is also restricted to these
selected features. We repeat the entire process 10 times. Table X
presents the average PD, PF, G-measure, and Balance values
when training on the datasets processed with feature selection
and NegCPARBP. These results are compared with those in
Section B, where feature selection is not used. In Table X, an
upward arrow indicates an increase in the metric value with
SVMF feature selection, while a downward arrow indicates a
decrease. Data highlighted in green indicate that using NegC-
PARBP together with SVMF significantly outperforms the case
without SVMF. Conversely, data highlighted in red indicate
that NegCPARBP with SVMF performs significantly worse
than NegCPARBP without SVMF. For methods without any
color annotation, NegCPARBP with SVMF shows no significant
difference in performance compared to NegCPARBP without
SVMF.

The PD values across all three classifiers decrease signifi-
cantly, with two exceptions: the PD values for the NB classifier
on the Linux dataset and the SVM classifier on the MySQL
dataset. The PF values for all three classifiers decrease, except
for the SVM classifier on the MySQL dataset, which shows
an increase. For G-measure and Balance, the values across all
three classifiers also decrease significantly, except on the Linux
dataset, where both metrics increase.

Overall, the results suggest that using the SVMF feature
selection method only improves the PD, G-measure, and Bal-
ance values for a small subset of datasets. The average PD,
G-measure, and Balance values across the three datasets de-
crease. The primary reason might be that retaining more fea-
tures helps NegCPARBP preserve greater data utility after
privacy protection. Therefore, we recommend not using fea-
ture selection and instead applying privacy protection to all
features.

B. Implications

The findings of our study offer several key implications.
(1) Enhancing Privacy Protection in Cross-Project ARB Data

Sharing: In an era where privacy concerns are increasingly
prominent, especially in cross-project ARB data sharing, NegC-
PARBP addresses these issues by generating privacy-preserving
data using an NDB generation algorithm. This method represents
an advancement in protecting sensitive information without
sacrificing data utility. Additionally, we suggest retaining all
software aging-related features in the training set rather than
performing feature selection, to maximize data utility.

(2) Practical Utility for Industry and Academia: For both
researchers and practitioners, the proposed method provides
a practical solution for maintaining high levels of data utility
while enhancing privacy. This makes NegCPARBP an appealing
choice for organizations reluctant to share cross-project data due
to privacy concerns, potentially fostering greater collaboration
and data exchange in the software industry.

(3) Foundation for Future Work: This study represents the
first application of the technique “negative representation of in-
formation” to the area of ARB prediction for privacy protection.
The experiments demonstrate both the privacy-preserving capa-
bilities and the data utility of the NegCPARBP method. Future
research can build on this approach, exploring enhanced NDB
generation techniques to further improve privacy protection and
data utility in ARB prediction scenarios.

C. Threats to Validity

(1) This study focuses on three well-known datasets: Linux,
MySQL, and NetBSD, which are commonly employed in pre-
vious research on CPARBP [1], [6]. However, we still cannot
ascertain the generalizability of our method to other datasets.
Future work should encompass testing our method on a broader
range of datasets.

(2) Classification is a pivotal research domain within machine
learning. In this paper, we employ three widely used classifiers
in the field of bug prediction: NB, SVM, and RF. These clas-
sifiers serve as foundational models in the CPARBP field, each
belonging to distinct categories: NB as a probabilistic model,
SVM as a margin-based model, and RF as a decision tree model.
However, the classifiers we utilized only represent a subset of all
possible classifiers; other unused classifiers may yield different
outcomes.

(3) We use PD, PF, G-measure, and Balance to evaluate the
methods used in this study. PD and PF provide a comprehensive
assessment of classifier performance on imbalanced datasets.
PD measures the classifier’s ability to detect positives, while
PF assesses the risk of false positives. G-measure, representing
the harmonic mean of the probabilities of correctly predicting
positive and negative classes, offers a comprehensive evaluation
of classifier performance, especially beneficial for datasets with
class imbalance. Balance is a performance metric that offers an
alternative perspective in assessing the classification ability of
imbalanced datasets by jointly considering PD and PF. Other
metrics utilized in software engineering are not reported in this
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work. We will continue to explore the performance of additional
metrics in future work.

(4) To generate NDBs by the NegCPARBP method, we pro-
pose an improved algorithm IK-hidden based on QK-hidden,
which involves some random factors. The randomness in the
algorithm may lead to variations in the experimental results,
affecting the reproducibility and generalizability of our findings.
Therefore, we conduct ten repetitions and utilize the mean result
of these ten runs as the experimental outcome. Additionally,
there are also random factors in the baseline methods. To
compare the effectiveness of different methods, we employ the
Wilcoxon sign-ranked test and Cliff’s δ on the results obtained
from ten runs of each method. These tests allow us to determine
whether a method exhibits statistically significant superiority
over others, providing valuable insights for method selection
and evaluation.

VII. CONCLUSION

Software aging and the associated risks, particularly ARBs,
emphasize the need for effective detection and prediction meth-
ods. CPARBP has been verified as a promising technique in
addressing source-project data limitations but it also raises pri-
vacy concerns when utilizing source-project data. Our proposed
method NegCPARBP introduces a novel approach inspired by
the negative selection mechanism to protect privacy during ARB
prediction. It preprocesses data, generates a Negative DataBase
(NDB) containing significantly different data from the original
feature vector, and extracts privacy-protected data for sharing
and ARB prediction. The experimental results demonstrate
NegCPARBP’s superiority over existing methods in achieving
high privacy protection rates while maintaining data utility for
ARB prediction. As privacy concerns continue to be paramount,
NegCPARBP offers a valuable contribution to safeguarding data
owners’ privacy in the context of CPARBP.
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