
Applied Soft Computing Journal 149 (2023) 110941

A
1

Contents lists available at ScienceDirect

Applied Soft Computing

journal homepage: www.elsevier.com/locate/asoc

A multi-objective effort-aware defect prediction approach based on NSGA-II
Xiao Yu a,b, Liming Liu a,c, Lin Zhu d, Jacky Wai Keung e, Zijian Wang f, Fuyang Li a,∗

a School of Computer Science and Artificial Intelligence, Wuhan University of Technology, Wuhan, China
b Wuhan University of Technology Chongqing Research Institute, Chongqing, China
c School of Cyber Science and Engineering, Wuhan University, Wuhan, China
d School of Computer, Wuhan Qingchuan University, Wuhan, China
e Department of Computer Science, City University of Hong Kong, Hong Kong, China
f School of Science, Wuhan University of Technology, Wuhan, China

A R T I C L E I N F O

Keywords:
Software defect prediction
Effort-aware
Defect density
Multi-objective optimization
Logistic regression

A B S T R A C T

Effort-Aware Defect Prediction (EADP) technique sorts software modules by the defect density and aims to
find more bugs when testing a certain number of Lines of Code (LOC). The existing EADP methods ignore
the number of required inspected modules and thus resulting in more testing cost. Therefore, we propose a
multi-objective effort-aware defect prediction approach based on NSGA-II named MOOAC for EADP, which
aims to maximize the Proportion of the found Bugs (PofB@20%) and minimize the Proportion of Module
Inspected (PMI@20%) when inspecting the top 20% LOC. MOOAC firstly trains a random forest classification
model. Then, it builds a logistic regression model, and utilizes the NSGA-II algorithm to generate the coefficient
vector of the model by maximizing the PofB@20% value and minimizing the PMI@20% value simultaneously.
In the model prediction phase, MOOAC firstly employs the built random forest classifier to decide whether
modules are defective. Next, the predicted defective modules are first inspected based on the ratio between
the predicted defect probability by the logistic regression model and LOC, which can make testers to find
more bugs and test as fewer LOC as possible. The clean modules are then inspected to reduce the Initial False
Alarms (IFA), if there is still the testing budget left. The results show that MOOAC exhibits the best overall
performance on the PofB@20% and PMI@20%. In other words, MOOAC enables testers to identify more bugs
per 1% module.
1. Introduction

With software systems scaling in size and complexity, it poses a chal-
lenge to release high-quality software within a limited testing period
and resource allocation [1–3]. The Software Defect Prediction (SDP)
technique can help software quality assurance teams find software
modules that may contain defects more quickly [4–6] and assist fault
localization [7–9]. Specifically, the SDP technique firstly extracts some
software features of historical software modules, e.g., Lines Of Code
(LOC) and code complexity. Then, it uses these features to build a
model and predicts the defect-proneness for new ones. Accurate predic-
tions can guide software testers place more emphasis on those predicted
defective software modules, and guide the allocation of limited testing
resources [10–13].

The existing methods for SDP can be primarily classified into two
categories: Classification-Based Defect Prediction (CBDP) and Effort-
Aware Defect Prediction (EADP). The CBDP technique treats the pre-
diction problem as a binary classification task and predicts the class

∗ Corresponding author.
E-mail addresses: xiaoyu@whut.edu.cn (X. Yu), liming.liu@whu.edu.cn (L. Liu), linzhu_cs@126.com (L. Zhu), jacky.keung@cityu.edu.hk (J.W. Keung),

zijian.w@hotmail.com (Z. Wang), fyli@whut.edu.cn (F. Li).

label of a new module (i.e., defective or clean). Therefore, software
testers may allocate equal testing resources to all predicted defective
modules. However, when the testing resources are not enough to
inspect all predicted defective modules, the CBDP technique cannot
provide the inspection priority. The EADP technique sorts modules by
the defect density, and provides guidance to software testers, directing
their attention towards prioritizing the inspection of software modules
exhibiting a higher density of defects. Consequently, EADP models aim
to detect more defects when testing a certain amount of LOC [14–16].
As an illustration, we provide a simple example to explain the benefit
of EADP compared with CBDP in Fig. 1.

Example 1. Suppose software testers need to test a newly developed
software system of 100 software modules (i.e., M1, M2, M3, . . . ,
M100) that contain 100,000 LOC totally. Due to the tight schedule,
the testers are only able to test a part of the code (e.g., 20% LOC
of the entire system). Therefore, they can build either a CBDP model
vailable online 17 October 2023
568-4946/© 2023 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.asoc.2023.110941
Received 13 June 2023; Received in revised form 4 October 2023; Accepted 8 Octo
ber 2023

https://www.elsevier.com/locate/asoc
http://www.elsevier.com/locate/asoc
mailto:xiaoyu@whut.edu.cn
mailto:liming.liu@whu.edu.cn
mailto:linzhu_cs@126.com
mailto:jacky.keung@cityu.edu.hk
mailto:zijian.w@hotmail.com
mailto:fyli@whut.edu.cn
https://doi.org/10.1016/j.asoc.2023.110941
https://doi.org/10.1016/j.asoc.2023.110941
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2023.110941&domain=pdf


Applied Soft Computing 149 (2023) 110941X. Yu et al.

o
a
t
t
i
M
E
a

1

m
t
o
A

I

Fig. 1. The difference of the CBDP model and EADP model.
r an EADP model based on historical software data to help them
llocate the limited testing resources. Suppose the CBDP model predicts
hat 30 modules with 25,000 LOC are defective. They cannot test all
he predicted defective modules and should determine which ones to
nspect first. However, they can test first several modules (i.e.,M9,M19,
1, . . . , and so on) in descending order of the density provided by the

ADP model, until 20,000 LOC are inspected. Thus, EADP can assist in
llocating the limited testing resources more efficiently.

.1. Motivation

Menzies et al. [17] proposed the ManualUp method that sorted
odules with fewer LOC first. Subsequently, Huang et al. [18] argued

hat more bugs could be found according to the recommended ranking
f ManualUp, but the precision value was low and the Initial False
larms (IFA) value was very high when testing the top-ranked modules.

Consequently, Huang et al. [18] proposed CBS+, which suggested
to first test those predicted defective modules based on the defect
density (i.e., the ratio between the predicted defect probability by the
classification model and LOC), and then test the clean ones. Recently,
Ni et al. [19,20] showed the superiority of CBS+ for cross-project EADP
and just-in-time EADP on JavaScript projects, respectively. However,
as software modules with more LOC have a higher probability of
being defective, CBS+ tends to rank modules with more LOC at the
top of the predicted ranking. Therefore, the Proportion of Module
nspected (PMI@20%) and IFA values are low, but the Proportion of the

found Bugs (PofB@20%) value suffers a corresponding decrease while
checking the top 20% LOC.

Example 2. Assume there are the 15 software modules in a given test
dataset, i.e., M1, M2, M3, . . . , M15. Suppose M1, M2, M3, M4, M5, M6,
and M7 are actually defective modules with 4, 2, 3, 2, 2, 2 and 2 bugs
respectively, and the remaining modules are actually clean. In addition,
the total LOC of these 15 software modules is 3000, among which the
LOC of M1, M2, M3, M4, M5, M6, M7, and M8 are 400, 600, 300, 200,
100, 300, 200, and 200 respectively, and the LOC of the rest of the
software modules are 100. Due to limited testing resources, software
testers can only test the top 20% LOC (i.e., 600 LOC). Assume there
are the 5 rankings of the software modules:

Ranking 1: M4, M1, M2, M3, M5, M6, M7, M8, M9, M10, M11, M12,
M13, M14, M15

Ranking 2: M4, M5, M6, M1, M2, M3, M7, M8, M9, M10, M11, M12,
M13, M14, M15

Ranking 3: M6, M3, M1, M2, M4, M5, M7, M8, M9, M10, M11, M12,
M13, M14, M15

Ranking 4: M2, M1, M3, M4, M5, M6, M7, M8, M9, M10, M11, M12,
M13, M14, M15

Ranking 5: M9, M10, M11, M12, M13, M5, M14, M15, M4, M7, M8,
M , M , M , M
2

6 3 1 2
Fig. 2 illustrates the detection status for each ranking, where the
blue box indicates the modules that need to be detected when testing
top 20% LOC with the corresponding ranking order, and the number
below each module denotes its number of defects.

ManualUp may produce the Ranking 5, which sorts these modules
in the ascending order of LOC. Therefore, according to the Ranking 5,
software testers require to detect 6 modules (PMI@20% = 6/15) and
can find 2 bugs (PofB@20% = 2/17), and the IFA value is high (=5).
CBS+ may produce the Ranking 4, which tends to sort these modules
with more LOC in the front of the ranking. Therefore, according to
the Ranking 4, software testers require to test 1 software module and
can find 2 bugs. According to the Ranking 1 and Ranking 3, software
testers need to test the same number of modules (=2) but can detect
more bugs based on the Ranking 1. According to the Ranking 1 and
Ranking 2, software testers can detect the same number of bugs (=6)
but need to inspect fewer modules based on the Ranking 1. In a recent
study by Huang et al. [18], an investigation was conducted to assess
the influence of detecting an excessive number of changes or modules.
The participants in the study consisted of professional developers with
experience in code review, and a total of 54 replies were collected.
The findings revealed that frequent context switches between changes
or modules imposed additional effort costs associated with inspecting
a wider range of affected files, managing conflicts or dependencies,
and localizing bugs. In other words, using the EADP model to detect a
higher number of modules requires additional effort and yields inferiors
results. Therefore, Ranking 1 is better than Ranking 2. In summary,
Ranking 1 is the best ranking of software modules among the five ones,
which can guide testers to detect more bugs in fewer software modules
while checking the top 20% LOC.

Therefore, the main objective of EADP is finding more bugs and
inspecting as fewer modules as possible, when testing a specific
number of lines of code.

However, current methods treat EADP as either a simple classifi-
cation or regression problem. For example, CBS+ [18], EATT [21],
CBS+(DF) [22], and EASC [19,20] consider EADP as a binary clas-
sification task, distinguishing between defective and clean modules,
and then combine the classification probabilities with LOC to calculate
defect density. The optimization objective is to maximize the accuracy
of the classifier. Conversely, EALR [23] considers EADP as a regression
task, where it employs a linear regression model to compute the defect
density for modules. In this scenario, the main optimization goal shifts
towards minimizing the Mean Squared Error (MSE) of the regression
model. They do not take into account the number of modules that need
to be inspected.

1.2. Our work and contributions

Therefore, we propose a multi-objective effort-aware defect pre-
diction approach called MOOAC (Multi-Objective Optimization After
Classification). In the model construction phase, MOOAC firstly trains a
random forest classification model based on all training modules. Then,
it builds a logistic regression model based on all defective modules and



Applied Soft Computing 149 (2023) 110941X. Yu et al.

o
t
o
F
P
v
r
t
r
p
L
N
t
L
m
T
d
p

p
(

R

f
e
E
m
a
r

R
M

p
v

Fig. 2. The explanation of Example 2.
utilizes the multi-objective optimization algorithm (i.e., Non-dominated
Sorting Genetic Algorithm-II, NSGA-II [24]) to generate a set of Pareto
ptimal solutions by maximizing the PofB@20% value and minimizing
he PMI@20% value simultaneously while testing a certain number
f LOC. Each solution represents a coefficient vector for the model.
inally, MOOAC chooses the coefficient vector that achieves the highest
ofB/PMI@20% value among the 10 highest PofB@20% coefficient
ectors on the training data as the coefficient vector for the logistic
egression model. In the model prediction phase, MOOAC firstly uses
he built random forest model to predict the defect-proneness. Then, it
anks those predicted defective modules based on the ratio between the
redicted defect probability by the built logistic regression model and
OC, which can help testers inspect fewer modules and find more bugs.
ext, it sorts those predicted clean modules based on the ratio between

he predicted defect probability by the built random forest model and
OC. Finally, MOOAC incorporates a strategy wherein ranked clean
odules are appended to the tail of the ranked defective modules.
his approach guides testers to prioritize the inspection of predicted
efective modules, aiming to minimize IFA value during the testing
rocess.

Based on the aforementioned method, our research process and ex-
eriment can be condensed into the following five Research Questions
RQs):

Q1: Does MOOAC outperform the state-of-the-art EADP methods?
In order to validate whether MOOAC can detect more bugs and test

ewer modules simultaneously, we evaluate MOOAC against the seven
xisting EADP methods, i.e., CBS+ [18], ManualUp [25], EALR [23],
ATT [21], CBS+(DF) [22], EASC [19,20] and NSGA-II [24], which
ainly focus on finding more bugs within a certain amount of LOC,

nd use 11 software projects with 41 releases from the PROMISE
epository [26].

Q2: Does the data imbalance problem affect the performance of
OOAC?

The previous studies [11,27–32] showed that the class imbalance
roblem degraded the performance of CBDP models, and Tantithamtha-
orn et al. [33] found Random Under Sampling (RUS) and an auto-

tuning parameter version of SMOTE (SMOTEDE) can perform better
than four data re-sampling methods on 101 defect datasets. Since
SMOTEDE needs to choose an evaluation metric as the optimization
objective, but we employ several evaluation metrics to assess EADP
models comprehensively. If we solely optimize PofB@20%, it may
result in an increase in the PMI@20% and IFA values of the models. As
a result, we focus solely on investigating whether RUS could improve
the performance of EADP models.

RQ3: Does the underlying classifier of MOOAC affect the perfor-
mance of MOOAC?
3

We use random forest as the underlying classifier of MOOAC to
distinguish modules into defective and clean ones. The previous stud-
ies [34–36] pointed out that different classification algorithms affect
the performance of CBDP models. If we select a different classification
algorithm embedded in MOOAC, the performance of MOOAC will also
be different. Therefore, we explore the effect of the underlying classifier
on the performance of MOOAC.

RQ4: Does the defective threshold to distinguish the defective and
clean modules affect the performance of MOOAC?

In MOOAC, the testing dataset is partitioned into two sets (i.e,
predicted defective set and clean set), with the latter appended after
the former in the final ranking. The defective threshold in the random
forest model directly affects the composition of above two datasets. A
high threshold value may lead to a small number of modules being
predicted as defective, and the defect probability predicted by the
logistic regression model cannot accurately represent the detection
priority between truly defective modules and those falsely predicted
as clean due to the high threshold value. Conversely, a low threshold
value may result in a large number of truly clean modules with low
LOC being ranked at the forefront of the ranking. Therefore, to assess
the defective threshold’s impact, we compare MOOAC’s performance
using different thresholds to distinguish between defective and clean
modules.

RQ5: Does the model training strategy affect the performance of
MOOAC?

On a more detailed level, numerous training strategy factors might
influence MOOAC’s performance. For example, the type of model em-
ployed to compute defect density in defective modules (linear regres-
sion or logistic regression), the composition of the training dataset
(solely containing truly defective modules or all modules), and the
parameter selection approach for the model, all have the potential
to impact performance. Therefore, we conduct separate comparative
analyses regarding these three aspects of MOOAC’s performance to
attain the best possible results.

The result shows that (1) Although ManualUp, EATT, and NSGA-
II can find more bugs than MOOAC, they produce lots of initial false
alarms and are not accepted by software testers [37,38]; (2) MOOAC
has an average improvement of CBS+ by 12.82%, EALR by 6.21% and
EASC by 31.06% in terms of PofB@20%. Moreover, MOOAC achieves a
substantial reduction in the average PMI@20% value compared to the
baseline methods except for EASC, ranging from 22.45% to 72.34%. (3)
MOOAC exhibits the best overall performance on the PofB@20% and
PMI@20%. In other words, MOOAC enables testers to identify more
bugs per 1% module.

The contributions of this work are summarized as follows:
∙ We argue that the main goal of EADP should be not only finding

more bugs but also inspecting as fewer modules as possible, while
testing a certain number of LOC.



Applied Soft Computing 149 (2023) 110941X. Yu et al.
Fig. 3. The process of the MOOAC model.
∙ We propose a multi-objective effort-aware defect prediction ap-
proach based on NSGA-II for EADP, which aims to maximize the found
bugs and minimize the required inspected modules simultaneously
when testing a certain amount of LOC. To the best of our knowledge,
this is the first attempt to introduce multi-objective optimization to
address the problem that the existing EADP methods ignore the amount
of required inspected modules.

1.3. Organization

The remainder of this paper is organized as follows. The proposed
MOOAC method is detailed in Section 2. Sections 3 and 4 introduce the
experiment setup and results. Section 5 introduces the threats to valid-
ity. The related works about EADP and multi-objective optimization for
CBDP are discussed in Section 6. Finally, we address the conclusion in
Section 7.

2. Our approach

2.1. Overview

The MOOAC process contains the following four phases as illus-
trated in Fig. 3. In the first phase, software modules are extracted
from the historical software repository. Subsequently, the software
features x 𝑖 and defect number y 𝑖 are extracted in the second phase.
Consequently, a software module M 𝑖 can be represented as (x 𝑖, y 𝑖). The
whole training dataset containing n modules could be denoted as D =
(M1, M2, . . . , M𝑛). Thirdly, the process of model construction is divided
into two parts. The first part involves the construction of a random
forest model, where the model is trained on D to distinguish between
defective and clean modules. The second part involves the construction
of a logistic regression model, which is exclusively trained on the
defective dataset. The NSGA-II [24] is employed to optimize the model
parameters, providing the ranking results for defective modules. The
integration of these two models constitutes the MOOAC model. In the
last phase, we employ the trained MOOAC model to predict the defect
densities of the new software modules based on the extracted features,
then sort the modules according to the predicted values. The specific
process of model prediction is elaborately presented in Algorithm 2.

2.2. Model construction

In the model construction phase, MOOAC firstly builds a random
forest classifier based on the training dataset S containing all software
modules to distinguish the testing modules into defective and clean
ones. To achieve this binary classification, we adjust the labels of the
4

training set. In particular, those modules that have a number of defects
greater than 0 are labeled as defective, whereas those with a number
of defects equal to 0 are labeled as clean.

Chen et al. [39] and Huang et al. [18,40] have highlighted that the
relationship between defect density and software features may not be
linear. Therefore, MOOAC then builds a logistic regression model:

𝑦 = 𝑓 (𝒘,𝒙) = 1
1 + 𝑒−(𝑤1𝑥1+𝑤2𝑥2+⋯+𝑤𝑑𝑥𝑑 )

, (1)

where x = (x1, x2, . . . , x𝑑) represents the software feature vector of
a software module, w = (w1, w2, . . . , w𝑑) is the coefficient vector of
the logistic regression model, and y denotes the predicted defect prob-
ability of the module. Training the model is to learn from the training
dataset to obtain the coefficient vector w. Once w is fixed, the logistic
regression model is learned. In our study, we wish to maximize the
PofB@20% and minimize the PMI@20% simultaneously when testing
the top 20% LOC. To solve the above-mentioned optimization prob-
lem, we use the genetic algorithm to estimate the coefficient vector,
more specifically, a multi-objective optimization algorithm (i.e., NSGA-
II [24]). We choose the genetic algorithm because it constitutes a
widely recognized search technique employed to ascertain precise or
approximate solutions for optimization problems and is commonly
adopted by researchers in the realm of software engineering and artifi-
cial intelligence [41,42]. This algorithm transforms the solution within
a search domain into a chromosome format, facilitating the search for
optimal solutions. To elaborate further, due to NSGA-II’s proven effec-
tiveness in multi-objective optimization, we have chosen the NSGA-II
algorithm to achieve our desired objectives for the MOOAC.

Definition 1 (Pareto Dominance [24]). Assuming that w𝑖 and w𝑗 are
two feasible coefficient vectors, and we call w𝑖 dominates w𝑗 if and
only if one of the following criteria is satisfied:

(1) PofB(w𝑖) > PofB(w𝑗) and PMI(w𝑖) ≤ PMI(w𝑗),
(2) PofB(w𝑖) ≥ PofB(w𝑗) and PMI(w𝑖) < PMI(w𝑗),

where PofB(w𝑖) is the PofB value on the given dataset according to
the prediction result of the logistic regression model with w𝑖 as the
coefficient vector, and PMI(w𝑖) is the PMI value on the given dataset
according to the prediction result with w𝑖 as the coefficient vector.

Definition 2 (Pareto Optimal Solution [24]). A feasible coefficient vector
w is a Pareto optimal solution, if and only if no other feasible coefficient
vector dominates w.

Definition 3 (Pareto Optimal Set [24]). The set consisting of all Pareto
optimal solutions is called the Pareto optimal set.



Applied Soft Computing 149 (2023) 110941X. Yu et al.

E
c
i
s
3
s
t
A
w
d
s
t

c
t
m
f
a
p
I
p
h

E
B
t

t
m
s
m
u
(
p
i
a
e
t
o
o
o
T

w
t
a
l
p
=
v
t
o
t
o

p
d
d
i
a
l
e
M
p
a
f

u
p
t
c
m
a
a

Fig. 4. The PofB@20% and PMI@20% values of the five feasible solutions.

xample 3. Suppose that w1, w2, w3, w4, and w5 are five feasible
oefficient vectors of the logistic regression model, and the correspond-
ng five models with the five vectors predict the ranking of the fifteen
oftware modules in Example 2 as Ranking 1, Ranking 2, Ranking
, Ranking 4, and Ranking 5 as shown in Example 2. Suppose that
oftware testers require to inspect the top 20% LOC, and Fig. 4 shows
he PofB@20% and PMI@20% values of the five feasible solutions.
ccording to Definition 1, w1 dominates w2 and w3, and w4 dominates
5. In addition, w1, w2, and w3 dominate w5, while w1 does not
ominate w4. In this example, both w1 and w4 are both Pareto optimal
olutions, and these two coefficient vectors form the Pareto optimal set
ogether.

In general, the NSGA-II algorithm returns a Pareto optimal set
ontaining multiple Pareto optimal solutions. Therefore, MOOAC needs
o select one Pareto optimal solution to build the logistic regression
odel. Since the primary objective of EADP is to find more bugs, we

irst choose ten coefficient vectors from the Pareto optimal set that
chieve the highest PofB@20% value according to the ranking results
redicted by the logistic regression model for inspecting more bugs.
n addition, we hope software testers can inspect as fewer modules as
ossible, so we finally choose the coefficient vector that achieves the
ighest PofB/PMI@20% value among the 10 coefficient vectors.

xample 4. The Pareto optimal set includes w1 and w4 in Example 3.
ecause PofB/PMI@20%(w1) > PofB/PMI@20%(w4), we select w1 as
he final coefficient vector.

Algorithm 1 describes the process of using NSGA-II to determine
he coefficient vector for a logistic regression model using defective
odules as the training set S𝑑 , since the model is used in the prediction

tage to predict the defect probability for only predicted defective
odules. The algorithm begins by randomly generating an initial pop-
lation of p solutions, each of which is a feasible coefficient vector
Line 1). Then, the population evolution process generate an offspring
opulation, denoted as P1 (Line 2). This is followed by a series of
terations, where the current population undergoes selection, crossover,
nd mutation operations at each iteration to generate a new gen-
ration of population. Specifically, the selection operation combines
he previous and newly generated populations and selects a subset
f p solutions to form the new population (Line 5). The crossover
peration is then performed on the selected solutions with a probability
f p𝑐 , which results in the modification of the genes of the solutions.
he mutation operation randomly changes the genes of the solutions
5

d

ith a small probability, p𝑚 (Line 7). The algorithm ultimately returns
he coefficient vector w, which achieves the highest PofB/PMI@20%
mong the 10 highest PofB@20% coefficient vectors to construct the
ogistic regression model (Lines 9–10). The parameters are as follows:
= 200, t𝑚𝑎𝑥 = 400, coefficients 𝒘 ∈ [−10, 10], p𝑐 = 0.7, and p𝑚
0.053. Preliminary experimentation suggests that augmenting the

alues of p and t𝑚𝑎𝑥 does not notably enhance the effectiveness of
he MOOAC. Similarly, modifications to the crossover and mutation
perator probabilities have been found to have little to no impact on
he performance of MOOAC. Therefore, the default settings for these
perators are utilized in the experimental study.

Algorithm 1 Estimation of w
Input: All defective modules, S𝑑

Number of coefficient vectors in a population, p
Number of maximal generation, t𝑚𝑎𝑥
Probability of crossover operator, p𝑐
Probability of mutation operator, p𝑚

Output: w
1: P0 = p generated solutions randomly;
2: Create an offspring population P1 using P0;
3: t = 2;
4: while t < t𝑚𝑎𝑥 do
5: Select p solutions P𝑡 from P𝑡−1 and P𝑡−2;
6: P𝑡 = crossover(P𝑡) with the probability p𝑐 ;
7: P𝑡 = mutation(P𝑡) with the probability p𝑚 ;
8: t = t + 1;
9: Select the solution w which achieves the highest
PofB/PMI@20% among the 10 highest PofB@20%
coefficient vectors in P𝑡;
10: return w;

2.3. Model prediction

MOOAC firstly uses the built random forest model to predict the
probability of each software module M 𝑗 in the testing dataset (i.e.,
𝑃𝑟𝑜𝑏_𝑅𝐹 (𝑴 𝑗 )), and divides all software modules into two sets. The
Defective_Set contains the predicted defective modules whose defect
probabilities are larger or equal to 0.5 (e.g., M19, M31, . . . , M2), while
the Clean_Set contains the predicted clean ones (e.g., M92, M78, . . . ,
M3). Then, MOOAC employs the different ranking strategies on the two
sets as shown in Fig. 5.

We prioritize predicted defective modules in the 𝐷𝑒𝑓𝑒𝑐𝑡𝑖𝑣𝑒_𝑆𝑒𝑡 by
lacing them at the forefront of the ranking. Depending solely on the
efect probability 𝑃𝑟𝑜𝑏_𝑅𝐹 generated by the random forest model to
etermine the detection priority for the defective modules falls short
n meeting the objectives of maximizing the number of detected bugs
nd minimizing the number of detected modules. To address this, we
everage the constructed logistic regression model to provide a more
ffective detection priority for defective modules. It sorts each module
𝑗 in the Defective_Set based on the ratio between the predicted defect

robability by the built logistic regression model (i.e., 𝑃𝑟𝑜𝑏_𝐿𝑅(𝑴 𝑗 ))
nd its LOC, which can guide testers find more bugs and inspect as
ewer modules as possible.

If any budget remains after inspecting all predicted defective mod-
les in 𝐷𝑒𝑓𝑒𝑐𝑡𝑖𝑣𝑒_𝑆𝑒𝑡, software testers may need to inspect a few
redicted clean modules at the beginning of 𝐶𝑙𝑒𝑎𝑛_𝑆𝑒𝑡. However, as
he logistic regression model is only trained on truly defective data, it
annot prioritize clean modules. Similar to CBS+ [18], we rank each
odule M 𝑗 in the 𝐶𝑙𝑒𝑎𝑛_𝑆𝑒𝑡 based on the ratio between 𝑃𝑟𝑜𝑏_𝑅𝐹 (𝑴 𝑗)

nd its LOC. Finally, the software modules in the Clean_Set is appended
t the end of the modules in the Defective_Set. In this way, the predicted

efective modules will be inspected first to reduce the IFA value.



Applied Soft Computing 149 (2023) 110941X. Yu et al.

b

𝑃

t
(
b
w
t
d

3

3

c
t
s
P
n
(
a
m
v
t

m
t

b

𝑃

Fig. 5. The ranking strategy of MOOAC.

Algorithm 2 The prediction process of MOOAC
Input: Built random forest model, RF

Built logistic regression model, LR
Testing dataset, S𝑡𝑒𝑠𝑡

Output: Module ranking, RankList
1: LOCList = extract(S𝑡𝑒𝑠𝑡);
2: for module M 𝑗 in S𝑡𝑒𝑠𝑡:
3: Prob_RF(M 𝑗 ) = RF (M 𝑗);
4: DefectiveSet, CleanSet = separate(S𝑡𝑒𝑠𝑡, Prob_RF);
5: for module M 𝑗 in Defective_Set :
6: Prob_LR(M 𝑗 ) = LR(M 𝑗);
7: DefectiveRank = rank(Prob_LR, LOCList);
8: CleanRank = rank(Prob_RF, LOClist)
9: RankList.append(DefectiveRank, CleanRank);
10: return RankList ;

Algorithm 2 describes the prediction process of MOOAC. It begins
y extracting the LOC of each module from the testing dataset (S𝑡𝑒𝑠𝑡)

(Line 1). Then, to distinguish between defective and clean modules,
all modules in S𝑡𝑒𝑠𝑡 are inputted into the built random forest model
RF to calculate their corresponding defect probability 𝑃𝑟𝑜𝑏_𝑅𝐹 . Sub-
sequently, S𝑡𝑒𝑠𝑡 is split into Defective_Set and Clean_Set according to the
𝑟𝑜𝑏_𝑅𝐹 (Lines 2–4). For the predicted defective modules in Defec-

tive_Set, the built logistic regression model LR is employed to calculate
heir defect probability 𝑃𝑟𝑜𝑏_𝐿𝑅 and predict the detection priority
Lines 5–6). Finally, MOOAC sorts the predicted defective modules
ased on the ratio between 𝑃𝑟𝑜𝑏_𝐿𝑅 and their corresponding LOC,
hile the predicted clean modules are sorted based on the ratio be-

ween 𝑃𝑟𝑜𝑏_𝑅𝐹 and their corresponding LOC. To ensure the predicted
efective modules are detected first, the modules in the Clean_Set is

appended at the end of the modules in the Defective_Set (Lines 7–10).

. Experimental setup

.1. Datasets

To align with the goal of EADP models to detect more defects, we
hose defect datasets that include the number of defects. Furthermore,
o conduct the cross-version validation that is more applicable, we
pecifically choose 41 versions of 11 publicly available projects from
ROMISE. Table 1 presents the details of the datasets, including the
umber of modules (#Module), the percentage of defective modules
%Defects), the average number of defects per module (AvgDefects),
nd the average number of lines of code per module (AvgLOC). Each
odule in the datasets is represented by a 20-dimensional feature

ector. For more information on the 20 software features, please refer
o [26].
6

Table 1
The details of the experimental datasets.

Datasets #Module %Defects AvgDefects AvgLOC

Ant-1.3 125 16% 1.65 301.6
Ant-1.4 178 22.5% 1.18 304.5
Ant-1.5 293 10.9% 1.09 297.1
Ant-1.6 351 26.2% 2.00 322.6
Ant-1.7 745 22.3% 2.04 280.1

Camel-1.0 339 3.8% 1.08 99.5
Camel-1.2 608 35.5% 2.42 109.0
Camel-1.4 872 16.6% 2.31 112.5
Camel-1.6 965 19.5% 2.66 117.2

Ivy-1.1 111 56.8% 3.7 245.9
Ivy-1.4 241 6.6% 1.12 246
Ivy-2.0 352 11.4% 1.4 249.3

Jedit-3.2 272 33.1% 4.24 473.8
Jedit-4.0 306 24.5% 3.01 473.2
Jedit-4.1 312 25.3% 2.75 490.7
Jedit-4.2 367 13.1% 2.21 465.1
Jedit-4.3 492 2.2% 1.09 411.3

Log4j-1.0 135 25.2% 1.79 159.6
Log4j-1.1 109 33.9% 2.32 182.9
Log4j-1.2 205 92.2% 2.63 186.3

Lucene-2.0 195 46.7% 2.95 259.5
Lucene-2.2 247 58.3% 2.88 257.4
Lucene-2.4 340 59.7% 3.11 302.5

Poi-1.5 237 59.5% 2.43 233.9
Poi-2.0 314 11.8% 1.05 296.7
Poi-2.5 385 64.4% 2.0 311.0
Poi-3.0 442 63.6% 1.78 292.6

Synapse-1.0 157 10.2% 1.31 183.5
Synapse-1.1 222 27% 1.65 190.5
Synapse-1.2 256 33.6% 1.69 209.0

Velocity-1.4 196 75% 1.43 263.8
Velocity-1.5 214 66.4% 2.33 248.3
Velocity-1.6 229 34.1% 2.44 249.0

Xalan-2.4 723 15.2% 1.42 311.3
Xalan-2.5 803 48.2% 1.37 379.7
Xalan-2.6 885 46.4% 1.52 465.2
Xalan-2.7 909 98.8% 1.35 471.5

Xerces-init 162 47.5% 2.17 560.0
Xerces-1.2 440 16.1% 1.62 361.9
Xerces-1.3 453 15.2% 2.8 368.9
Xerces-1.4 588 74.3% 3.65 240.1

3.2. Evaluation metrics

To conduct a comprehensive assessment of EADP methods’ perfor-
mance, we utilize the seven effort-aware evaluation metrics, which
are also widely used in the fields of artificial intelligence [43–47]
and software engineering [48–53]. Referring to these existing EADP
studies [18,19,21,23,52,54,55], we set 20% of the total number of LOC
as the testing effort. Suppose that the total number of modules in a
defect dataset is M, the total number of defects is Q, and the total
number of modules with bugs is P. When testing the top 20% LOC
based on the ranking result of an EADP model, there are m software

odules, and p modules are actually defective and have q bugs among
he m ones.

(1) PofB@20% is the percentage of bugs in the top 20% LOC to all
ugs in the dataset:

𝑜𝑓𝐵@20% =
𝑞
𝑄
. (2)

(2) PMI@20% is the percentage of modules in the top 20% LOC to
all modules in the dataset:

𝑃𝑀𝐼@20% = 𝑚
𝑀

. (3)

(3) PofB/PMI@20% is the ratio between PofB@20% and PMI@
20%, and a higher value indicates testers can find more bugs by



Applied Soft Computing 149 (2023) 110941X. Yu et al.

i

𝑃

t

𝑅

w

d
i
c
p
c
m
b
p
m
i
w
o
r
P

𝑃

t
t
c
a
t
c

h
m

Fig. 6. A cumulative lift chart.
C
p
d
c

t
t
m
t
r
T
b

3

i
i
s
a
c
a
1
p
e
r

r
b
D

nspecting per 1% module:

𝑜𝑓𝐵∕𝑃𝑀𝐼@20% =
𝑃𝑜𝑓𝐵@20%
𝑃𝑀𝐼@20%

. (4)

(4) Precision@20% is the percentage of truly faulty modules to the
modules in the top 20% LOC:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@20% =
𝑝
𝑚
. (5)

(5) Recall@20% is the percentage of truly defective modules in the
op 20% LOC to all defective modules in the dataset:

𝑒𝑐𝑎𝑙𝑙@20% =
𝑝
𝑃
. (6)

(6) IFA is the number of Initial False Alarms encountered by testers,
hen the first truly defective module is inspected.

(7) Popt measure the effectiveness of a predictive model which is
etermined through the use of a cumulative lift chart. As illustrated
n Fig. 6, the x-axis represents the cumulative proportion of lines of
ode (LOC) inspected, while the y-axis represents the cumulative pro-
ortion of bugs detected. The chart features three distinct curves, each
orresponding to a different model: the predictive model, the optimal
odel, and the worst model. The predictive model’s curve is generated

y sorting the software modules in descending order according to the
redicted defect density, given by the EADP method. The optimal
odel’s curve, on the other hand, is generated by sorting the modules

n descending order according to the actual defect density. Finally, the
orst model’s curve is generated by sorting the modules in ascending
rder. The areas enclosed by the curves and the horizontal axis are
epresented as Area(m), Area(optimal), and Area(worst), respectively.
opt is calculated as follows:

𝑜𝑝𝑡 = 1 −
𝐴𝑟𝑒𝑎(𝑜𝑝𝑡𝑖𝑚𝑎𝑙) − 𝐴𝑟𝑒𝑎(𝑚)

𝐴𝑟𝑒𝑎(𝑜𝑝𝑡𝑖𝑚𝑎𝑙) − 𝐴𝑟𝑒𝑎(𝑤𝑜𝑟𝑠𝑡)
. (7)

3.3. Baseline methods

To assess the efficacy of MOOAC, a comparative analysis is con-
ducted with several state-of-the-art EADP methods.

(1) CBS+ [18]: Classify Before Sorting (CBS+) firstly uses the logis-
ic regression algorithm to predict the defect probability. Subsequently,
he method individually assigns ranks to the predicted defective and
lean modules by considering their relative defect density, calculated
s the ratio between the predicted defect probability and LOC. Finally,
he ranked clean modules are appended to the bottom of the ranking
ontaining the ranked defective modules.

(2) ManualUp [17]: It considers smaller modules more likely to
ave higher defect density, so it provides the ranking of software
odules in ascending order of LOC.

(3) EALR [23]: Effort-Aware Linear Regression (EALR) builds the
linear regression to predict the defect density of a software module
based on the software feature values of the module.
7

t

(4) EATT [21]: Effort-Aware Tri-Training (EATT) is a semi-
supervised EADP method, which uses different classifiers and a tri-
training strategy to construct the model. It firstly uses labeled data for
the initial training of three classifiers. Then, in each round of the triple
training, two classifiers are randomly selected, and some unlabeled data
is labeled with the same predicted label by the two classifiers. Next, the
third classifier is trained using the original labeled data and the new
labeled data. Until all three classifiers do not change, the tri-training is
stopped, and the integrated classifier construction is completed. In the
model prediction process, EATT calculates the ratio between the defect
probability provided by the integrated classifier and LOC as the defect
density.

(5) CBS+(DF) [22]: Li et al. proposed an enhanced approach by in-
corporating deep forests into CBS+. Consequently, the classifier within
CBS+ that distinguishes defective and clean modules was substituted
with a deep forest classifier, leading to the nomenclature CBS+(DF).

(6) EASC [19,20]: Recently, Ni et al. showed the superiority of
BS+ for cross-project EADP and just-in-time EADP on JavaScript
rojects, respectively. Its execution process is similar to CBS+, with the
istinction lying in the replacement of the classifier with a Bayesian
lassifier.

(7) NSGA-II : It is a modified version of the MOOAC by eliminating
he classification process and utilizing solely a logistic regression model
rained by NSGA-II [24] to calculate the defect density of software
odules. In the prediction phase, the modules are ranked based on

he ratio of the predicted defect probability determined by the logistic
egression model and the Lines of Code (LOC) of the respective module.
he aim of this comparison is to evaluate the effect of incorporating
oth classification and multi-objective optimization in the MOOAC.

.4. Experimental design summary

In this experimental setup, a cross-version validation methodology
s employed to evaluate the performance of the EADP model. Specif-
cally, the model is built using data from a previous version of a
oftware project and then applied to predict defects in the subsequent
djacent version of the same project. For instance, the EADP model is
onstructed using the Ant-1.3 dataset, and its predictive capability is
ssessed by predicting the detection priority of modules in the Ant-
.4 dataset (the adjacent new version dataset within the same ‘‘Ant’’
roject). Due to the randomness of MOOAC, EATT, and NSGA-II, the
ntire procedure is repeated 50 times, and the median value of the 50
esults is considered as the final outcome for each dataset.

Similar to previous study [55–59], we conduct the Wilcoxon signed-
ank test [60] to examine the statistical significance of the differences
etween MOOAC and the compared method across all testing datasets.
ue to the comparisons of MOOAC with multiple methods, we employ

enjamini-Hochberg (BH) procedure [61] to correct the obtained
he B



Applied Soft Computing 149 (2023) 110941X. Yu et al.
Table 2
The PofB@20% values of the eight methods in RQ1.

Testing dataset MOOAC CBS+ ManualUp EALR EATT CBS+(DF) EASC NSGA-II

Ant-1.4 0.149 0.128 0.468 0.043 0.489 0.128 0.234 0.436
Ant-1.5 0.229 0.314 0.286 0.343 0.229 0.229 0.229 0.243
Ant-1.6 0.228 0.185 0.152 0.141 0.185 0.207 0.234 0.196
Ant-1.7 0.268 0.254 0.175 0.281 0.228 0.257 0.195 0.170
Camel-1.2 0.262 0.272 0.410 0.255 0.282 0.236 0.186 0.259
Camel-1.4 0.369 0.236 0.331 0.301 0.349 0.448 0.263 0.304
Camel-1.6 0.378 0.316 0.380 0.306 0.392 0.406 0.288 0.304
Ivy-1.4 0.333 0.222 0.278 0.222 0.222 0.532 0.222 0.278
Ivy-2.0 0.232 0.107 0.196 0.250 0.196 0.405 0.286 0.205
Jedit-4.0 0.381 0.257 0.199 0.292 0.288 0.301 0.261 0.248
Jedit-4.1 0.380 0.309 0.235 0.313 0.263 0.382 0.341 0.235
Jedit-4.2 0.297 0.198 0.160 0.226 0.292 0.245 0.245 0.269
Jedit-4.3 0.417 0.250 0.417 0.167 0.583 0.417 0.167 0.250
Log4j-1.1 0.372 0.360 0.163 0.453 0.221 0.372 0.407 0.256
Log4j-1.2 0.161 0.175 0.547 0.319 0.520 0.181 0.205 0.295
Lucene-2.2 0.332 0.254 0.386 0.309 0.377 0.232 0.215 0.295
Lucene-2.4 0.357 0.381 0.473 0.373 0.483 0.413 0.304 0.428
Poi-2.0 0.308 0.231 0.462 0.359 0.333 0.308 0.205 0.256
Poi-2.5 0.161 0.101 0.494 0.143 0.260 0.113 0.107 0.447
Poi-3.0 0.335 0.392 0.422 0.306 0.398 0.354 0.174 0.359
Synapse-1.1 0.263 0.253 0.273 0.202 0.283 0.343 0.232 0.222
Synapse-1.2 0.262 0.228 0.310 0.303 0.345 0.186 0.186 0.214
Velocity-1.5 0.378 0.535 0.480 0.181 0.532 0.532 0.492 0.517
Velocity-1.6 0.426 0.426 0.458 0.284 0.400 0.405 0.237 0.447
Xalan-2.5 0.168 0.171 0.539 0.405 0.556 0.271 0.147 0.433
Xalan-2.6 0.363 0.317 0.474 0.307 0.478 0.397 0.269 0.446
Xalan-2.7 0.271 0.261 0.635 0.378 0.632 0.339 0.203 0.575
Xerces-1.2 0.678 0.652 0.730 0.591 0.791 0.661 0.148 0.730
Xerces-1.3 0.259 0.176 0.466 0.326 0.456 0.472 0.166 0.451
Xerces-1.4 0.228 0.215 0.451 0.327 0.449 0.219 0.216 0.326

Average 0.308 0.273 0.382 0.290 0.384 0.317 0.235 0.336
W/D/L – 22/1/7 9/1/20 18/0/12 10/1/19 12/4/14 23/1/6 16/0/14
p-value – 0.017 0.067 0.419 0.035 0.770 0.005 0.717
|𝛿| – 0.257 0.359 0.107 0.323 0.054 0.457 0.084
p-value. MOOAC outperforms significantly than the compared method,
if the corrected p-value after the BH procedure is less than 0.05. In
addition, we also calculate the effect size (i.e., Cliff’s 𝛿 [62]) to measure
the magnitude of the difference obtained by two methods across all
testing datasets. If 0 < |𝛿| < 0.147, the magnitude between the two
methods is negligible. If 0.147 < |𝛿| < 0.33, the magnitude between
the two methods is small. If 0.33 < |𝛿| < 0.474, the magnitude between
the two methods is moderate. If |𝛿| ≥ 0.474, the magnitude between the
two methods is large.

4. Experimental results

4.1. RQ1: Does MOOAC outperform the state-of-the-art EADP methods?

We conducted an analysis of the evaluation results for the eight
methods based on seven performance metrics. The detailed values of
PofB@20%, PMI@20%, and PofB/PMI@20% on each testing dataset
are presented in Tables 2, 3, and 4, respectively. Fig. 7 illustrates
the distribution of Precision@20%, Recall@20%, IFA, and Popt values
across all testing datasets for the eight methods. Additionally, Table 5
provides the average values of these four evaluation metrics across all
testing datasets.

The average IFA values for ManualUp, EATT, and NSGA-II exceed
10, and it is deemed unacceptable that all of the top 10 software
modules recommended by EADP models are clean, as stated in prior
studies [37,38]. Except for the above three methods, MOOAC exhibits
the best overall performance on the two core metrics (i.e., PofB@20%
and PMI@20%) and achieves the best performance in terms of Preci-
sion@20%, and IFA. The detailed results are as follows.

(1) As shown in Fig. 7(c) and Table 5, MOOAC achieves the lowest
average IFA value (i.e., 3.283), and there is a statistically significant
difference between MOOAC and ManualUp, EATT, and NSGA-II. The
average IFA values of ManualUp, EATT, and NSGA-II are greater than
8

10, since the three methods tend to rank modules with fewer LOC first
and the modules are more likely to be clean. The previous studies [37,
38] have pointed out that testers would not use the EADP model, if the
first 10 software modules returned by the model are all false alarms.
Therefore, the performance of the three methods on other metrics has
no practical significance. Compared with NSGA-II, MOOAC introduces
the classification process, so its IFA value is significantly lower than
that of NSGA-II.

(2) As shown in Table 2, except for the above three methods,
MOOAC achieved a average value on PofB@20% slightly lower than
CBS+(DF), with no noticeable difference between the two. The row
Win/Draw/Loss (W/D/L) provides a summary of the number of in-
stances where MOOAC outperforms, achieves equal performance, or
performs worse than other methods. MOOAC wins CBS+, EALR and
EASC on 22, 18 and 23 datasets in terms of PofB@20%, respectively.
MOOAC can improve the average PofB@20% values of CBS+, EALR and
EASC by 12.82%, 6.21% and 31.06%, respectively. MOOAC has a sig-
nificant difference with CBS+ and EASC with a moderate improvement
according to the p-value and Cliff’s 𝛿.

(3) As shown in Table 3, MOOAC achieved a average value on
PMI@20% slightly lower than EASC, with no noticeable difference
between the two and performs the best on most datasets. MOOAC wins
CBS+, ManualUp, EALR, EATT, CBS+(DF), EASC and NSGA-II on 20,
30, 28, 30, 26, 17 and 29 datasets in terms of PMI@20%, respectively.
Except for EASC, MOOAC can reduce the average PMI@20% values of
the baseline methods by 22.45%, 72.34%, 45.71%, 70.63%, 28.03%
and 60.33%, respectively. MOOAC significantly outperforms CBS+ and
CBS+(DF) with a small improvement, and ManualUp, EALR, EATT, and
NSGA-II with a large improvement according to the p-value and Cliff’s
𝛿.

(4) As shown in Table 4, MOOAC obtains the highest PofB/PMI@20
% value on 14 datasets. It wins CBS+, ManualUp, EALR, EATT, CBS+

(DF), EASC and NSGA-II on 22, 30, 30, 30, 25, 19 and 28 datasets in



Applied Soft Computing 149 (2023) 110941X. Yu et al.
Table 3
The PMI@20% values of the eight methods in RQ1.

Testing dataset MOOAC CBS+ ManualUp EALR EATT CBS+(DF) EASC NSGA-II

Ant-1.4 0.084 0.073 0.624 0.084 0.506 0.010 0.112 0.573
Ant-1.5 0.263 0.352 0.662 0.410 0.625 0.410 0.485 0.544
Ant-1.6 0.068 0.068 0.652 0.177 0.573 0.105 0.199 0.323
Ant-1.7 0.079 0.098 0.643 0.086 0.609 0.117 0.128 0.240
Camel-1.2 0.176 0.373 0.627 0.191 0.423 0.225 0.109 0.244
Camel-1.4 0.171 0.094 0.635 0.446 0.653 0.205 0.119 0.614
Camel-1.6 0.092 0.331 0.639 0.382 0.617 0.102 0.107 0.604
Ivy-1.4 0.261 0.282 0.743 0.390 0.714 0.373 0.162 0.635
Ivy-2.0 0.384 0.571 0.736 0.531 0.716 0.429 0.074 0.236
Jedit-4.0 0.096 0.199 0.745 0.376 0.680 0.235 0.206 0.691
Jedit-4.1 0.109 0.125 0.734 0.391 0.718 0.128 0.138 0.694
Jedit-4.2 0.105 0.139 0.695 0.346 0.657 0.150 0.131 0.326
Jedit-4.3 0.056 0.041 0.703 0.181 0.600 0.069 0.081 0.186
Log4j-1.1 0.142 0.156 0.569 0.193 0.495 0.156 0.156 0.339
Log4j-1.2 0.122 0.146 0.605 0.351 0.580 0.141 0.171 0.280
Lucene-2.2 0.119 0.239 0.664 0.348 0.640 0.227 0.178 0.421
Lucene-2.4 0.263 0.468 0.700 0.482 0.641 0.415 0.194 0.468
Poi-2.0 0.193 0.382 0.634 0.347 0.602 0.411 0.146 0.463
Poi-2.5 0.092 0.029 0.636 0.278 0.519 0.039 0.065 0.445
Poi-3.0 0.394 0.466 0.658 0.450 0.586 0.414 0.136 0.467
Synapse-1.1 0.171 0.072 0.577 0.252 0.545 0.288 0.221 0.320
Synapse-1.2 0.105 0.117 0.594 0.305 0.570 0.109 0.141 0.311
Velocity-1.5 0.530 0.729 0.738 0.332 0.748 0.724 0.729 0.689
Velocity-1.6 0.380 0.450 0.746 0.498 0.747 0.493 0.188 0.624
Xalan-2.5 0.085 0.059 0.724 0.478 0.707 0.245 0.103 0.457
Xalan-2.6 0.296 0.320 0.727 0.508 0.711 0.379 0.168 0.668
Xalan-2.7 0.249 0.226 0.717 0.415 0.704 0.309 0.158 0.639
Xerces-1.2 0.434 0.664 0.841 0.489 0.861 0.432 0.116 0.708
Xerces-1.3 0.099 0.018 0.839 0.340 0.857 0.417 0.077 0.762
Xerces-1.4 0.071 0.070 0.808 0.449 0.818 0.071 0.094 0.398

Average 0.190 0.245 0.687 0.350 0.647 0.264 0.170 0.479
W/D/L – 20/1/9 30/0/0 28/1/1 30/0/0 26/1/3 17/0/13 29/0/1
p-value – 0.011 0.000 0.000 0.000 0.000 0.673 0.000
|𝛿| – 0.088 1.000 0.621 0.993 0.280 0.022 0.820
terms of PofB/PMI@20%, respectively. In addition, MOOAC achieves
the highest average PofB/PMI@20% value (i.e., 2.222), and improves
the average PofB/PMI@20% values of CBS+ by 9.19%, of ManualUp
by 301.08%, of EALR by 140.22%, of EATT by 274.70%, of CBS+(DF)
by 33.37%, of EASC by 33.21% and of NSGA-II by 201.90%. MOOAC
significantly performs better than CBS+, CBS+(DF) and EASC with a
small improvement, and ManualUp, EALR, EATT, and NSGA-II with a
large improvement according to the p-values and Cliff’s 𝛿. Therefore,
MOOAC exhibits the best overall performance on the two metrics
(i.e., PofB@20% and PMI@20%). In other words, MOOAC enables
testers to identify more bugs per 1% module.

(5) As shown in Fig. 7(a), (b), (d) and Table 5, MOOAC achieves the
highest average Precision@20% value (i.e., 0.522), and significantly
outperforms ManualUp, EALR, EATT, CBS+(DF) and NSGA-II. Except
for ManualUp, EATT, and NSGA-II, CBS+(DF) achieves the best average
value on Recall@20% (i.e., 0.322) and Popt (i.e., 0.624).

Answer to RQ1: Except for ManualUp, EATT, and NSGA-II
whose IFA values exceed 10, MOOAC exhibits the best overall
performance on the two metrics, PofB@20% and PMI@20%.
In other words, MOOAC enables testers to identify more bugs
per 1% module.

4.2. RQ2: Does the data imbalance problem affect the performance of
MOOAC?

We first apply RUS to the target training datasets whose defective
ratios are less than 0.5. The desired defective ratio is set as 0.5, similar
to [33]’s study. Then, MOOAC, CBS+, EALR, EATT, CBS+(DF), EASC
9

and NSGA-II are trained on the balanced datasets, and we denote them a
as MOOAC*, CBS+*, EALR*, EATT*, CBS+(DF)*, EASC* and NSGA-
II*. We also compare the performance of the MOOAC method trained
on the original datasets with MOOAC*. We do not investigate the
performance of ManualUp, since it is an unsupervised learning method.
Tables 6, 7, and 8 show the detailed PofB@20%, PMI@20%, and
PofB/PMI@20% values on each testing dataset of the methods. Fig. 8
shows the distribution of the Precision@20%, Recall@20%, IFA, and
Popt values of the methods across 24 testing datasets, and Table 9
presents the average value of the four evaluation metrics of the methods
on 24 testing datasets.

The average IFA values of EATT* and NSGA-II* remain higher
than 10, which is considered unacceptable as it implies that the
top 10 software modules recommended by the EADP models are all
clean [37,38]. Except for the above two methods, MOOAC* achieves
the best performance in terms of PofB@20%, PofB/PMI@20%, and
Precision@20%on the balanced datasets. However, MOOAC* does not
outperform MOOAC on most of the metrics. The detailed results are as
follows.

(1) As shown in Fig. 8(c) and Table 9, MOOAC* achieves the second
lowest average IFA value (i.e., 7.875) among the seven methods on
the balanced datasets, and there is a statistically significant difference
between MOOAC* and EATT. MOOAC achieves the lower average IFA
value than MOOAC*, and there is a statistically difference between
these two methods.

(2) As shown in Table 6, except for EATT* and NSGA-II*, MOOAC*
achieves the best average value on PofB@20% on the balanced
datasets. MOOAC* wins CBS+*, EALR*, CBS+(DF)* and EASC* on
18, 13, 11 and 19 datasets in terms of PofB@20%, respectively.
MOOAC* can improve the average PofB@20% values of CBS+*, EALR*,
CBS+(DF)* and EASC* by 11.32%, 3.15%, 2.43% and 27.71% respec-
tively. MOOAC* has a significant difference with CBS+* with a small
improvement, with EASC* and NSGA-II* with a moderate improvement
according to the p-value and Cliff’s 𝛿. MOOAC and MOOAC* achieve
lmost equal average PofB@20% values.



Applied Soft Computing 149 (2023) 110941X. Yu et al.
Table 4
The PofB/PMI@20% values of the eight methods in RQ1(It is worth noting that the data in this table is the median value of 50 cross-version
results instead of obtained by dividing the corresponding data in Tables 2 and 3).

Testing dataset MOOAC CBS+ ManualUp EALR EATT CBS+(DF) EASC NSGA-II

Ant-1.4 1.767 1.748 0.751 0.505 0.968 1.337 2.083 0.776
Ant-1.5 0.870 0.894 0.432 0.837 0.366 0.558 0.472 0.433
Ant-1.6 3.338 2.702 0.233 0.800 0.323 1.959 1.172 0.608
Ant-1.7 3.344 2.597 0.271 3.272 0.374 2.204 1.531 0.710
Camel-1.2 1.491 0.729 0.654 1.335 0.666 1.046 1.712 1.034
Camel-1.4 2.121 2.508 0.522 0.676 0.535 2.181 2.203 0.496
Camel-1.6 4.133 0.956 0.594 0.800 0.636 3.998 2.698 0.504
Ivy-1.4 1.275 0.788 0.374 0.569 0.311 0.744 1.373 0.438
Ivy-2.0 0.605 0.188 0.267 0.471 0.274 0.416 3.868 0.842
Jedit-4.0 4.061 1.287 0.267 0.777 0.423 1.279 1.268 0.364
Jedit-4.1 3.592 2.470 0.320 0.801 0.366 2.983 2.474 0.337
Jedit-4.2 2.831 1.426 0.231 0.654 0.445 1.637 1.875 0.811
Jedit-4.3 7.321 6.150 0.592 0.921 0.973 6.029 2.050 1.345
Log4j-1.1 2.535 2.311 0.286 2.354 0.446 2.386 2.609 0.770
Log4j-1.2 1.261 1.194 0.903 0.909 0.896 1.278 1.200 0.965
Lucene-2.2 2.892 1.062 0.582 0.888 0.589 1.023 1.207 0.695
Lucene-2.4 1.409 0.815 0.676 0.774 0.753 0.996 1.565 0.922
Poi-2.0 1.677 0.604 0.728 1.034 0.554 0.749 1.400 0.547
Poi-2.5 1.750 3.528 0.776 0.515 0.501 2.898 1.646 0.998
Poi-3.0 0.856 0.841 0.641 0.680 0.679 0.855 1.282 0.770
Synapse-1.1 1.534 3.504 0.473 0.801 0.519 1.191 1.053 0.725
Synapse-1.2 2.485 1.942 0.523 0.996 0.605 1.702 1.324 0.657
Velocity-1.5 0.716 0.734 0.651 0.546 0.711 0.734 0.676 0.746
Velocity-1.6 1.108 0.948 0.613 0.571 0.536 0.821 1.261 0.709
Xalan-2.5 1.979 2.928 0.744 0.847 0.785 1.105 1.421 0.969
Xalan-2.6 1.231 0.991 0.652 0.604 0.673 1.048 1.597 0.665
Xalan-2.7 1.095 1.159 0.885 0.910 0.898 1.096 1.280 0.897
Xerces-1.2 1.567 0.983 0.869 1.210 0.919 1.530 1.275 0.989
Xerces-1.3 2.608 9.975 0.556 0.960 0.532 1.130 2.146 0.583
Xerces-1.4 3.196 3.082 0.558 0.728 0.549 3.061 2.304 0.768

Average 2.222 2.035 0.554 0.925 0.593 1.666 1.668 0.736
W/D/L – 22/0/8 30/0/0 30/0/0 30/0/0 25/0/5 19/0/11 28/0/2
p-value – 0.026 0.000 0.000 0.000 0.000 0.022 0.000
|𝛿| – 0.227 0.944 0.764 0.940 0.316 0.209 0.869
Fig. 7. The boxplots of Precision@20%, Recall@20%, IFA and Popt of the eight methods in RQ1. (The red boxplot indicates that the difference between MOOAC and the
corresponding method is significant).
(3) As shown in Table 7, MOOAC* achieves the second best aver-
age PMI@20% value (i.e., 0.199) on the balanced datasets. MOOAC*
wins CBS+*, EALR*, EATT*, CBS+(DF)* and NSGA-II* on 21, 22,
24, 19 and 23 datasets in terms of PMI@20%, respectively. Except
10
for EASC*, MOOAC* can reduce the average PMI@20% values of
the five methods by 23.75%, 42.98%, 69.15%, 23.46% and 52.51%,
respectively. MOOAC* significantly outperforms CBS+* and CBS+(DF)*
with a moderate improvement, and EALR*, EATT* and NSGA-II* with



Applied Soft Computing 149 (2023) 110941X. Yu et al.

N
s
f
a

c

Table 5
The average Precision@20%, Recall@20%, IFA and Popt values of the eight methods in RQ1.

Metrics MOOAC CBS+ ManualUp EALR EATT CBS+(DF) EASC NSGA-II

Precision@20% 0.522 0.502 0.292 0.326 0.298 0.470 0.507 0.338
Recall@20% 0.274 0.280 0.494 0.301 0.483 0.322 0.241 0.409
IFA 3.283 3.567 16.767 8.733 16.683 5.300 6.100 10.783
Popt 0.608 0.613 0.682 0.603 0.690 0.624 0.493 0.626
s
o
a
1

t
m
t
P
f
e
i
t
o
C
t

a large improvement according to the p-values and Cliff’s 𝛿. MOOAC
significantly outperforms MOOAC* and wins it on 18 datasets.

(4) As shown in Table 8, MOOAC* obtains the highest PofB/PMI
@20% value on 12 datasets among the seven methods trained on
the balanced datasets. It wins CBS+*, EALR*, EATT*, CBS+(DF)*,
EASC* and NSGA-II* on 21, 21, 24, 20, 15 and 22 datasets in terms
of PofB/PMI@20%, respectively. In addition, MOOAC* improves the
average PofB/PMI@20% values of CBS+* by 57.55%, of EALR* by
0.24%, of EATT* by 187.61%, of CBS+(DF)* by 40.26%, of EASC* by
5.78% and of NSGA-II* by 64.96%. MOOAC* significantly performs
better than CBS+(DF)* with a moderate improvement, and CBS+*,
EALR*, EATT*, and NSGA-II* with a large improvement according to
the p-value and Cliff’s 𝛿. MOOAC significantly outperforms MOOAC*
and wins it on 19 datasets.

(5) As shown in Fig. 8(a), (b), (d) and Table 9, MOOAC* signifi-
cantly outperforms CBS+*, EALR*, EATT*, CBS+(DF)* and NSGA-II*,
and achieves the highest average Precision@20% value (i.e., 0.473).
Except for EATT* and NSGA-II*, CBS+(DF)* achieves the best average
value on Recall@20% (i.e., 0.323), and EALR* achieves the best
average value on Popt (i.e., 0.603). MOOAC outperforms MOOAC*
in terms of the average Precision@20% and Popt. Although MOOAC*
achieves the higher average Recall@20% value than MOOAC, there is
no statistically significant difference between these two methods.

(6) In summary, RUS cannot significantly improve the performance
of MOOAC. Instead, the performance on PMI@20%, PofB/PMI@20%,
Precision@20%, IFA, and Popt is degraded. The potential reasons are
as followings. In addition to the class imbalance problem, there is the
imbalanced distribution of the defect densities of defective modules.
RUS can only solve the class imbalance problem. After applying RUS
to the class imbalanced datasets, the percentages between defective
modules and clean ones can be equal. However, the distribution of the
defect densities of defective modules is still imbalanced.

Answer to RQ2: Except for EATT and NSGA-II whose IFA
values are greater than 10, MOOAC* outperforms the state-
of-the-art methods trained on the balanced datasets in terms
of Precision@20%, PofB@20% and PofB@20%/PMI@20%.
However, applying RUS to the defect datasets does not
improve the performance of MOOAC.

4.3. RQ3: Does the underlying classifier of MOOAC affect the performance
of MOOAC?

To assess the impact, we analyze the results of MOOAC embedded
with the five classifiers, including Random Forest (RF), Naive Bayes
(NB), Logistic Regression (LR), Decision Tree (DT), and K-Nearest

eighbor (KNN). The five classifiers are widely used in previous SDP
tudies. Fig. 9 shows the performance distribution of MOOAC with the
ive classifiers across all testing datasets, and Table 10 presents the
verage value across all testing datasets.

RF achieves the best performance in terms of PofB@20%, Re-
all@20%, and Popt. NB achieves the best performance in terms of

PMI@20% and Precision@20%. LR achieves the best performance in
terms of PofB/PMI@20% and IFA. We finally choose RF as the under-
11

lying classifier for MOOAC, since the primary objective of EADP is to r
find more defects and RF performs the best in terms of PofB@20%. The
detailed results are as follows.

(1) As shown in Fig. 9(a), (b), and (c) and Table 10, RF achieves
the highest average PofB@20% value (i.e., 0.308) among the five
classifiers. It significantly outperforms NB, LR, and KNN in terms of
PofB@20%. NB achieves the lowest average PMI@20% and PofB@20%
values (i.e., 0.125 and 0.280, respectively) among the five classifiers,
but there is no statistically significant difference between NB and other
classifiers in terms of PMI@20%. LR achieves the highest average
PofB/PMI@20% value (i.e., 3.161) among the five classifiers, but there
is no statistically significant difference between RF and LR on the
evaluation metric.

(2) As shown in Fig. 9(d), (e), (g) and Table 10, NB achieves the
best average Precision@20% value (i.e., 0.560) among five classifiers,
but there is no statistically significant difference between RF and NB in
terms of Precision@20%. RF achieves the highest average Recall@20%
and Popt values (i.e., 0.274 and 0.608, respectively) among five clas-
sifiers. RF significantly outperforms LR in terms of Recall@20%, and
significantly performs better than NB, DT, and KNN in terms of Popt.

(3) As shown in Fig. 9(f) and Table 10, LR achieves the lowest
average IFA value (i.e., 3.083) among the five classifiers, but there is
no statistically significant difference between LR and other classifiers.

Answer to RQ3: The different underlying classifiers affect the
performance of MOOAC. RF performs the best in terms of
PofB@20%, Recall@20%, and Popt, so we recommend to use
RF as the underlying classifier of MOOAC.

4.4. RQ4: Does the defective threshold to distinguish the defective and clean
modules affect the performance of MOOAC?

We analyze the evaluation results of MOOAC using different de-
fective threshold to distinguish the defective and clean modules in
terms of the seven performance metrics. Fig. 10 shows the performance
distribution of MOOAC using the different defective thresholds.

Setting the defective threshold as 0.5 yields optimal performance
for the PofB@20% metric, and good results for other metrics as well.

(1) As shown in Fig. 10(b), as the threshold varies, IFA shows
ignificant fluctuations, but remains below a level of 4 in the range
f 0.2 to 0.8, whereas excessively high or low thresholds may result in
bnormal IFA values or even loss of practical significance (greater than
0).

(2) As shown in Fig. 10(a), the PofB@20% remains stable as the
hreshold varied, which may be due to the fact that the top-ranked
odules in the ranking almost do not change when inspecting the

op 20% of the LOC. Within the threshold range of 0.2 to 0.8, both
MI@20% and PofB/PMI@20% remain stable and achieve good per-
ormances. Within this range, MOOAC has demonstrated consistently
xcellent performance across various metrics, thereby making it an
deal range for threshold selection. A low threshold would cause many
ruly clean modules with low LOC values to be ranked at the top
f the ranking, resulting in the poor performance of the PMI@20%.
onversely, a high threshold would cause the large inspection budget
o be allocated to inspect modules predicted to be clean, whose ranking
esults are largely determined by corresponding LOC values, resulting



Applied Soft Computing 149 (2023) 110941X. Yu et al.

P

Table 6
The PofB@20% values of the eight methods in RQ2.

Testing dataset MOOAC* CBS+* EALR* EATT* CBS+(DF)* EASC* NSGA-II* MOOAC

Ant1.4 0.234 0.149 0.255 0.468 0.319 0.128 0.298 0.149
Ant1.5 0.314 0.229 0.286 0.229 0.229 0.257 0.314 0.229
Ant1.6 0.277 0.255 0.109 0.196 0.293 0.223 0.264 0.228
Ant1.7 0.219 0.225 0.222 0.210 0.178 0.195 0.189 0.268
Camel1.2 0.195 0.215 0.190 0.395 0.230 0.167 0.326 0.262
Camel1.4 0.324 0.304 0.251 0.310 0.373 0.322 0.348 0.369
Camel1.6 0.318 0.208 0.340 0.380 0.318 0.304 0.350 0.378
Ivy2.0 0.268 0.196 0.179 0.196 0.143 0.250 0.223 0.232
Jedit4.0 0.365 0.283 0.288 0.190 0.341 0.283 0.327 0.381
Jedit4.1 0.378 0.276 0.318 0.309 0.318 0.336 0.359 0.380
Jedit4.2 0.302 0.311 0.208 0.236 0.330 0.236 0.307 0.297
Jedit4.3 0.250 0.417 0.083 0.583 0.333 0.250 0.333 0.417
Log4j1.1 0.372 0.186 0.267 0.186 0.256 0.384 0.244 0.372
Log4j1.2 0.152 0.229 0.337 0.458 0.231 0.217 0.494 0.161
Lucene2.2 0.339 0.254 0.302 0.362 0.239 0.196 0.312 0.332
Poi2.5 0.214 0.188 0.232 0.286 0.202 0.131 0.474 0.161
Synapse1.1 0.202 0.111 0.202 0.273 0.172 0.212 0.283 0.263
Synapse1.2 0.248 0.221 0.276 0.269 0.193 0.207 0.269 0.262
Xalan2.5 0.271 0.264 0.414 0.529 0.256 0.147 0.426 0.168
Xalan2.6 0.373 0.323 0.307 0.462 0.398 0.269 0.452 0.363
Xalan2.7 0.285 0.304 0.378 0.625 0.341 0.211 0.575 0.271
Xerces1.2 0.661 0.670 0.600 0.765 0.670 0.148 0.735 0.678
Xerces1.3 0.259 0.249 0.435 0.487 0.254 0.264 0.456 0.259
Xerces1.4 0.270 0.293 0.382 0.466 0.300 0.214 0.405 0.228

Average 0.295 0.265 0.286 0.370 0.288 0.231 0.365 0.296
W/D/L – 16/0/8 13/1/10 9/0/15 11/1/12 19/1/4 7/1/16 11/2/11
p-value – 0.045 0.705 0.047 0.808 0.003 0.034 0.987
|𝛿| – 0.267 0.030 0.246 0.061 0.444 0.387 0.007
Table 7
The PMI@20% values of the eight methods in RQ2.

Testing dataset MOOAC* CBS+* EALR* EATT* CBS+(DF)* EASC* NSGA-II* MOOAC

Ant1.4 0.123 0.174 0.376 0.478 0.242 0.101 0.258 0.084
Ant1.5 0.176 0.273 0.386 0.625 0.396 0.423 0.401 0.263
Ant1.6 0.108 0.191 0.242 0.570 0.103 0.225 0.207 0.068
Ant1.7 0.105 0.187 0.235 0.495 0.213 0.117 0.205 0.079
Camel1.2 0.183 0.186 0.063 0.628 0.212 0.132 0.401 0.176
Camel1.4 0.249 0.233 0.487 0.640 0.345 0.131 0.573 0.171
Camel1.6 0.144 0.218 0.451 0.547 0.237 0.120 0.590 0.092
Ivy2.0 0.290 0.219 0.429 0.733 0.205 0.071 0.389 0.384
Jedit4.0 0.176 0.284 0.235 0.735 0.297 0.163 0.198 0.096
Jedit4.1 0.173 0.260 0.494 0.686 0.244 0.186 0.133 0.109
Jedit4.2 0.277 0.327 0.011 0.662 0.232 0.177 0.410 0.105
Jedit4.3 0.106 0.175 0.148 0.630 0.185 0.126 0.266 0.056
Log4j1.1 0.128 0.229 0.239 0.550 0.193 0.156 0.252 0.142
Log4j1.2 0.122 0.224 0.376 0.541 0.224 0.185 0.515 0.122
Lucene2.2 0.138 0.259 0.348 0.623 0.267 0.178 0.350 0.119
Poi2.5 0.273 0.319 0.423 0.535 0.281 0.125 0.517 0.092
Synapse1.1 0.090 0.144 0.284 0.568 0.140 0.207 0.178 0.171
Synapse1.2 0.189 0.266 0.320 0.566 0.195 0.172 0.396 0.105
Xalan2.5 0.204 0.224 0.506 0.699 0.202 0.121 0.458 0.085
Xalan2.6 0.326 0.316 0.507 0.721 0.385 0.165 0.672 0.296
Xalan2.7 0.271 0.274 0.416 0.711 0.308 0.164 0.643 0.249
Xerces1.2 0.426 0.670 0.441 0.857 0.479 0.152 0.752 0.434
Xerces1.3 0.288 0.371 0.404 0.839 0.373 0.152 0.765 0.099
Xerces1.4 0.151 0.247 0.566 0.832 0.286 0.146 0.531 0.071

Average 0.199 0.261 0.349 0.645 0.260 0.163 0.419 0.153
W/D/L – 21/0/3 22/0/2 24/0/0 19/0/5 9/0/16 23/0/1 5/1/18
p-value – 0.000 0.000 0.000 0.000 0.152 0.000 0.007
|𝛿| – 0.389 0.625 1.000 0.403 0.229 0.708 0.443
in poor performance of the PMI@20%. The 0.5 threshold is commonly
used in practice, and it guarantees the best performance for PofB@20%.

(3) As shown in Fig. 10(b), the Precision@20%, Recall@20%, and
opt remain stable with small fluctuations in the range of 0.2 to 0.8.

Answer to RQ4: We recommend setting the defective thresh-
old to 0.5, as it demonstrates the best performance on
PofB@20% and satisfactory performance on other metrics.
12
4.5. RQ5: Does the model training strategy affect the performance of
MOOAC?

(1) The type of model for predicted defective modules.
We analyze the evaluation results of MOOAC using the logistic

regression model and the linear regression model in terms of the seven
performance metrics. Fig. 11 shows the performance distribution of
MOOAC using the two models across all testing datasets, and Table 11
presents the average values across all testing datasets.



Applied Soft Computing 149 (2023) 110941X. Yu et al.
Table 8
The PofB/PMI@20% values of the eight methods in RQ2.

Testing dataset MOOAC* CBS+* EALR* EATT* CBS+(DF)* EASC NSGA-II* MOOAC

Ant1.4 1.894 0.855 0.678 0.980 1.321 1.262 1.262 1.767
Ant1.5 1.346 0.837 0.741 0.366 0.577 0.608 0.800 0.870
Ant1.6 2.585 1.338 0.449 0.343 2.861 0.990 1.263 3.338
Ant1.7 2.090 1.205 0.945 0.424 0.832 1.672 0.929 3.344
Camel1.2 1.070 1.154 3.034 0.634 1.083 1.267 0.823 1.491
Camel1.4 1.335 1.308 0.514 0.485 1.081 2.466 0.611 2.121
Camel1.6 2.222 0.956 0.754 0.695 1.340 2.529 0.595 4.133
Ivy2.0 0.929 0.898 0.416 0.268 0.698 3.520 0.570 0.605
Jedit4.0 1.981 0.996 1.222 0.259 1.146 1.733 1.645 4.061
Jedit4.1 2.129 1.065 0.644 0.450 1.305 1.721 2.719 3.592
Jedit4.2 1.092 0.952 19.042 0.356 1.426 1.332 0.747 2.831
Jedit4.3 2.301 2.384 0.562 0.926 1.802 1.984 1.308 7.321
Log4j1.1 2.806 0.811 1.121 0.338 1.328 2.460 0.784 2.535
Log4j1.2 1.227 1.020 0.898 0.846 1.029 1.170 0.951 1.261
Lucene2.2 2.474 0.979 0.867 0.581 0.895 1.098 0.870 2.892
Poi2.5 0.784 0.587 0.548 0.535 0.729 1.051 0.912 1.750
Synapse1.1 2.198 0.771 0.712 0.481 1.230 1.024 1.581 1.534
Synapse1.2 1.292 0.831 0.861 0.475 0.989 1.204 0.730 2.485
Xalan2.5 1.328 1.176 0.819 0.757 1.270 1.216 0.974 1.979
Xalan2.6 1.144 1.022 0.606 0.641 1.034 1.629 0.671 1.231
Xalan2.7 1.057 1.111 0.908 0.879 1.108 1.288 0.896 1.095
Xerces1.2 1.565 0.999 1.361 0.893 1.396 0.971 0.983 1.567
Xerces1.3 0.967 0.671 1.078 0.581 0.681 1.735 0.603 2.608
Xerces1.4 1.746 1.189 0.674 0.560 1.050 1.465 0.759 3.196

Average 1.648 1.046 1.644 0.573 1.175 1.558 0.999 2.484
W/D/L – 21/0/3 21/0/3 24/0/0 20/0/4 15/0/9 22/0/2 5/0/19
p-value – 0.000 0.000 0.000 0.000 0.152 0.000 0.007
|𝛿| – 0.642 0.705 0.976 0.403 0.229 0.691 0.399
Fig. 8. The boxplots of Precision@20%, Recall@20%, IFA, and Popt of the eight methods in RQ2. (The red boxplot indicates that the difference between MOOAC* and the
corresponding method is significant).
As shown in Fig. 11 and Table 11, MOOAC using the logistic
regression model achieves the best average PofB@20%, Recall@20%,
and Popt values (i.e., 0.308, 0.274, and 0.608, respectively). And
13
there is a significant difference between these two models in terms
of PofB@20% and Recall@20%. Although MOOAC using the linear re-
gression model achieves the best average PMI@20%, PofB/PMI@20%,



Applied Soft Computing 149 (2023) 110941X. Yu et al.
Table 9
The average Precision@20%, Recall@20%, IFA, and Popt values of the eight methods in RQ2.

Metrics MOOAC* CBS+* EALR* EATT* CBS+(DF)* EASC* NSGA-II* MOOAC

Precision@20% 0.473 0.387 0.335 0.280 0.428 0.468 0.383 0.538
Recall@20% 0.279 0.297 0.289 0.471 0.323 0.227 0.422 0.244
IFA 7.875 8.625 8.625 19.625 7.708 7.208 12.583 3.354
Popt 0.569 0.550 0.603 0.671 0.572 0.482 0.656 0.601
Fig. 9. The boxplot of Precision@20%, Recall@20%, PofB@20%, PMI@20%, PofB/PMI@20%, IFA, and Popt of MOOAC embedding the five classifiers. (The red boxplot indicates
that the difference between RF and the corresponding classifier is significant).
14



Applied Soft Computing 149 (2023) 110941X. Yu et al.
Fig. 10. The line chart of PofB@20%, PMI@20%, PofB/PMI@20%, Precision@20%, Recall@20%, IFA, and Popt of MOOAC applied different threshold on distinguishing defective
and clean modules.
Fig. 11. The boxplots of PofB@20%, PMI@20%, PofB/PMI@20%, Precision@20%, Recall@20%, IFA, and Popt of MOOAC trained on logistic regression model and linear regression
model. (The red boxplot indicates that the difference between logistic regression model and linear regression model is significant).
Table 10
The average PofB@20%, PMI@20%, PofB/PMI@20%, Precision@20%, Recall@20%,
IFA, and Popt values of MOOAC embedding the five classifiers.

Metrics RF NB LR DT KNN

PofB@20% 0.308 0.249 0.280 0.304 0.262
PMI@20% 0.190 0.125 0.197 0.181 0.229
PofB/ PMI@20% 2.222 0.254 3.161 2.032 1.551
Precision@20% 0.522 0.560 0.557 0.495 0.459
Recall@20% 0.274 0.207 0.246 0.266 0.264
IFA 3.283 4.317 3.083 5.133 4.000
Popt 0.608 0.491 0.605 0.559 0.530

Precision@20%, and IFA values, there is no significant difference be-
tween these two models. Since the primary objective of EADP is to find
more bugs, we choose the logistic regression model for MOOAC.

(2) The training dataset of logistic regression model.
We compare two datasets in terms of the seven performance metrics

to investigate the better one (i.e., dataset 𝑆𝑑 only containing defective
modules and dataset S containing all modules). Fig. 12 shows the per-
formance distribution of MOOAC trained on the two training datasets
across all testing datasets, and Table 12 presents the average values
across all testing datasets.

As shown in Fig. 12 and Table 12, MOOAC trained on 𝑆𝑑 achieves
the best average values in terms of all seven metrics. But there is no
significant difference on all metrics. On the other hand, considering
that the NSGA-II algorithm employed by MOOAC is time-consuming in
15
Table 11
The average PofB@20%, PMI@20%, PofB/PMI@20%, Precision@20%, Recall@20%,
IFA, and Popt values of MOOAC using the logistic regression model and the linear
regression model.

Metrics Logistic Linear

PofB@20% 0.308 0.284
PMI@20% 0.190 0.180
PofB/ PMI@20% 2.222 3.381
Precision@20% 0.522 0.561
Recall@20% 0.274 0.234
IFA 3.283 2.282
Popt 0.608 0.602

obtaining the optimal solution of the logistic regression model, utilizing
a smaller training dataset S𝑑 with fewer modules can effectively reduce
the training time. Therefore, we choose S𝑑 as the training dataset to
build the logistic regression model for MOOAC.

(3) The parameter selection strategy for logistic regression model using the
NSGA-II algorithm.

Since we aim to find more bugs and inspect as fewer modules as
possible, we choose the coefficient vector in the Pareto optimal set that
achieves the best PofB/PMI@20% value among the top 10 coefficient
vectors that achieve the best PofB@20% value in MOOAC. To verify
the effectiveness of the strategy, we compare it with the two selection
strategies that choose the coefficient vector in the Pareto optimal set
that achieves the best PofB@20% and PMI@20% values in the top 10



Applied Soft Computing 149 (2023) 110941X. Yu et al.
Fig. 12. The boxplots of PofB@20%, PMI@20%, PofB/PMI@20%, Precision@20%, Recall@20%, IFA, and Popt of MOOAC trained on S𝑑 and S.
Table 12
The average PofB@20%, PMI@20%, PofB/PMI@20%, Precision@20%, Recall@20%,
IFA, and Popt values of MOOAC trained on S𝑑 and S (We keep four decimals of
Precision@20% and Popt values to show the difference).

Metrics 𝑆𝑑 S

PofB@20% 0.308 0.304
PMI@20% 0.190 0.192
PofB/ PMI@20% 2.222 2.205
Precision@20% 0.5225 0.5224
Recall@20% 0.274 0.271
IFA 3.283 3.317
Popt 0.6084 0.6080

Table 13
The average PofB@20%, PMI@20%, PofB/PMI@20%, Precision@20%, Recall@20%,
IFA, and Popt values of MOOAC using the three selection strategies.

Metrics Strategy 1 Strategy 2 Strategy 3

PofB@20% 0.308 0.300 0.301
PMI@20% 0.190 0.195 0.197
PofB/ PMI@20% 2.222 2.120 2.082
Precision@20% 0.522 0.508 0.513
Recall@20% 0.274 0.269 0.262
IFA 3.283 3.233 3.067
Popt 0.608 0.605 0.609

coefficient vectors that achieve the best PofB@20% value in terms of
seven performance metrics. We call the above three selection strategies
Strategy 1, Strategy 2, and Strategy 3, respectively. Fig. 13 shows the
performance distribution of MOOAC with the three strategies across
all testing datasets, and Table 13 presents the average value across all
testing datasets.

As shown in Fig. 13 and Table 13, Strategy 1 achieves the best aver-
age value on PofB@20%, PMI@20%, PofB/PMI@20%, Precision@20%,
and Recall@20%. Strategy 3 achieves the best average value on IFA
and Popt. In addition, there is no significant difference between the
three selection strategies on all metrics. The potential reason is the
top 10 coefficient vectors that achieve the best PofB@20% value are
already the Pareto optimal solutions, so picking one from them does
not significantly affect the performance of MOOAC. Since the main
objective is to find more bugs and inspect as fewer modules as possible,
we choose Strategy 1 as the selection strategy for MOOAC.
16
Answer to RQ5: The strategy of using logistic regression
model to calculate the defect probability for defective mod-
ules, training MOOAC on S𝑑 containing only defective mod-
ules, and selecting the coefficient vector in Parteo optimal set
that achieves the highest PofB/PMI@20% value among the
10 highest PofB@20% coefficient vectors help MOOAC obtain
better performance.

5. Threats of validity

In this section, we discuss the threats of validity of our study.
(1) For our experimental analysis, we select the PROMISE repository

as the dataset source due to its inclusion of multiple software releases
and associated bug information. This choice allows us to conduct the
cross-version validation that is more practical for the evaluation of
EADP methods. Though the PROMISE datasets are commonly utilized
in EADP studies [19,52], we could not affirm that MOOAC still per-
forms the best on other defect datasets. Therefore, we will verify the
generality of our method on more datasets in the future.

(2) In this study, all 19 software features (excluding LOC), are uti-
lized to construct the MOOAC model. Previous empirical works [63–66]
have demonstrated that the application of feature selection methods
can improve the performance of CBDP models. However, studies in-
vestigating feature selection for EADP models are scarce. The potential
improvement of the performance of EADP models through feature
selection remains an open question. As a result, we decide against
implementing feature selection, like the study conducted by [19].

(3) The parameters for the baseline methods are primarily deter-
mined based on previous literature or default settings. In our study,
we set the desired defective ratio of RUS as 0.5, and the classifica-
tion threshold for distinguishing defective and clean modules to 0.5
although we discuss it in RQ4, as they are the common practice. In
addition, the NSGA-II algorithm in MOOAC is implemented using the
‘‘geatpy’’1 package, and the default algorithm parameters of the pack-
age are used. Nevertheless, it is crucial to acknowledge that the optimal
parameters for a specific method and dataset may differ. Therefore,
exploring the influence of parameters on the performance of EADP
methods represents a potential avenue for future investigation.

1 https://github.com/geatpy-dev/geatpy.

https://github.com/geatpy-dev/geatpy


Applied Soft Computing 149 (2023) 110941X. Yu et al.
Fig. 13. The boxplots of PofB@20%, PMI@20%, PofB/PMI@20%, Precision@20%, Recall@20%, IFA, and Popt of MOOAC using the three strategies.
(4) Randomness in experiments may affect the performance of EADP
methods. Due to the NSGA-II algorithm, there is a certain randomness
in the results of MOOAC. In the RQ2, we apply RUS for each EADP
method. We cannot guarantee the same result in each run, because
RUS deletes clean modules randomly. Therefore, the entire procedure is
repeated 50 times, and the median value of the 50 results is considered
as the final outcome for each dataset.

(5) Indeed, the definition of ‘‘effort’’ in SDP remains a continuous
controversy. Several software developers have raised the observation
that estimating the actual effort required to review a software module
may not be adequately captured solely by the count of LOC [18]. It
is essential to consider additional factors, such as the complexity and
nature of software modules, when assessing the actual effort involved
in inspecting them. Therefore, we recommend that future researches
undertake empirical investigations into the factors influencing inspec-
tion effort and how to assign weights to different factors to establish
a standardized effort for all instances. Furthermore, in practical situ-
ations, more factors than just the frequency of module switching may
contribute to the additional cost of software testing, such as the number
of dependencies of a module and the distance between modules in the
file system. Some software testers may be more concerned about the
additional cost caused by the above factors rather than the frequent
switch between detected modules. In other words, there may be differ-
ent goals in software testing in different projects. In this case, one of the
optimization objective in our work can be changed from the number of
modules to other factors. MOOAC provides a universal software module
ranking method that satisfies multiple objectives for detection priority
in software testing. Therefore, we recommend that developers select
the multiple optimization goals to build the most suitable model based
on the specific requirements, schedule, and resources of their project.

6. Related work

6.1. EADP

Mende et al. [16] and Kamei et al. [14] first introduced the concept
of ‘‘effort-aware’’ into the field of SDP and pointed out that the ob-
jective of the EADP technique is to detect more bugs within the same
LOC compared with the CBDP technique. Kamei et al. [23] predicted
the defect density of code changes using the linear regression algorithm
and ranked changes based on the predicted values. Yang et al. [25]
observed that the unsupervised method ManualUp can achieve a higher
Recall@20% value compared with the supervised method EALR for
change-level EADP. However, Yan et al. [59] observed that the findings
17
of Yang et al. [25] are inconsistent for cross-project file-level EADP.
Huang et al. [18] pointed out that software testers would encounter
lots of initial false alarms (i.e., the high IFA value) and must inspect
many software modules (i.e., the high PMI@20% value) according
to the rankings of ManualUp. Therefore, they proposed the CBS+
method, and the results showed that CBS+ could find 15%–26% more
defective modules than EALR and reduce the PMI@20% and IFA values
compared with ManualUp. Yang et al. [54] proposed an EADP method
based on differential evolution algorithm. Li et al. [21] proposed the
EATT semi-supervised method, which adopted a greedy strategy to
prioritize code changes. Ni et al. [19,20] indicated the superiority
of CBS+ for cross-project EADP and just-in-time EADP on JavaScript
projects, respectively. The above-mentioned studies regarded EADP as
a single objective optimization problem, and focused on finding more
bugs when testing a certain number of LOC. Zhao et al. [53] proposed a
compositional model for EADP on android apps. Yu et al. [67] improved
EADP by directly learning to rank modules. Bennin et al. [68] and
Yu et al. [55] studied the best EADP modeling algorithms. Bennin
et al. [68] and Li et al. [22] investigated the effects of data imbalance
and feature selection for EADP model respectively. Chen et al. [39]
proposed MULTI, an EADP method based on multi-objective optimiza-
tion. The approach utilized logistic regression to build a model and
employed the NSGA-II algorithm to generate optimal solutions for
model parameters. The optimization objectives include maximizing the
number of detected defects (i.e., PofB) while minimizing the inspected
LOC. However, considering that software testers need to inspect a
specific amount of LOC (e.g., 20% LOC), the primary objective of the
method remains focused on identifying more bugs.

In summary, the existing EADP methods ignore the number of
required inspected modules, and the frequent switches between differ-
ent modules also increase the testing cost. Therefore, we propose the
MOOAC method with the multi-objectives of finding more bugs and
inspecting as fewer modules as possible.

6.2. Multi-objective optimization for CBDP

Recently, some researchers considered CBDP as a multi-objective
optimization problem. Ryu et al. [69] proposed a multi-objective naive
Bayes method for cross-project CBDP, and there are three optimization
objectives, i.e., the Probability of Detection (PD), Probability of False
alarm (PF), and Balance. PD and PF are two common metrics in
multi-objective CBDP. Chen et al. [70,71] proposed a feature selection
method for CBDP with the optimization objectives of minimizing the



Applied Soft Computing 149 (2023) 110941X. Yu et al.

v
d
a
p
a
o
m
f
t
P

i
i
g
T

C

–
W
r
s

number of selected features and maximizing the CBDP model perfor-
mance. Niu et al. [72] proposed a multi-objective oriented cuckoo
search to optimize several objects simultaneously to improve the SDP
model accuracy. Cao et al. [73] set the PD and PF as the optimization
objectives, and proposed a CBDP model based on twin support vector
machines. Ni et al. [71] proposed a feature selection method based
on multi-objective optimization for CBDP. The primary objective is to
minimize the number of selected features in order to reduce detection
costs. The secondary objective is to maximize the HyperVolume (HV),
which is a measure of the volume covered by the Pareto front in the
objective space. This objective aims to improve the performance of the
constructed models. Cai et al. [74] utilized a hybrid multi-objective
cuckoo search algorithm to develop a CBDP model using Support Vector
Machine (SVM). Their approach addresses the challenges of class imbal-
ance in datasets and the selection of optimal parameters for SVM. The
objectives of the cuckoo search algorithm in this context are to optimize
the PF and PD of the CBDP model. Zhang et al. [75] utilized the NSGA-II
algorithm to choose the fewest features and minimize the classification
error of CBDP models. Kanwar et al. [76] and Ye et al. [77] proposed
a CBDP model based on multi-objective optimization to minimize the
PF and to maximize the PD.

However, the above studies only focused on optimizing the clas-
sification performance of SDP models. In our study, we propose a
multi-objective optimization-based method for EADP, which aims to
maximize the found bugs and minimize the required inspected modules
simultaneously when testing a certain amount of LOC.

7. Conclusion

The EADP technique can help software testers to assign testing re-
sources more efficiently by suggesting testers inspect software modules
with high defect density first. The previous studies [14,17] point out
that the main objective of EADP is finding more bugs when testing a
certain number of LOC. However, the existing EADP methods ignore
that inspecting more modules and frequently switching between differ-
ent modules also increase the testing cost. Therefore, we argue that the
main objective of EADP should be not only finding more bugs but also
inspecting as fewer modules as possible, when testing a certain amount
of LOC.

In this paper, we propose a multi-objective effort-aware defect
prediction approach named MOOAC for EADP, which aims to maximize
the PofB@20% value and minimize the PMI@20% value while check-
ing the top 20% LOC. In addition, MOOAC employs the random forest
classifier to distinguish defective modules and clean ones to reduce the
IFA value in the prediction phase. We perform the more practical cross-
version validation in the experiments and evaluate MOOAC against the
five existing EADP methods. In addition, we discuss the internal factors
that affect the performance of MOOAC. The experimental results in our
study include the following. (1) ManualUp, EATT, and NSGA-II tend to
rank modules with fewer LOC first, so their IFA values are greater than
10. Except for the three methods, MOOAC achieves the best overall
performance in terms of PofB@20%, PMI@20%, PofB/PMI@20%, and
IFA. (2) Applying RUS to the defect datasets cannot improve the perfor-
mance of MOOAC. (3) Using random forest as the underlying classifier
of MOOAC can achieve the highest PofB@20%, Recall@20%, and Popt
alues among all the selected classifiers. (4) MOOAC suggest setting the
efective threshold as 0.5 due to its best performance on PofB@20%
nd good performance on other metrics, which is also widely used in
ractice. Furthermore, to fit to the diverse needs of different situations
cross different performance metrics, we recommend setting the thresh-
ld value in the range of 0.2 to 0.8. (5) Using the logistic regression
odel to build the relationship between the defect density and software

eatures, training MOOAC on only defective modules, and choosing
he coefficient vector in the Pareto optimal set that achieves the best
18

ofB/PMI@20% value can help MOOAC achieve better performance.
As a whole, our MOOAC method can ensure to find more bugs and
nspect as fewer modules as possible simultaneously. In addition, the
nitial false alarm of the ranking provided by MOOAC is low, thus
uaranteeing to detect actual defective modules as soon as possible.
herefore, MOOAC is recommended as an effective method for EADP.

RediT authorship contribution statement

Xiao Yu: Data curation, Formal analysis, Methodology, Writing
original draft. Liming Liu: Data curation, Methodology, Software,
riting – original draft. Lin Zhu: Formal analysis, Software, Writing –

eview & editing. Jacky Wai Keung: Project administration, Supervi-
ion, Validation. Zijian Wang: Resources, Software, Writing – original

draft. Fuyang Li: Formal analysis, Methodology, Supervision, Writing
– review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

This work is supported in part by the National Natural Science
Foundation of China (62272356), the National Natural Science Foun-
dation of China of Chongqing City (cstc2021jcyj-msxmX1115), and the
Start-up Grant from Wuhan University of Technology (104-40120693).

References

[1] X. Yu, J. Keung, Y. Xiao, S. Feng, F. Li, H. Dai, Predicting the precise number
of software defects: Are we there yet? Inf. Softw. Technol. 146 (2022) 106847.

[2] X. Yu, M. Wu, Y. Jian, K.E. Bennin, M. Fu, C. Ma, Cross-company defect
prediction via semi-supervised clustering-based data filtering and MSTrA-based
transfer learning, Soft Comput. 22 (2018) 3461–3472.

[3] C. Zhou, P. He, C. Zeng, J. Ma, Software defect prediction with semantic and
structural information of codes based on Graph Neural Networks, Inf. Softw.
Technol. 152 (2022) 107057.

[4] H. Chen, X.-Y. Jing, Y. Zhou, B. Li, B. Xu, Aligned metric representation based
balanced multiset ensemble learning for heterogeneous defect prediction, Inf.
Softw. Technol. 147 (2022) 106892.

[5] Z. Sun, J. Li, H. Sun, L. He, CFPS: Collaborative filtering based source projects
selection for cross-project defect prediction, Appl. Soft Comput. 99 (2021)
106940.

[6] Y. Zhao, Y. Wang, Y. Zhang, D. Zhang, Y. Gong, D. Jin, ST-TLF: Cross-version
defect prediction framework based transfer learning, Inf. Softw. Technol. 149
(2022) 106939.

[7] X. Yu, J. Liu, Z. Yang, X. Liu, The Bayesian Network based program dependence
graph and its application to fault localization, J. Syst. Softw. 134 (2017) 44–53.

[8] X. Yu, J. Liu, Z.J. Yang, X. Liu, X. Yin, S. Yi, Bayesian network based program
dependence graph for fault localization, in: 2016 IEEE International Symposium
on Software Reliability Engineering Workshops (ISSREW), IEEE, 2016, pp.
181–188.

[9] Z. Zhang, Y. Lei, T. Su, M. Yan, X. Mao, Y. Yu, Influential global and local
contexts guided trace representation for fault localization, ACM Trans. Softw.
Eng. Methodol. 32 (3) (2023) 78:1–78:27.

[10] J. Bai, J. Jia, L.F. Capretz, A three-stage transfer learning framework for multi-
source cross-project software defect prediction, Inf. Softw. Technol. 150 (2022)
106985.

[11] Y. Gao, Y. Zhu, Y. Zhao, Dealing with imbalanced data for interpretable defect
prediction, Inf. Softw. Technol. 151 (2022) 107016.

[12] S. Stradowski, L. Madeyski, Industrial applications of software defect prediction
using machine learning: A business-driven systematic literature review, Inf.
Softw. Technol. 159 (2023) 107192, http://dx.doi.org/10.1016/j.infsof.2023.
107192.

[13] Z. Sun, J. Zhang, H. Sun, X. Zhu, Collaborative filtering based recommendation of
sampling methods for software defect prediction, Appl. Soft Comput. 90 (2020)
106163.

http://refhub.elsevier.com/S1568-4946(23)00959-6/sb1
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb1
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb1
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb2
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb2
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb2
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb2
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb2
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb3
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb3
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb3
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb3
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb3
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb4
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb4
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb4
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb4
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb4
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb5
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb5
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb5
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb5
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb5
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb6
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb6
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb6
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb6
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb6
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb7
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb7
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb7
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb8
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb8
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb8
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb8
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb8
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb8
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb8
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb9
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb9
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb9
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb9
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb9
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb10
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb10
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb10
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb10
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb10
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb11
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb11
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb11
http://dx.doi.org/10.1016/j.infsof.2023.107192
http://dx.doi.org/10.1016/j.infsof.2023.107192
http://dx.doi.org/10.1016/j.infsof.2023.107192
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb13
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb13
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb13
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb13
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb13


Applied Soft Computing 149 (2023) 110941X. Yu et al.
[14] Y. Kamei, S. Matsumoto, A. Monden, K.-i. Matsumoto, B. Adams, A.E. Hassan,
Revisiting common bug prediction findings using effort-aware models, in: 2010
IEEE International Conference on Software Maintenance, IEEE, 2010, pp. 1–10.

[15] F. Li, P. Yang, J.W. Keung, W. Hu, H. Luo, X. Yu, Revisiting ‘revisiting supervised
methods for effort-aware cross-project defect prediction’, IET Softw. 17 (4)
(2023) 472–495.

[16] T. Mende, R. Koschke, Effort-aware defect prediction models, in: 2010 14th
European Conference on Software Maintenance and Reengineering, IEEE, 2010,
pp. 107–116.

[17] T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang, A. Bener, Defect prediction
from static code features: current results, limitations, new approaches, Autom.
Softw. Eng. 17 (4) (2010) 375–407.

[18] Q. Huang, X. Xia, D. Lo, Revisiting supervised and unsupervised models for
effort-aware just-in-time defect prediction, Empir. Softw. Eng. 24 (5) (2019)
2823–2862.

[19] C. Ni, X. Xia, D. Lo, X. Chen, Q. Gu, Revisiting supervised and unsupervised
methods for effort-aware cross-project defect prediction, IEEE Trans. Softw. Eng.
48 (3) (2022) 786–802.

[20] C. Ni, X. Xia, D. Lo, X. Yang, A.E. Hassan, Just-in-time defect prediction on
JavaScript projects: A replication study, ACM Trans. Softw. Eng. Methodol. 31
(4) (2022) 1–38.

[21] W. Li, W. Zhang, X. Jia, Z. Huang, Effort-aware semi-supervised just-in-time
defect prediction, Inf. Softw. Technol. 126 (2020) 106364.

[22] F. Li, W. Lu, J.W. Keung, X. Yu, L. Gong, J. Li, The impact of feature selection
techniques on effort-aware defect prediction: An empirical study, IET Softw. 17
(2) (2023) 168–193.

[23] Y. Kamei, E. Shihab, B. Adams, A.E. Hassan, A. Mockus, A. Sinha, N. Ubayashi,
A large-scale empirical study of just-in-time quality assurance, IEEE Trans. Softw.
Eng. 39 (6) (2012) 757–773.

[24] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective
genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput. 6 (2) (2002) 182–197.

[25] Y. Yang, Y. Zhou, H. Lu, L. Chen, Z. Chen, B. Xu, H. Leung, Z. Zhang, Are
slice-based cohesion metrics actually useful in effort-aware post-release fault-
proneness prediction? An empirical study, IEEE Trans. Softw. Eng. 41 (4) (2014)
331–357.

[26] T. Menzies, B. Caglayan, E. Kocaguneli, J. Krall, F. Peters, B. Turhan, The Promise
Repository of Empirical Software Engineering Data, West Virginia University,
Department of Computer Science, 2012, URL: http://promisedata.org/repository.

[27] K.E. Bennin, A. Tahir, S.G. MacDonell, J. Börstler, An empirical study on the
effectiveness of data resampling approaches for cross-project software defect
prediction, IET Softw. 16 (2) (2022) 185–199.

[28] S. Feng, J. Keung, P. Zhang, Y. Xiao, M. Zhang, The impact of the distance
metric and measure on SMOTE-based techniques in software defect prediction,
Inf. Softw. Technol. 142 (2022) 106742.

[29] S.K. Pandey, A.K. Tripathi, An empirical study toward dealing with noise and
class imbalance issues in software defect prediction, Soft Comput. 25 (21) (2021)
13465–13492.

[30] X. Yu, J. Liu, J.W. Keung, Q. Li, K.E. Bennin, Z. Xu, J. Wang, X. Cui, Improving
ranking-oriented defect prediction using a cost-sensitive ranking SVM, IEEE
Trans. Reliab. 69 (1) (2019) 139–153.

[31] X. Yu, J. Liu, Z. Yang, X. Jia, Q. Ling, S. Ye, Learning from imbalanced data
for predicting the number of software defects, in: 2017 IEEE 28th International
Symposium on Software Reliability Engineering (ISSRE), IEEE, 2017, pp. 78–89.

[32] W. Zheng, T. Shen, X. Chen, P. Deng, Interpretability application of the
Just-in-Time software defect prediction model, J. Syst. Softw. 188 (2022)
111245.

[33] C. Tantithamthavorn, A.E. Hassan, K. Matsumoto, The impact of class rebalancing
techniques on the performance and interpretation of defect prediction models,
IEEE Trans. Softw. Eng. 46 (11) (2020) 1200–1219.

[34] D. Bowes, T. Hall, J. Petrić, Software defect prediction: do different classifiers
find the same defects? Softw. Qual. J. 26 (2) (2018) 525–552.

[35] B. Ghotra, S. McIntosh, A.E. Hassan, Revisiting the impact of classification
techniques on the performance of defect prediction models, in: 37th IEEE/ACM
International Conference on Software Engineering, ICSE 2015, Florence, Italy,
May 16-24, 2015, Volume 1, IEEE Computer Society, 2015, pp. 789–800.

[36] C. Tantithamthavorn, S. McIntosh, A.E. Hassan, K. Matsumoto, The impact of
automated parameter optimization on defect prediction models, IEEE Trans.
Softw. Eng. 45 (7) (2018) 683–711.

[37] P.S. Kochhar, X. Xia, D. Lo, S. Li, Practitioners’ expectations on automated fault
localization, in: Proceedings of the 25th International Symposium on Software
Testing and Analysis, 2016, pp. 165–176.

[38] C. Parnin, A. Orso, Are automated debugging techniques actually helping
programmers? in: Proceedings of the 2011 International Symposium on Software
Testing and Analysis, 2011, pp. 199–209.

[39] X. Chen, Y. Zhao, Q. Wang, Z. Yuan, MULTI: Multi-objective effort-aware
just-in-time software defect prediction, Inf. Softw. Technol. 93 (2018) 1–13.

[40] Q. Huang, X. Xia, D. Lo, Supervised vs unsupervised models: A holistic
look at effort-aware just-in-time defect prediction, in: 2017 IEEE International
Conference on Software Maintenance and Evolution (ICSME), IEEE, 2017, pp.
159–170.
19
[41] H.Q. Awla, S.W. Kareem, A.S. Mohammed, A comparative evaluation of Bayesian
networks structure learning using falcon optimization algorithm, Int. J. Interact.
Multimedia Artif. Intell. 8 (2) (2023) 81.

[42] Q. Ding, X. Xu, Improved GWO algorithm for UAV path planning on crop pest
monitoring, Int. J. Interact. Multimed. Artif. Intell. 7 (5) (2022) 30.

[43] Y. Chen, X. Lu, X. Li, Supervised deep hashing with a joint deep network, Pattern
Recognit. 105 (2020) 107368.

[44] Y. Chen, X. Lu, S. Wang, Deep cross-modal image–voice retrieval in remote
sensing, IEEE Trans. Geosci. Remote Sens. 58 (10) (2020) 7049–7061.

[45] Y. Chen, S. Xiong, L. Mou, X.X. Zhu, Deep quadruple-based hashing for remote
sensing image-sound retrieval, IEEE Trans. Geosci. Remote Sens. 60 (2022) 1–14.

[46] C. He, J. Wu, Q. Zhang, Characterizing research leadership on geographically
weighted collaboration network, Scientometrics 126 (5) (2021) 4005–4037.

[47] C. He, J. Wu, Q. Zhang, Proximity-aware research leadership recommendation
in research collaboration via deep neural networks, J. Assoc. Inf. Sci. Technol.
73 (1) (2022) 70–89.

[48] Y. Chen, H. Dai, X. Yu, W. Hu, Z. Xie, C. Tan, Improving Ponzi scheme contract
detection using multi-channel TextCNN and transformer, Sensors 21 (19) (2021)
6417.

[49] F. Li, K. Zou, J.W. Keung, X. Yu, S. Feng, Y. Xiao, On the relative value of
imbalanced learning for code smell detection, Softw. - Pract. Exp. 53 (10) (2023)
1902–1927.

[50] X. Ma, J. Keung, Z. Yang, X. Yu, Y. Li, H. Zhang, CASMS: Combining clustering
with attention semantic model for identifying security bug reports, Inf. Softw.
Technol. 147 (2022) 106906.

[51] Z. Yang, J.W. Keung, X. Yu, Y. Xiao, Z. Jin, J. Zhang, On the significance of
category prediction for code-comment synchronization, ACM Trans. Softw. Eng.
Methodol. 32 (2) (2023) 1–41.

[52] X. Yu, K.E. Bennin, J. Liu, J.W. Keung, X. Yin, Z. Xu, An empirical study of
learning to rank techniques for effort-aware defect prediction, in: 2019 IEEE
26th International Conference on Software Analysis, Evolution and Reengineering
(SANER), IEEE, 2019, pp. 298–309.

[53] K. Zhao, Z. Xu, M. Yan, L. Xue, W. Li, G. Catolino, A compositional model for
effort-aware Just-In-Time defect prediction on android apps, IET Softw. 16 (3)
(2022) 259–278.

[54] X. Yang, H. Yu, G. Fan, K. Yang, DEJIT: a differential evolution algorithm for
effort-aware just-in-time software defect prediction, Int. J. Softw. Eng. Knowl.
Eng. 31 (03) (2021) 289–310.

[55] X. Yu, H. Dai, L. Li, X. Gu, J.W. Keung, K.E. Bennin, F. Li, J. Liu, Finding the
best learning to rank algorithms for effort-aware defect prediction, Inf. Softw.
Technol. 157 (2023) 107165.

[56] T.-D.B. Le, D. Lo, Beyond support and confidence: Exploring interestingness
measures for rule-based specification mining, in: 2015 IEEE 22nd International
Conference on Software Analysis, Evolution, and Reengineering (SANER), IEEE,
2015, pp. 331–340.

[57] F. Rahman, C. Bird, P. Devanbu, Clones: What is that smell? Empir. Softw. Eng.
17 (2012) 503–530.

[58] H. Tong, W. Lu, W. Xing, B. Liu, S. Wang, SHSE: A subspace hybrid sampling
ensemble method for software defect number prediction, Inf. Softw. Technol.
142 (2022) 106747.

[59] M. Yan, Y. Fang, D. Lo, X. Xia, X. Zhang, File-level defect prediction: Unsu-
pervised vs. supervised models, in: 2017 ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement (ESEM), IEEE, 2017, pp.
344–353.

[60] F. Wilcoxon, Individual comparisons by ranking methods, in: Breakthroughs in
Statistics, Springer, 1992, pp. 196–202.

[61] J. Ferreira, A. Zwinderman, On the benjamini–hochberg method, Ann. Statist.
34 (4) (2006) 1827–1849.

[62] V.B. Kampenes, T. Dybå, J.E. Hannay, D.I. Sjøberg, A systematic review of effect
size in software engineering experiments, Inf. Softw. Technol. 49 (11–12) (2007)
1073–1086.

[63] A.O. Balogun, S. Basri, S. Mahamad, S.J. Abdulkadir, M.A. Almomani, V.E.
Adeyemo, Q. Al-Tashi, H.A. Mojeed, A.A. Imam, A.O. Bajeh, Impact of feature
selection methods on the predictive performance of software defect prediction
models: an extensive empirical study, Symmetry 12 (7) (2020) 1147.

[64] B. Ghotra, S. McIntosh, A.E. Hassan, A large-scale study of the impact of feature
selection techniques on defect classification models, in: 2017 IEEE/ACM 14th
International Conference on Mining Software Repositories (MSR), IEEE, 2017,
pp. 146–157.

[65] C. Ni, X. Chen, F. Wu, Y. Shen, Q. Gu, An empirical study on pareto based
multi-objective feature selection for software defect prediction, J. Syst. Softw.
152 (JUN.) (2019) 215–238.

[66] K. Thirumoorthy, et al., A feature selection model for software defect prediction
using binary Rao optimization algorithm, Appl. Soft Comput. 131 (2022) 109737.

[67] X. Yu, J. Rao, W. Hu, J. Keung, J. Zhou, J. Xiang, Improving effort-aware defect
prediction by directly learning to rank software modules, Inf. Softw. Technol.
(2023) http://dx.doi.org/10.1016/j.infsof.2023.107250.

[68] K.E. Bennin, K. Toda, Y. Kamei, J. Keung, A. Monden, N. Ubayashi, Empirical
evaluation of cross-release effort-aware defect prediction models, in: 2016 IEEE
International Conference on Software Quality, Reliability and Security (QRS),
IEEE, 2016, pp. 214–221.

http://refhub.elsevier.com/S1568-4946(23)00959-6/sb14
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb14
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb14
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb14
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb14
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb15
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb15
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb15
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb15
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb15
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb16
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb16
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb16
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb16
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb16
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb17
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb17
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb17
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb17
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb17
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb18
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb18
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb18
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb18
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb18
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb19
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb19
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb19
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb19
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb19
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb20
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb20
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb20
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb20
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb20
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb21
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb21
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb21
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb22
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb22
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb22
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb22
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb22
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb23
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb23
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb23
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb23
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb23
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb24
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb24
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb24
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb25
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb25
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb25
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb25
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb25
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb25
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb25
http://promisedata.org/repository
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb27
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb27
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb27
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb27
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb27
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb28
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb28
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb28
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb28
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb28
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb29
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb29
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb29
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb29
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb29
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb30
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb30
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb30
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb30
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb30
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb31
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb31
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb31
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb31
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb31
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb32
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb32
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb32
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb32
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb32
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb33
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb33
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb33
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb33
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb33
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb34
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb34
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb34
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb35
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb35
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb35
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb35
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb35
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb35
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb35
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb36
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb36
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb36
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb36
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb36
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb37
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb37
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb37
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb37
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb37
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb38
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb38
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb38
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb38
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb38
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb39
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb39
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb39
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb40
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb40
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb40
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb40
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb40
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb40
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb40
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb41
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb41
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb41
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb41
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb41
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb42
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb42
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb42
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb43
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb43
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb43
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb44
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb44
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb44
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb45
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb45
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb45
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb46
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb46
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb46
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb47
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb47
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb47
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb47
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb47
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb48
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb48
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb48
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb48
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb48
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb49
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb49
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb49
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb49
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb49
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb50
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb50
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb50
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb50
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb50
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb51
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb51
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb51
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb51
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb51
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb52
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb52
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb52
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb52
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb52
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb52
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb52
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb53
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb53
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb53
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb53
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb53
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb54
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb54
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb54
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb54
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb54
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb55
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb55
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb55
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb55
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb55
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb56
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb56
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb56
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb56
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb56
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb56
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb56
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb57
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb57
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb57
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb58
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb58
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb58
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb58
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb58
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb59
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb59
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb59
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb59
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb59
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb59
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb59
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb60
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb60
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb60
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb61
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb61
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb61
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb62
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb62
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb62
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb62
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb62
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb63
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb63
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb63
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb63
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb63
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb63
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb63
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb64
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb64
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb64
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb64
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb64
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb64
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb64
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb65
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb65
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb65
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb65
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb65
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb66
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb66
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb66
http://dx.doi.org/10.1016/j.infsof.2023.107250
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb68
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb68
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb68
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb68
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb68
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb68
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb68


Applied Soft Computing 149 (2023) 110941X. Yu et al.
[69] D. Ryu, J. Baik, Effective multi-objective naïve Bayes learning for cross-project
defect prediction, Appl. Soft Comput. 49 (2016) 1062–1077.

[70] X. Chen, Y. Shen, Z. Cui, X. Ju, Applying feature selection to software defect
prediction using multi-objective optimization, in: 2017 IEEE 41st Annual Com-
puter Software and Applications Conference (COMPSAC), Vol. 2, IEEE, 2017, pp.
54–59.

[71] C. Ni, X. Chen, F. Wu, Y. Shen, Q. Gu, An empirical study on pareto based
multi-objective feature selection for software defect prediction, J. Syst. Softw.
152 (2019) 215–238.

[72] Y. Niu, Z. Tian, M. Zhang, X. Cai, J. Li, Adaptive two-SVM multi-objective cuckoo
search algorithm for software defect prediction, Int. J. Comput. Sci. Math. 9 (6)
(2018) 547–554.

[73] Y. Cao, Z. Ding, F. Xue, X. Rong, An improved twin support vector machine
based on multi-objective cuckoo search for software defect prediction, Int. J.
Bio-Inspired Comput. 11 (4) (2018) 282–291.
20
[74] X. Cai, Y. Niu, S. Geng, J. Zhang, Z. Cui, J. Li, J. Chen, An under-sampled
software defect prediction method based on hybrid multi-objective cuckoo
search, Concurr. Comput.: Pract. Exper. 32 (5) (2020) e5478.

[75] N. Zhang, S. Ying, W. Ding, K. Zhu, D. Zhu, WGNCS: A robust hybrid cross-
version defect model via multi-objective optimization and deep enhanced feature
representation, Inform. Sci. 570 (2021) 545–576.

[76] S. Kanwar, L.K. Awasthi, V. Shrivastava, Efficient random forest algorithm for
multi-objective optimization in software defect prediction, IETE J. Res. (2023)
1–13.

[77] T. Ye, W. Li, J. Zhang, Z. Cui, A novel multi-objective immune optimization
algorithm for under sampling software defect prediction problem, Concurr.
Comput.: Pract. Exper. 35 (4) (2023) e7525.

http://refhub.elsevier.com/S1568-4946(23)00959-6/sb69
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb69
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb69
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb70
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb70
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb70
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb70
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb70
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb70
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb70
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb71
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb71
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb71
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb71
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb71
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb72
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb72
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb72
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb72
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb72
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb73
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb73
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb73
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb73
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb73
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb74
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb74
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb74
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb74
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb74
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb75
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb75
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb75
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb75
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb75
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb76
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb76
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb76
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb76
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb76
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb77
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb77
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb77
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb77
http://refhub.elsevier.com/S1568-4946(23)00959-6/sb77

	A multi-objective effort-aware defect prediction approach based on NSGA-II
	Introduction
	Motivation
	Our Work and Contributions
	Organization

	Our Approach
	Overview
	Model Construction
	Model Prediction

	Experimental Setup
	Datasets
	Evaluation Metrics
	Baseline Methods
	Experimental Design Summary

	Experimental Results
	RQ1: Does MOOAC outperform the state-of-the-art EADP methods?
	RQ2: Does the data imbalance problem affect the performance of MOOAC?
	RQ3: Does the underlying classifier of MOOAC affect the performance of MOOAC?
	RQ4: Does the defective threshold to distinguish the defective and clean modules affect the performance of MOOAC?
	RQ5: Does the model training strategy affect the performance of MOOAC?

	Threats of Validity
	Related Work
	EADP
	Multi-Objective Optimization for CBDP

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


