
An Empirical Study of Learning to Rank Techniques
for Effort-Aware Defect Prediction

Xiao Yu1,2, Kwabena Ebo Bennin2, Jin Liu1*, Jacky Wai Keung2*, Xiaofei Yin3, Zhou Xu1

1School of Computer Science, Wuhan University, Wuhan, China
2Department of Computer Science, City University of Hong Kong, Hong Kong, China

3School of Computer Science, Fudan University, Shanghai, China
*Corresponding authors: {jinliu@whu.edu.cn, jacky.keung@cityu.edu.hk}

Abstract—Effort-Aware Defect Prediction (EADP) ranks soft-

ware modules based on the possibility of these modules being
defective, their predicted number of defects, or defect density by
using learning to rank algorithms. Prior empirical studies com-
pared a few learning to rank algorithms considering small num-
ber of datasets, evaluating with inappropriate or one type of per-
formance measure, and non-robust statistical test techniques. To
address these concerns and investigate the impact of learning to
rank algorithms on the performance of EADP models, we exam-
ine the practical effects of 23 learning to rank algorithms on 41
available defect datasets from the PROMISE repository using a
module-based effort-aware performance measure (FPA) and a
source lines of code (SLOC) based effort-aware performance
measure (Norm(Popt)). In addition, we compare the performance
of these algorithms when they are trained on a more relevant
feature subset selected by the Information Gain feature selection
method. In terms of FPA and Norm(Popt), statistically significant
differences are observed among these algorithms with BRR
(Bayesian Ridge Regression) performing best in terms of FPA,
and BRR and LTR (Learning-to-Rank) performing best in terms
of Norm(Popt). When these algorithms are trained on a more rele-
vant feature subset selected by Information Gain, LTR and BRR
still perform best with significant differences in terms of FPA and
Norm(Popt). Therefore, we recommend BRR and LTR for build-
ing the EADP model in order to find more defects by inspecting a
certain number of modules or lines of codes.

Index Terms—effort-aware defect prediction; learning to rank;
empirical study; Scott-Knott ESD test.

I. INTRODUCTION
Software defect prediction (SDP) has been an active re-

search area in the field of software engineering attracting more
and more attention from both industry and academia [1], [2].
SDP models predict whether a software module is defective
based on some software features such as source lines of codes
(SLOC) and McCabe’s cyclomatic complexity. Accurate pre-
diction results can help allocate limited testing resources by
suggesting that software testers pay more attention on those
predicted defective modules [3], [4], [5], [17], [18].

However, traditional SDP models [30], [32], [33] based on
some binary classification algorithms are not sufficient for
software testing in practice, since they do not distinguish be-
tween a module with many defects or high defect density (i.e.,
number of defects/lines of source codes) and a module with a
small number of defects or low defect density [5], [6], [7], [34].
Clearly, both modules require a different amount of effort to

inspect and fix, yet they are considered equal and allocated the
same testing resources. Therefore, Mende et al. [8] proposed
effort-aware defect prediction (EADP) models to rank software
modules based on the possibility of these modules being defec-
tive, their predicted number of defects, or defect density.

Generally, EADP models are constructed by using learning
to rank techniques [5]. These techniques can be grouped into
three categories, i.e., the pointwise approach, the pairwise ap-
proach, and the listwise approach [11], [12], [29]. There exist a
vast variety of learning to rank algorithms in literature. It is
thus important to empirically and statistically compare the im-
pact and effectiveness of different learning to rank algorithms
for EADP. To the best of our knowledge, few prior studies [9],
[10], [15], [16], [43] evaluated and compared the existing
learning to rank algorithms for EADP.

Most of these studies however conducted their study with
few learning to rank algorithms across a small number of da-
tasets. Previous studies [15], [16], [43] conducted their study
with as many as five EADP models and few datasets. For ex-
ample, Jiang et al. [15] investigated the performance of only
five classification-based pointwise algorithms for EADP on
two NASA datasets. Nguyen et al. [43] investigated three re-
gression based pointwise algorithm and two pairwise algo-
rithms for EADP on five Eclipse CVS datasets.

In addition, the results of most studies were evaluated with
an inappropriate or one type of performance measure and non-
robust statistical tests. Evaluation of EADP models with AUC
(Area Under the Curve), precision, recall and SRCC (Spearman
Rank Correlation Coefficient) [43] is not suitable, because they
do not take the effort into consideration [36], [37], [38]. Jiang
et al. [15] and Yang et al. [10] employed one type of perfor-
mance measure, i.e., three module-based effort-aware perfor-
mance measures (Lift Chart (LC), Cumulative Lift Chart
(CLC), and Fault-percentile-average (FPA)), while Mende et al.
[16] and Bennin et al. [9] employed another type of perfor-
mance measure, i.e., two SLOC-based effort-aware perfor-
mance measures (Popt and Norm(Popt)). Module-based perfor-
mance measures evaluate how many defects can be found when
we inspect a certain number of modules, while SLOC-based
performance measures evaluate how many defects can be
found when we inspect a certain number of lines of codes. It is
thus crucial to investigate which learning to rank algorithm is
best for different application scenarios, i.e., software testers
may need to find more defects by inspecting a certain number
of modules or lines of codes.

978-1-7281-0591-8/19/$31.00 c© 2019 IEEE SANER 2019, Hangzhou, China
Research Papers

298
Authorized licensed use limited to: Wuhan University. Downloaded on January 13,2025 at 08:00:44 UTC from IEEE Xplore. Restrictions apply.

Prior studies [9], [10] concluded that the effectiveness of
different learning to rank algorithms are not significantly dif-
ferent from each other. These empirical findings may be sus-
ceptible to the statistical test techniques they employed in the
experiments, such as the Friedman test with Nemenyi test in [9],
[15], [16], because Ghotra et al. [19] pointed out that these
techniques have some limitation for multiple comparison anal-
ysis. Lastly, previous results have shown that eliminating irrel-
evant features from the original dataset can improve the per-
formance of predictive models [5], [31]. It is thus important to
apply feature selection techniques to software defect datasets,
since feature selection techniques are able to filter out irrele-
vant features by calculating the contributions of software fea-
tures [25], [26], [35].

Considering the above issues, we address the following re-
search questions using 41 releases of 11 available and com-
monly-used software projects from the PROMISE data reposi-
tory [74].

(1) RQ1: Which is the best learning to rank algorithm
for EADP?

For RQ1, we conduct an extensive comparative study on
the impact of 6 classification-based pointwise learning to rank
algorithms, 9 regression-based pointwise learning to rank algo-
rithms, 4 pairwise learning to rank algorithms and 4 listwise
learning to rank algorithms for EADP evaluated with the mod-
ule-based effort-aware performance measure (FPA) and the
SLOC-based effort-aware performance measure (Norm(Popt)).
The experimental results show that Bayesian Ridge Regression
(BRR) performs best in terms of FPA, and BRR and Learning
to Rank (LTR) perform best in terms of Norm(Popt). The exper-
imental results are supported by the state-of-the-art multiple
comparison technique, i.e., Scott-Knott ESD test [86].

(2) RQ2: Which is the best performing algorithm when
trained on a relevant feature subset selected by Information
Gain?

To filter out irrelevant features and significantly improve
prediction performance, we adopt Information Gain as the fea-
ture selection method for this study, similar to the study in [5].
Experimental results show that eliminating irrelevant software
features from the original dataset can improve the performance
of EADP models. LTR and BRR perform best in terms of FPA
and Norm(Popt) when these algorithms are trained on a more
relevant feature subset selected by Information Gain. The re-
sults are also supported by the Scott-Knott ESD test.

We recommend that software testers first employ Infor-
mation Gain to eliminate irrelevant software features, and then
use LTR and BRR to build the EADP model when they aim to
inspect a certain number of modules or lines of code to find
more defects.

The remainder of this paper is organized as follows. Sec-
tion II briefly introduces the learning to rank algorithms. Sec-
tion III and Section IV present the experiment setup and exper-
iment results, respectively. Section V discusses the potential
threats to validity. Section VI presents the related work. Finally,
Section VII addresses the conclusion and points out the future
work.

II. BACKGROUND
A software module can be represented as Mi=(xi,yi), where

xi=(x1, x2,…, xm) is a m-dimensional software feature vector of
the i-th module, and yi is the number of defects in the i-th mod-
ule. A software defect dataset can be represented as
S={Mi=(xi,yi)} n

i=1, where n is the number of modules in S. The
goal of EADP is to learn from S to obtain a prediction model to
rank new modules according to the possibility of these modules
being defective, their predicted number of defects, or defect
density, where Mj ≻ Mk means that the possibility of Mj being
defective, the number of defects or defect density in Mj is larger
than that in Mk.

In this section, we briefly introduce the 23 learning to rank
algorithms due to the space limitation. These algorithms cover
three families, including 15 pointwise algorithms, 4 pairwise
algorithms, and 4 listwise algorithms. Figure 1 shows an over-
view of the three types of approaches, and Table I provides an
overview of the 23 algorithms.

 Three input modules:

Point-wise Pair-wise List-wise

D
iff

er
en

t A
pp

ro
ac

he
s

O
ut

pu
t

C

B

A

Number(C)

Number(B)

Number(A)

N(A)>N(B)>N(C)

C

A

A

B f(A)>f(B)

f(A)>f(C)

f(B)>f(C)B C

,

,

,

PA,B,CCA B

A CB

AB C, ,

, ,

, ,

PB,A,C

PB,C,A

CBARanking=

f(A)>f(B),f(A)>f(C),f(B)>f(C)

...

C B A, ,

PA,B,C>PB,A,C>PB,C,A ...

Figure 1. An overview of the three types of learning to rank approaches.

A. The Pointwise Approach
The pointwise approach tries to predict the possibility of a

module being defective or the number of defects to rank the
modules. As shown in Figure 1, there are three modules (i.e., A,
B, and C) that need to be ranked. Assuming that the pointwise
approach predicts that the number of defects in module A is
Number(A), the number of defects in module B is Number(B),
the number of defects in module C is Number(C), and Num-
ber(A)>Number(B)>Number(C), then the predicted ranking of
A, B, and C is A ≻ B ≻ C. In the following, we first introduce
the six classification-based learning to rank algorithms used in
this study.

(1) Naïve Bayes (NB) [13]: It is a classification algorithm
based on the Bayes’ theorem with the “naive” assumption that
every pair of software features are independent.

(2) Logistic regression (LogR) [54]: It is a classification al-
gorithm to classify software modules into discrete outcomes. It
maximizes the entropy of the labels conditioned on the soft-
ware features with respect to the distribution.

(3) Classification and Regression Tree (CART) [55]: It par-
titions the training dataset into small segments using the Gini

299
Authorized licensed use limited to: Wuhan University. Downloaded on January 13,2025 at 08:00:44 UTC from IEEE Xplore. Restrictions apply.

TABLE I. PARAMETER VALUE OVERVIEW OF THE LEARNING TO RANK ALGORITHMS STUDIED IN OUR WORK

Family Label Algorithm Parameter Description Parameter Value

Classification-
based

Pointwise
approach

1 Naïve Bayes(NB) Laplace Correction {0}
2 Logistic Regression (LogR) Tolerance for stopping criteria {0.1,0.01,0.001,0.0001,0.00001}

3 Classification and Regression Tree
(CART)

The minimum number of samples required to split an internal node {2 ,6,10,14,18}
The minimum number of samples required to be at a leaf node {1,3,5,7,9}

4 Bagging The number of base learners {10,20,30,40,50}
5 Random Forest (RF) The number of trees in the forest {10,20,30,40,50}
6 K-nearest Neighbors (KNN) Number of neighbors {1,5,9,13,17}

Regression-
based

Pointwise
approach

7 Decision Tree Regression (DTR) The minimum number of samples required to split an internal node {2 ,6,10,14,18}
The minimum number of samples required to be at a leaf node {1,3,5,7,9}

8 Linear Regression (LR) Whether the regressor will be normalized before {true, false}
9 Bayesian Ridge Regression (BRR) Stop the algorithm if w has converged {0.1,0.01,0.001,0.0001,0.00001}

10 Neural Network Regression (NNR) The size of hidden layers {2,4,8,16,32,64}
Size of minibatches for stochastic optimizers {8,16,32,128,256}

11 Support Vector Regression (SVR) Penalty parameter C of the error term {0.01,0.1,1,10,100}
12 K-nearest Neighbors Regression

(KNR) The number of neighbors {1,5,9,13,17}

13 Gradient Boosting Regression (GBR)
The number of boosting stages to perform {100,200,300,400,5000}

The minimum number of samples required to split an internal node {2 ,6,10,14,18}
The minimum number of samples required to be at a leaf node {1,3,5,7,9}

14 Gaussian Process Regression (GPR) The number of restarts of the optimizer for finding the kernel’s
parameters {0,1,2,3,4}

15 Stochastic Gradient Descent
Regression (SDGR) Constant that multiplies the regularization term {0.1,0.01,0.001,0.0001,0.00001}

Pairwise
approach

16 Ranking SVM Penalty parameter C of the error term {0.01,0.1,1,10,100}
17 RankBoost The number of rounds to train {100, 200,300,400,500}
18 RankNet The number of epochs to train {16,32,64,128,256}
19 LambdaRank The number of epochs to train {16,32,64,128,256}

Listwise
approach

20 ListNet The number of epochs to train {16,32,64,128,256}
21 AdaRank The number of rounds to train {100, 200,300,400,500}
22 Coordinate Ascent The number of random restarts {2,4,6,8,10}
23 LTR Feasible solution space [-20,20]

index, and labels these small segments with one of the class
labels (i.e., defective or non-defective).

(4) Bagging [56]: It is an ensemble classifier that fits a
number of weak classifiers on the original dataset, and then
combine them as a final strong classifier. In the experiment, we
employ decision tree as the meta-classifier.

(5) Random Forest (RF) [14]: It is an ensemble classifier
that fits a number of decision tree classifiers on various subsets
of the original dataset, and use averaging to improve the pre-
dictive accuracy and control over-fitting.

(6) K-nearest Neighbors (KNN) [57]: It finds k training
software modules closest to the new software module, and pre-
dicts the label of the new software module from these training
modules.

Additionally, we introduce 9 regression-based learning to
rank algorithms as follows.

(1) Decision Tree Regression (DTR) [58]. It builds a re-
gression model in the form of a decision tree structure by learn-
ing from the training dataset.

(2) Linear Regression (LR) [59]. It trains a linear model:
y=⟨b, x⟩ +b0 (1)

where b=(b1,b2,…,bm) represents a m-dimensional vector of
regression coefficients, x=(x1, x2,…, xm) is a m-dimensional
software feature vector of the module, b0 is the error term, and
y is the number of defects or defect density in the module.

 (3) Bayesian Ridge Regression (BRR) [60]. It is a proba-
bilistic method that builds a regression model using Bayesian
inference. It combines priori information about parameters (the
coefficient of software features) with the observed training data
to get the posterior distribution of the parameters.

(4) Neural Network Regression (NNR) [61]: It learns a non-
linear function approximator using backpropagation with no
activation function in the output layer.

(5) Support Vector Regression (SVR) [62]: It produces a
function f(x) with at most ! -deviation from the target value y.
Constructing an SVR model is formalized as solving:

Minimize
!
" # " (2)

subject to
!"- $, &' -(≤ *
$, &' + (-!" ≤ * (3)

where xi is the features of a module with target value yi.
(6) K-nearest Neighbors Regression (KNR) [63]: It finds k

training software modules closest to the new software module,
and predicts the number of defects or the defect density of the
new software module based the mean of the number of defects
or the defect density of these nearest neighbors.

(7) Gradient Boosting Regression (GBR) [64]: It is a boost-
ing regression method, which combines weak regression mod-
els to create a final strong regression model. In the experiment,
we employ decision tree regression as the meta regression
model.

300
Authorized licensed use limited to: Wuhan University. Downloaded on January 13,2025 at 08:00:44 UTC from IEEE Xplore. Restrictions apply.

(8) Gaussian Process Regression (GPR) [65]: It is a regres-
sion algorithm to undertake non-parametric regression with
Gaussian processes.

(9) Stochastic Gradient Descent Regression (SDGR) [66]:
It is a linear model fitted by minimizing a regularized empirical
loss with SGD (Stochastic Gradient Descent).

B. The Pairwise Approach
The pairwise approach transforms EADP problem into a

classification problem, i.e., learning a binary classifier f that
can identity which module contains more defects or has higher
defect density in a given module pair. As shown in Figure 1,
assuming that the pairwise approach predicts that module A
contains more defects than module B (i.e., f(A)>f(B)), module
A contains more defects than module C (i.e., f(A)>f(C)), and
module B contains more defects than module C (i.e., f(B)>f(C)),
then the predicted ranking of A, B, and C becomes A≻B≻C. We
introduce the four pairwise learning to rank algorithms used in
this study as follows.

(1) Ranking SVM [67]: It first transforms the ranking prob-
lem into classification by computing x1−x2, where x1 and x2 are
the feature vectors of a pair of modules (i.e., M1 and M2), and
then uses SVM to classify (x1−x2) into +1 or −1. If the class
label is +1, M1 contains more defects than M2; otherwise, M2
contains more defects than M1.

(2) RankBoost [68]: It adopts AdaBoost to classify the
modules pairs. The only difference between them is that the
distribution is defined on modules pairs in RankBoost while
that is defined on individual modules in AdaBoost. It aims to
minimize the exponential loss on module pairs.

(3) RankNet [69]: The loss function of RankNet is also de-
fined on module pairs, but the hypothesis is defined with the
use of a scoring function, which is optimized by using the gra-
dient descent method.

(4) LambdaRank [70]: LambdaRank optimizes an upgraded
version of the loss function in RankNet with less computing
complexity and better performance on measures using the gra-
dient descent method.

C. The Listwise Approach
The listwise approach directly optimizes the performance

measures to obtain a ranking model. As shown in Figure 1,
assuming that the listwise approach predicts that the ranking
list PA,B,C has the best performance measure among all possible
ranking lists (i.e., PA,B,C, PA,C,B, PB,A,C, PB,C,A, PC,A,B, and PC,B,A),
so the predicted ranking of A, B, and C will be A ≻ B ≻ C. We
introduce the four pairwise learning to rank algorithms used in
this study as follows.

(1) ListNet [71]: It uses a neural network approach with the
gradient descent method to minimize a loss function, similar to
RankNet. The loss function is defined using the probability
distribution on all possible ranking lists.

(2) AdaRank [72]: It is another boosting method which
combines weak rankers to create the final ranking model.
AdaRank directly minimizes the performance measures by
updating the distribution of software modules and computing
the combination coefficient of the weak rankers.

(3) Coordinate Ascent [73]: It trains a ranking model by
minimizing the mean average precision (MAP) values. It does
a number of restarts to guarantee avoidance of the local mini-
mum.

(4) Learning-to-Rank (LTR) [5]. It trains a simple linear
model, i.e., f(x)= <w, x> by directly optimizing the FPA values
using the composite differential evolution algorithm, and then
ranks new modules based on the predicted relative number of
defects or defect density.

III. EXPERIMENTAL SETUP

A. Datasets
In this experiment, we employ 41 releases of 11 open

source software projects, which can be obtained from the
PROMISE data repository [74], [75], [76]. The details about
the projects are shown in Table II, where Module represents the
number of modules in the project, #Defects represents the total
number of defects in the project, %Defect represents the per-
centage of defective modules in the project, and Avg is the av-
erage value of defects of all defective modules in the project.
The 20 software features of the projects are listed in Table III.

TABLE II. DETAILS OF EXPERIMENT DATASET

Project Release Module #Defects %Defects Avg
Ant 1.3,1.4,1.5,1.6,1.7 1692 637 20.7 1.82
Camel 1.0,1.2,1.4,1.6 2784 1371 20.2 2.44
Ivy 1.1,1.4,2.0 704 307 16.9 2.58
Jedit 3.2,4.0,4.1,4.2,4.3 1749 943 17.3 3.11
Log4j 1.0,1.1,1.2 449 645 57.9 2.48
Lucene 2.0,2.2,2.4 782 1314 56.0 3.0
Poi 1.5,2.0,2.5,3.0 1378 1377 51.3 1.95
Synapse 1.0,1.1,1.2 635 265 25.5 1.64
Velocity 1.4,1.5,1.6 639 731 57.4 1.99
Xalan 2.4,2.5,2.6,2.7 3320 2525 54.4 1.4
Xerces init,1.2,1.3,1.4 1643 2071 39.8 3.17

TABLE III. FEATURES OF THE DATASET

No. Feature Description
1 wmc Weighted methods per class
2 dit Depth of inheritance tree
3 noc Number of children
4 cbo Coupling between object classes
5 rfc Response for a class
6 lcom Lack of cohesion in methods
7 ca Afferent couplings
8 ce Efferent couplings
9 npm Number of public methods

10 lcom3 Lack of cohesion in methods
11 loc Lines of code
12 dam Data access metric
13 moa Measure of aggregation
14 mfa Measure of functional abstraction
15 cam Cohesion among methods of class
16 ic Inheritance coupling
17 cbm Coupling between methods
18 amc Average method complexity
19 max_cc Maximum McCabe’s cyclomatic complexity
20 avg_cc Average McCabe’s cyclomatic complexity

301
Authorized licensed use limited to: Wuhan University. Downloaded on January 13,2025 at 08:00:44 UTC from IEEE Xplore. Restrictions apply.

B. Performance Measures
Menzies et al. [27], [28], [36], Kamei et al. [37], and

D’Ambros et al. [38] suggested that software testers should
consider the effort when testing the predicted defective soft-
ware modules. Evaluation of EADP models with AUC, preci-
sion, recall, F-measure [43] is not suitable for evaluating the
performance of EADP models, because they do not take the
effort into consideration. Therefore, researchers have proposed
some effort-aware performance measures to evaluate EADP
models, such as cost effectiveness (CE) [39], [40], [41], Popt
[16], Norm(Popt) [37], [20], cumulative lift chart (CLC) [15],
and fault percentile average (FPA) [42].

CE, Popt and Norm(Popt) are SLOC based performance
measures. The difference between CE and Norm(Popt) is that
CE compares the prediction model with the baseline model,
while Norm(Popt) compares the prediction model with the op-
timal model. That is, CE reports how much better than the
baseline model a prediction model is, rather than tells us how
closed to the optimal model a prediction model is. Therefore,
we employ Norm(Popt) as the performance measure in this pa-
per.
 (1) Norm(Popt)=	

"#$%-'()	("#$%)
',-	("#$%).'()	("#$%)

 (4)

Here, Popt is defined as 1-∆opt, where ∆opt is the area between
the optimal model (modules are ranked by decreasing actual
defect densities) and the prediction model (modules are ranked
by the decreasing predicted defect densities) in the SLOC-
based cumulative lift chart (Figure 2). max(Popt) is the Popt val-
ue of the optimal model, while min(Popt) is the Popt value of the
worst model (modules are ranked by increasing actual defect
densities) in the SLOC-based cumulative lift chart (Figure 2).
In this chart, the x-axis is the cumulative percentage of SLOC
to inspect, and the y-axis is the cumulative percentage of de-
fects found in the SLOC.

 Figure 2. A SLOC-based cumulative lift chart.

CLC and FPA are module based performance measures.
Yang et al. [5] have proved that FPA and CLC are linearly re-
lated. In the experiment, we also employ FPA to measure the
performance, because Yang et al. [5] pointed out that FPA is
the state of the art performance measure for evaluating EADP
models.

FPA is the average of the proportions of actual defects in
the top modules to the all defects in the defect dataset [5]. A
higher FPA means a better ranking, where the modules with
most defects are ranked first [5]. Assume that n modules in a

software defect dataset are ranked by increasing order of the
predicted number of defects, as M1, M2, M3, …, Mn, and
Y=y1+y2+,…,+yn is the total number of defects in the software
defect dataset. Therefore, Mn is predicted to contain most de-
fects. The proportion of the actual defects in the top m predict-
ed modules to the whole defects is:

!
" #$%

$&%-()! . (5)
Then, FPA is define as:

!
"

!
#

"
$%! &'"

'%"-$)! . (6)

C. Experimental Procedure
We employ out-of-sample bootstrap validation technique

recommended by Tantithamthavorn et al. [77], because it has
been suggested to generate the best balance between the bias
and variance of training and testing datasets. The out-of-sample
bootstrap process is made up of the following three steps:

(1) N bootstrap modules are selected at random with re-
placement from an original defect dataset, where N is the num-
ber of software modules in the original defect dataset.

(2) An EADP model is trained using the bootstrap modules
(i.e., training data). On average, 36.8% modules in the original
dataset will not appear in the bootstrap modules.

(3) We calculate the Norm(Popt) and FPA values for each
learning to rank algorithm tested on the modules of the original
defect dataset that do not appear in the bootstrap modules.

The experimental procedure is shown in Figure 3. We re-
peat the out-of-sample bootstrap 20 times. For the first research
question, we compare the 23 learning to rank algorithms. The
parameter configurations for each algorithm are presented in
Table I. In this experiment, we use the grid search [78] to tune
parameters, because it is commonly used in the field of soft-
ware engineering [22], [23], [24], [79], [80], [81], [82].

For the second research question, we use Information Gain
to investigate the effectiveness of different features on the ex-
perimental results. We employ Information Gain for the fol-
lowing reasons: (1) a number of empirical studies [83], [84],
[85] have demonstrated the effectiveness of Information Gain
for defect prediction; (2) empirical validation of feature selec-
tion for EADP is limited in literature. Only Yang et al. [5] ap-
plied Information Gain to EADP models. Therefore, we also
employ Information Gain in this paper. In this paper, we adopt
the iterative subset, by selecting the top 2,3,...,18,19 top fea-
tures. For the implementations of the pointwise algorithms and
Information Gain, we use the python machine learning library
sklearn to avoid the potential faults as much as possible. For
the implementation of the pairwise and listwise algorithms ex-
cept LTR, we use the source code provided by Microsoft [91].
We carefully implemented LTR following the original paper
[5], since the authors did not provide the source codes.

It is worth noting that we use the defect density (number of
defects/SLOC) as the target variable and 19 software features
(except SLOC) to build the EADP model when the model is
evaluated with Norm(Popt). We first discretize the number of
defects into “defective” and “non-defective” classes, and fur-
ther use these classes to train the classification-based pointwise
learning to rank algorithms to build the EADP model.

302
Authorized licensed use limited to: Wuhan University. Downloaded on January 13,2025 at 08:00:44 UTC from IEEE Xplore. Restrictions apply.

Figure 3. The experimental procedure.

D. Statistical Comparison Tests
The Scott-Knott test [87] is a multiple comparison tech-

nique that produces statistically distinct ranks at the signifi-
cance level of 0.05 (α=0.05) using hierarchical clustering algo-
rithm. This test ranks and clusters the learning to rank algo-
rithms into significantly different groups, in which the learning
to rank algorithms in distinct groups have significant differ-
ences while the learning to rank algorithms in the same group
have no significant differences [31]. Therefore, the Scott-Knott
test can group the learning to rank algorithms distinctly without
any overlapping [88]. For more robust result analysis, we use
the extended Scott-Knott with Cohen’s d effect size awareness
(Scott-Knott ESD) [86], which merges any pair of ranks that
have a negligible Cohen’s d effect size between them to post-
processes the statistically distinct ranks produced by the tradi-
tional Scott-Knott test [86].

We use the double Scott-Knott test [89] to divide these
learning to rank algorithms into different groups (α=0.05). The
double Scott-Knott test contains two steps (shown in Figure 4):
Initially, we provide the FPA and Norm(Popt) values of the 20
bootstrap iterations of each learning to rank algorithms on each
dataset to the Scott-Knott ESD test. This results in 41 different
Scott-Knott ESD ranks (i.e, one from each dataset) for each
learning to rank algorithm. Furthermore, we obtain the final
rankings of these algorithms across all of the studied datasets
with the 41 different Scott-Knott ESD ranks being the input to
the Scott-Knott ESD test.

Figure 4. The procedure of the double Scott-Knott test.

IV. EXPERIMENT RESULTS
In this section, the experimental results and answers to the

two research questions in Section I are presented.

A. RQ1: Which is the best learning to rank algorithm for
EADP?
To answer this question, we compare 23 learning to rank

algorithms. The boxplots in Figure 5 show the distribution of
FPA values of each algorithm with the Scott-Knott ESD test

results across all studied datasets. Different colors of the
boxplot indicate different Scott-Knott ESD test ranks. From
top down, the order is red, pink, rose red, yellow, orange,
chocolate, blue, sky blue, green, purple, gray, black. Table IV
reports the algorithms that belong to the same group and the
statistical properties of the algorithm rankings for each group
in terms of FPA, including the median ranking, average
ranking and standard deviation.

Figure 5. The boxplots of the FPA values.

TABLE IV. STATISTICAL RESULTS IN TERMS OF FPA

Overall
Ranking Algorithms Median

Ranking
Average
Ranking

Standard
Deviation

1 BRR 2.07 2.07 0
2 LTR 2.56 2.56 0

3 RankBoost, GBR,
RF, LR

2.92 2.94 0.080

4 NB, Bagging 3.29 3.45 0.159
5 LogR 4 4 0
6 DTR 4.97 4.97 0
7 SVR, KNR 5.46 5.65 0.033

8
Ranking SVM,
Coordinate Ascent,
CART

7.10 7.07 0.072

9 KNN, NNR 7.80 7.85 0.049

10 ListNet, SGDR,
RankNet

9.66 9.62 0.172

11 AdaRank,
LambdaRank

10.22 10.23 0.012

12 GPR 11.15 11.15 0

As shown in the Figure 5 and Table IV, we observe that

the 23 learning to rank algorithms are clustered into twelve
distinct groups without overlapping, which implies that there
exist clear separations between these algorithms. As shown in
Figure 5 and Table IV, BRR obtains the best ranking among
all learning to rank algorithms in terms of FPA. LTR has a
higher ranking than other learning to rank algorithms except
BRR. A pairwise algorithm (RankBoost), two regression
based pointwise algorithm (GBR and LR), a classification
based pointwise algorithm (RF) belong to the third group. In
addition, three classification based pointwise algorithms (NB,
Bagging and LogR) perform well and belong to the fourth and
fifth groups, respectively.

303
Authorized licensed use limited to: Wuhan University. Downloaded on January 13,2025 at 08:00:44 UTC from IEEE Xplore. Restrictions apply.

The boxplots in Figure 6 show the distribution of
Norm(Popt) values of each algorithms with the Scott-Knott
ESD test results across all studied datasets. Table V reports the
algorithms that belong to the same group and the statistical
properties of the algorithm rankings for each group. As shown
in Figure 6 and Table V, BRR and LTR attain the best ranking.
GBR and LR (two regression based pointwise algorithms)
belong to the second and third group, respectively.

Figure 6. The boxplots of the Norm(Popt) values.

TABLE V. STATISTICAL RESULTS IN TERMS OF NORM(POPT)

Overall
Ranking Algorithms Median

Ranking
Average
Ranking

Standard
Deviation

1 BRR, LTR 2.80 2.89 0.085
2 GBR 3.41 3.41 0
3 LR 3.85 3.85 0
4 DTR 4.51 4.51 0
5 KNR, RankBoost 5.06 5 0.06

6 Bagging, GPR, RF,
LogR

5.5 5.439 0.107

7 Ranking SVM, CART 6.05 5.92 0.122
8 Coordinate Ascent 6.59 6.59 0

9
ListNet, RankNet,
KNN, NNR, AdaRank,
LambdaRank, NB

7.13 7.146 0.159

10 SGDR, SVR 7.90 7.83 0.073

In summary, BRR performs best among all learning to
rank algorithms in terms of FPA, and BRR and LTR perform
best among all learning to rank algorithms in terms of
Norm(Popt). The result is supported by the Scott-Knott ESD
test.

B. Which is the best performing algorithm when trained on a
relevant feature subset selected by Information Gain?
This question aims to explore whether the conclusion of

RQ1 is consistent after removing irrelevant software features
from the original datasets using Information Gain method. We
adopt the iterative subset, by selecting the top 2,3,...,18,19
features. Since the average FPA and Norm(Popt) values of all
learning to rank algorithms on all datasets are highest when all
algorithms are trained on top 10 features, we select the top 10
features following the setup in [90]. Due to the space limit, we
do not list the detail FPA and Norm(Popt) values of each

algorithm trained on each feature subset. The average FPA
value of all algorithms trained on top 10 features is 0.629,
which is higher than that (0.617) of all algorithms trained on
original datasets. The average Norm(Popt) value of all
algorithms trained on top 10 features is 0.552, which is higher
than that (0.549) of all algorithms trained on original datasets.

The boxplots in Figure 7 show the distribution of FPA val-
ues of each algorithm trained on the top 10 features across all
studied datasets with the Scott-Knott ESD test results. Table VI
reports the algorithms that belong to the same group and the
statistical properties of the algorithm rankings for each group in
terms of FPA. As shown in the Figure 7 and Table VI, BRR
and LTR belong to the first group. LR and RankBoost belong
to the second and third group, respectively. Three classification
based pointwise algorithms (NB, LogR and RF) perform well
and belong to the fourth group.

Figure 7. The boxplots of the FPA values when the algorithms are trained on

the top 10 features.

TABLE VI. STATISTICAL RESULTS IN TERMS OF FPA WHEN THE
ALGORITHMS ARE TRAINED ON TOP 10 FEATURES

Overall
Ranking Algorithms Median

Ranking
Average
Ranking

Standard
Deviation

1 BRR, LTR 1.98 1.95 0.024
2 LR 2.51 2.51 0
3 RankBoost 2.80 2.80 0
4 NB, LogR, GBR, RF 3.61 3.61 0.062
5 Bagging 4.22 4.22 0
6 SVR, NNR 4.80 4.88 0.073

7 Ranking SVM, DTR,
KNR

5.36 5.37 0.090

8 ListNet 6.61 6.61 0

9 CART, Coordinate
Ascent

7.17 7.23 0.061

10 KNN, RankNet 7.68 7.90 0.220

11 AdaRank, SGDR,
LambdaRank

9.537 9.577 0.172

12 GPR 10.366 10.366 0

The boxplots in Figure 8 show the distribution of
Norm(Popt) values of each algorithm trained on the top 10
features across all studied datasets with the Scott-Knott ESD
test results. Table VII reports the algorithms that belong to the

304
Authorized licensed use limited to: Wuhan University. Downloaded on January 13,2025 at 08:00:44 UTC from IEEE Xplore. Restrictions apply.

same group and the statistical properties of the algorithm
rankings for each group in terms of Norm(Popt). As shown in
the Figure 8 and Table VII, LTR and BRR belong to the first
group, and GBR and LR belong to the second group.
RankBoost, RF, DTR and LogR belong to the third group.

In summary, LTR and BRR perform best among all
learning to rank algorithms trained on the top 10 features in
terms of FPA and Norm(Popt). The result is supported by the
Scott-Knott ESD test.

Figure 8. The boxplots of the Norm(Popt) values when these algorithms are

trained on the top 10 features.

TABLE VII. STATISTICAL RESULTS IN TERMS OF NORM(POPT) WHEN
THE ALGORITHMS ARE TRAINED ON TOP 10 FEATURES

Overall
Ranking Algorithms Median

Ranking
Average
Ranking

Standard
Deviation

1 LTR, BRR 2.34 2.89 0.146
2 GBR, LR 3.22 3.22 0

3 RankBoost, RF, DTR,
LogR

4.29 4.24 0.128

4 KNR, Bagging 5.56 4.57 0.012
5 Ranking SVM, NB 4.80 4.91 0.012
6 NNR 5.39 5.39 0
7 SVR 5.59 5.59 0

8
CART, RankNet,
ListNet, Coordinate
Ascent, KNN

6.63 6.59 0.148

9 GPR, AdaRank 7.32 7.49 0.171
10 SGDR, LambdaRank 7.92 8.02 0.097

C. Discussion
The performance of the three types of learning to rank algo-

rithms might be explained via the difference of the training
utility function.

(1) As mentioned in Section III, the listwise approach di-
rectly optimizes the performance measure to obtain a ranking
function. LTR performs well in terms of FPA (LTR belongs to
the second group and first group, when it is trained on all fea-
ture sets and top-10 feature subsets, respectively), because it
directly optimizes the FPA value. LTR also performs well for
Norm(Popt), because Norm(Popt) and FPA are both effort-aware
performance measures. The only difference between Norm(Popt)
and FPA is that Norm(Popt) is SLOC-based, and FPA is mod-
ule-based. However, other listwise algorithms have poor per-

formance. The reason might be that the goal of these algo-
rithms is to optimize some information retrieval performance
measures, such as mean average precision (MAP), which do
not take the effort into consideration [36], [37], [38].

(2) Some regression-based pointwise algorithms perform
well in terms of FPA, such as BRR, GBR and LR. These algo-
rithms outperform other regression algorithms for several rea-
sons. BRR and LR are multiple linear regression models,
whereas the other regression algorithms are not linear models.
Furthermore, there is a strong linear relationship between soft-
ware features and the number of defects [5]. Therefore, the two
algorithms have strong capability to identify and build the rela-
tionship between the software features and the number of de-
fects. In addition, there exist strong correlations among the
software features, i.e., multicollinearity [10]. BRR can reduce
multicollinearity when constructing EADP models [10]. This is
one reason why BRR performs best. GBR is an ensemble learn-
ing algorithm, which grow an ensemble of regression trees and
allow them to vote on the decision to improve the performance.

(3) Some classification-based pointwise algorithms perform
well in terms of FPA, such as RF, NB, Bagging, LogR (belong
to the third or fourth group). In contrast to current practices in
defect prediction studies, the classification-based pointwise
algorithms lead to better performance when the number of de-
fects in the defect datasets is not used to build prediction mod-
els. The finding is in agreement with a recent study [21],
which found that building defect prediction classifiers using the
number of defects does not always lead to better performance.
One possible reason for other types of learning to rank algo-
rithms using the number of defects having poorer performance
than these classification-based pointwise algorithms is that the
number of defects in each module in these datasets is highly
imbalanced. That is, the modules with many defects occupy
only a small part of this project, whereas the defect-free mod-
ules occupy a great part of this project, followed by the mod-
ules with one defect. These imbalanced datasets can be better
handled by these classification-based algorithms, as they em-
ploy the class labels instead of the information of the number
of defects. In addition, Bagging and RF are ensemble learning
algorithms, which grow an ensemble of classification trees and
allow them to vote on the decision to handle the data imbalance
problem.

(4) In most cases, the pairwise algorithms have poor per-
formance. The reasons might be as follows. The goal of pair-
wise algorithms is to minimize the number of incorrect rank-
ings. Here, an incorrect ranking means that a module with less
defects or lower defect density is ranked ahead of a module
with more defects or higher defect density in a given module
pair. When a model ranks the modules with more defects or
higher defect density correctly, the model will obtain higher
FPA value or Norm(Popt) value. Therefore, EADP models
should rank the modules with more defects or higher defect
density correctly, and a higher cost should be assigned to the
incorrect ranking of a module with more defects or higher de-
fect density than a module with less defects or lower defect
density. Subsequently, pairwise algorithms allocate the same
costs for incorrect ranked modules with more defects or higher

305
Authorized licensed use limited to: Wuhan University. Downloaded on January 13,2025 at 08:00:44 UTC from IEEE Xplore. Restrictions apply.

TABLE VIII. RELATED WORKS ABOUT EMPIRICAL STUDIES FOR EADP	

Study Datasets used Learning to Rank Techniques Performance
Measures

Statistical
Tests

Main Findings

Jiang et
al. [15]

Corpus: NASA
Number of datasets: 8

NB, LogR, KNN, C4.5, Bagging CLC Friedman test,
Nemenyi test

KNN outperforms others on the PC1 dataset,
and C4.5 outperforms others on the KC2
dataset.

Mende et
al. [16]

Corpus: NASA
Number of datasets:
13

NB, LogR, CART, Bagging, RF CE, Popt Nemenyi’s
post-hoc test

Bagging outperforms others.

Nguyen et
al. [43]

Corpus: Eclipse CVS
Number of datasets: 5

KNR, LR, MARS (multivariate
adaptive regression splines),
Ranking SVM, RankBoost

SRCC None RankBoost has more stable prediction
performance.

Bennin et
al. [9]

Corpus: Open Source
Software
Number of datasets:
25

LR, LAR (least angel
regression), RVM (relevance
vector machine), KNR, K*,
NNR, SVR, DTR, GBR, RF

Norm(Popt) Nemenyi test K* outperforms best when using cross-
validation setup, M5 performs best when using
cross-release setup. There is not statistically
significant difference among all compared
algorithms.

Yang et
al. [10]

Corpus: PROMISE
Number of datasets:
41

LAR (lasso regression), RR,
NBR (negative binomial
regression), PCR (principal
component regression), RF, LTR

CLC, FPA Wilcoxon
rank-sum test

RR can achieve better results than LR and
NBR, slightly (not significantly) better results
than LAR, PCR and LTR, and slightly worse
results than RF when using cross-release
setup.

Our study Corpus: PROMISE
Number of datasets:
41

NB, LogR, CART, Bagging, RF,
KNN, DTR, LR, BRR, NNR,
SVR, KNR, GBR, GPR, SDGR,
Ranking SVM, RankBoost,
RankNet, LambdaMart, ListNet,
AdaRank, Coordinate Ascent,
LTR

FPA,
Norm(Popt)

Scott-Knott
ESD test

In terms of FPA and Norm(Popt), statistically
significant differences are observed among
these algorithms with BRR (Bayesian Ridge
Regression) performing best in terms of FPA,
and BRR and LTR performing best in terms of
Norm(Popt). When these algorithms are trained
on a more relevant feature subset selected by
Information Gain, LTR and BRR still perform
best with significant differences in terms of
FPA and Norm(Popt).

defect density and incorrect ranked modules with one defect or
lower defect density. That is, the training utility function of
these pairwise algorithms also do not take the effort into con-
sideration.

V. THREATS TO VALIDITY
In this section, we discuss several validity threats that may

have impacted the results of our empirical studies.
External validity. Threats to external validity occur when

the results of our experiments cannot be generalized. Although
these datasets have been widely used in many software defect
prediction studies [75], [76], we cannot generalize the results
for all datasets especially commercial datasets. Additionally,
we acknowledge the existence of several prediction models.
Our study employed 23 prediction models which is sufficient
for an empirical study. Adoption of other prediction models not
used in this study is left for a future study.

Internal validity. Threats to internal validity refer to the bi-
as of the choice of learning to rank algorithms and feature se-
lection method. The reasons we employ the learning to rank
algorithms are as follows: (1) Our selection of the classifica-
tion-based pointwise algorithms closely resembles the choice
by Jiang et al. [15] and Mende et al. [16]. (2) Our selection of
the regression-based pointwise algorithms closely resembles
the choice by Chen et al. [52] and Rathore et al. [53]. (3) Our
selection of the pairwise and listwise algorithms closely resem-
bles the choice by Nguyen et al. [43] and Shi et al. [11]. Shi et

al. [11] investigated the same pairwise and listwise algorithms
for bug localization, which is also a research hotspot in the
field of software engineering [92]. We use Information Gain as
the feature selection method following the work in [5]. In addi-
tion, with regards to the experimental implementation, the re-
sults could be influenced by the parameters used and experi-
ment setup.

Construct validity. In our experiments, we use FPA and
Norm(Popt) as the evaluation measures, because the former is
module-based effort-aware performance measure, and the latter
is SLOC-based effort-aware performance measure. The two
performance measures can investigate which learning to rank
algorithm is best for different application scenarios, i.e., soft-
ware testers may need to find more defects by inspecting a cer-
tain number of modules or lines of codes.

Conclusion validity. Threats to conclusion validity focus on
the statistical analysis method. In this work, we use Scott-Knott
ESD test to statistically analyze the learning to rank algorithms,
because Tantithamthavorn et al. [87] have suggested that the
Scott-Knott ESD test is superior to other post-hoc tests.

VI. RELATED WORK
Table VIII compares our study with the prior empirical

studies for EADP. As shown in Table VIII, these prior studies
have some limitations: (1) Comparison of few learning to rank
algorithms considering small number of datasets. For example,
Nguyen et al. [43] investigated five algorithms on five open

306
Authorized licensed use limited to: Wuhan University. Downloaded on January 13,2025 at 08:00:44 UTC from IEEE Xplore. Restrictions apply.

source software projects. (2) Inappropriate or only one type of
performance measure. For example, Nguyen et al. [43] em-
ployed Spearman rank correlation coefficient as the perfor-
mance measures. Jiang et al. [15] and Yang et al. [10] em-
ployed three module-based effort-aware performance measures,
i.e., LC, CLC, and FPA. Mende et al. [16] and Bennin et al. [9]
employed two SLOC-based effort-aware performance
measures, i.e., Popt and Norm(Popt). (3) Inappropriate statistical
test techniques. Prior studies employ inappropriate statistical
test techniques, such as the Friedman test and Nemenyi test in
[9], [15], [16]. Ghotra et al. [64] pointed out that these statisti-
cal test techniques have limitations for multiple comparison
analysis. The results of prior studies are inconsistent, since the
studies were conducted under different conditions, e.g., da-
tasets of different domains, using different learning to rank
algorithms, using different experiment setups.

It is worthy to mention that in recent years, various regres-
sion algorithms have been applied to predict the number of
defects, including Poisson regression (PR) [44], [45], [46], [47],
genetic programming (GP) [48], [49], [50], decision tree re-
gression (DTR) [51], etc. In addition, Chen et al. [52] and
Rathore et al. [53] performed an empirical study of some re-
gression algorithms for predicting the number of defects, and
found that DTR, LR, and BRR achieved better root mean
square error (RMSE) and average absolute error (AAE) values.
However, Yang et al. [5] pointed out that these approaches with
higher predictive accuracy (smaller RMSE or AAE value) may
result in a worse ranking of modules. Therefore, we revisit the
impact of these regression-based learning to rank algorithms
for EADP by using Norm(Popt) and FPA as the performance
measures.

VII. CONCLUSION AND FUTURE WORK
Effort-Aware defect prediction (EADP) models can help to

allocate testing resources more efficiently in the absence of
testing resources. A number of learning to rank algorithms have
been used for building EADP models. However, it is still a
challenge on deciding on the best performing learning to rank
algorithms for EADP. Accordingly, in this paper, we conduct a
large-scale empirical study to investigate the impact of 23
learning to rank algorithms for EADP. In order to obtain a
comprehensive evaluation, we use both a module-based effort-
aware performance measure (FPA) and a SLOC-based effort-
aware performance measure (Norm(Popt)) to compare the pre-
diction performance of the 23 algorithms. The experimental
results show that BRR performs best in terms of FPA, and
BRR and LTR perform best in terms of Norm(Popt) among the
23 algorithms when they are trained on original feature subset,
and LTR and BRR still perform best when they are trained on
the top 10 features. In the future, we also plan to employ more
project datasets to validate the generalization of our findings.

ACKNOWLEDGMENT
This work is supported in part by the National Key R&D

Program of China (No.2018YFC1604000), the grands of the
National Natural Science Foundation of China (61572374,
U163620068, U1135005, 61572371, 61772525), the Open

Fund of Key Laboratory of Network Assessment Technology
from CAS, Guangxi Key Laboratory of Trusted Software
(No.kx201607), the Academic Team Building Plan for Young
Scholars from Wuhan University (WHU2016012), the General
Research Fund of the Research Grants Council of Hong Kong
(No. 11208017), the research funds of City University of Hong
Kong (No. 9678149 and 7005028), and the Research Support
Fund by Intel.

REFERENCES
[1] Yu X, Wu M, Jian Y, et al. Cross-company defect prediction via

semi-supervised clustering-based data filtering and MSTrA-
based transfer learning. Soft Computing, 2018, 22(10): 3461-
3472.

[2] Bennin K E, Keung J, Monden A, et al. The significant effects
of data sampling approaches on software defect prioritization
and classification. Proceedings of the 11th ACM/IEEE Interna-
tional Symposium on Empirical Software Engineering and
Measurement. IEEE Press, 2017: 364-373.

[3] M. Shepperd, D. Bowes, and T. Hall. Researcher Bias: The Use
of Machine Learning in Software Defect Prediction. IEEE
Transactions on Software Engineering,40(6):603-616, 2014.

[4] Yu X, Liu J, Peng W, et al. Improving Cross-Company Defect
Prediction with Data Filtering. International Journal of Software
Engineering and Knowledge Engineering, 2017, 27(09n10):
1427-1438.

[5] X. Yang, K. Tang, and X. Yao. A Learning-to-Rank Approach
to Software Defect Prediction. IEEE Transactions on Reliabil-
ity,64(1): 234-246, 2015.

[6] C. Catal. Software fault prediction: A literature review and cur-
rent trends. Expert systems with applications, 38(4): 4626-4636,
2011.

[7] R. Malhotra. A systematic review of machine learning tech-
niques for software fault prediction, Applied Soft Computing, 27:
504-518, 2015.

[8] T. Mende, R. Koschke. Effort-Aware Defect Prediction Mod-
els. European Conference on Software Maintenance and Reen-
gineering, IEEE Computer Society Press, 2010; 109–118.

[9] Bennin K E, Toda K, Kamei Y, et al. Empirical evaluation of
cross-release effort-aware defect prediction models. Software
Quality, Reliability and Security, 2016 IEEE International Con-
ference on. IEEE, 2016: 214-221.

[10] Yang X, Wen W. Ridge and Lasso Regression Models for
Cross-Version Defect Prediction. IEEE Transactions on Relia-
bility, 2018, 67(3): 885-896.

[11] Shi Z, Keung J, Bennin K E, et al. Comparing learning to rank
techniques in hybrid bug localization. Applied Soft Computing,
2018, 62: 636-648.

[12] Liu T Y. Learning to rank for information retrieval, International
ACM SIGIR Conference on Research and Development in In-
formation Retrieval. ACM, 2010:904-904.

[13] Rish I. An empirical study of the naive Bayes classifier. Journal
of Universal Computer Science, 2001, 1(2):127.

[14] Liaw A, Wiener M, Liaw A. Classification and Regression by
Random Forests. R News, 2002, 23(23).

[15] Jiang Y, Cukic B, Ma Y. Techniques for evaluating fault predic-
tion models, Empirical Software Engineering, 2008, 13(5):561-
595.

[16] Mende T, Koschke R. Revisiting the evaluation of defect predic-
tion models, International Conference on Predictor MODELS in
Software Engineering. ACM, 2009:1-10.

[17] Xu Z, Liu J, Luo X, et al. Cross-version defect prediction via
hybrid active learning with kernel principal component analysis.
2018 IEEE 25th International Conference on Software Analysis,
Evolution and Reengineering (SANER). IEEE, 2018: 209-220.

307
Authorized licensed use limited to: Wuhan University. Downloaded on January 13,2025 at 08:00:44 UTC from IEEE Xplore. Restrictions apply.

[18] Bennin K E, Keung J, Phannachitta P, et al. Mahakil: Diversity
based oversampling approach to alleviate the class imbalance is-
sue in software defect prediction. IEEE Transactions on Soft-
ware Engineering, 2018, 44(6): 534-550.

[19] B. Ghotra, S. McIntosh, and A. E. Hassan. Revisiting the impact
of classification techniques on the performance of defect predic-
tion models. In Proceedings of the 37th International Conference
on Software Engineering (ICSE). IEEE, 789-800, 2015.

[20] Bennin, K.E., Keung, J., Monden, A., Kamei, Y. and Ubayashi,
N., 2016, June. Investigating the effects of balanced training and
testing datasets on effort-aware fault prediction models.
In Computer Software and Applications Conference (COMP-
SAC), 2016 IEEE 40th Annual (Vol. 1, pp. 154-163). IEEE.

[21] Rajbahadur G K, Wang S, Kamei Y, et al. The impact of using
regression models to build defect classifiers. Proceedings of the
14th International Conference on Mining Software Repositories.
2017: 135-145.

[22] Tantithamthavorn C, McIntosh S, Hassan A E, et al. The impact
of automated parameter optimization on defect prediction mod-
els. IEEE Transactions on Software Engineering, 2018.

[23] Tantithamthavorn C, Hassan A E. An experience report on de-
fect modelling in practice: Pitfalls and challenges. Proceedings
of the 40th International Conference on Software Engineering:
Software Engineering in Practice. ACM, 2018: 286-295.

[24] Tantithamthavorn C, McIntosh S, Hassan A E, et al. Automated
parameter optimization of classification techniques for defect
prediction models. Software Engineering (ICSE), 2016
IEEE/ACM 38th International Conference on. IEEE, 2016: 321-
332.

[25] Jiarpakdee J, Tantithamthavorn C, Ihara A, et al. A study of
redundant metrics in defect prediction datasets. Software Relia-
bility Engineering Workshops, 2016 IEEE International Sympo-
sium on. IEEE, 2016: 51-52.

[26] Jiarpakdee J, Tantithamthavorn C, Hassan A E. The impact of
correlated metrics on defect models. arXiv preprint
arXiv:1801.10271, 2018.

[27] T. Mende, R. Koschke, M. Leszak. Evaluating Defect Prediction
Models for a Large Evolving Software System. European Con-
ference on Software Maintenance and Reengineering, 2009;
247–250.

[28] T. Mende, R. Koschke, J. Peleska. On the Utility of a Defect
Prediction Model during HW/SW Integration Testing: A Retro-
spective Case Study. European Conference on Software Mainte-
nance and Reengineering, IEEE Computer Society Press, 2011;
259–268.

[29] Yu X, Li Q, Liu J. Scalable and parallel sequential pattern min-
ing using spark. World Wide Web, 2018: 1-30.

[30] Kamei Y, Fukushima T, McIntosh S, et al. Studying just-in-time
defect prediction using cross-project models. Empirical Software
Engineering, 2016, 21(5): 2072-2106.

[31] Xu Z, Liu J, Yang Z, et al. The impact of feature selection on
defect prediction performance: An empirical comparison. Soft-
ware Reliability Engineering (ISSRE), 2016 IEEE 27th Interna-
tional Symposium on. IEEE, 2016: 309-320.

[32] Yu X, Liu J, Yang Z, et al. Learning from Imbalanced Data for
Predicting the Number of Software Defects. Software Reliability
Engineering (ISSRE), 2017 IEEE 28th International Symposium
on. IEEE, 2017: 78-89.

[33] Xu Z, Liu J, Luo X, et al. Software defect prediction based on
kernel PCA and weighted extreme learning machine. Infor-
mation and Software Technology, 2018.

[34] Panichella A, Alexandru C V, Panichella S, et al. A search-
based training algorithm for cost-aware defect prediction. Pro-
ceedings of the Genetic and Evolutionary Computation Confer-
ence 2016: 1077-1084.

[35] Bettenburg N, Nagappan M, Hassan A E. Think locally, act
globally: Improving defect and effort prediction models. Pro-
ceedings of the 9th IEEE Working Conference on Mining Soft-
ware Repositories. IEEE Press, 2012: 60-69.

[36] T. Menzies, Z. Milton, B. Turhan, B. Cukic, and Y. J. A. Bener.
Defect prediction from static code features: current results, limi-
tations, new approaches. Automated Software Engineering,
17:375–407, 2010.

[37] Y. Kamei, S. Matsumoto, A. Monden, K. Matsumoto, B. Adams,
and A. Hassan. Revisiting common bug prediction findings us-
ing effort-aware models. In Software Maintenance (ICSM),
2010 IEEE International Conference on, pages 1–10, 2010.

[38] M. D’Ambros, M. Lanza, and R. Robbes. Evaluating defect
prediction approaches: A benchmark and an extensive compari-
son. Empirical Software Engineering, 17(4-5):531–577, 2012.

[39] Arisholm E, Briand L C, Johannessen E B. A systematic and
comprehensive investigation of methods to build and evaluate
fault prediction models. Journal of Systems and Software, 2010,
83(1): 2-17.

[40] Rahman F, Posnett D, Devanbu P. Recalling the imprecision of
cross-project defect prediction, Proceedings of the ACM SIG-
SOFT 20th International Symposium on the Foundations of
Software Engineering. ACM, 2012: 61.

[41] Rahman F, Devanbu P. How, and why, process metrics are bet-
ter, Software Engineering (ICSE), 2013 35th International Con-
ference on. IEEE, 2013: 432-441.

[42] E.J.Weyuker,T.J.Ostrand,andR.M.Bell, Comparing the effec-
tiveness of several modeling methods for fault prediction, Em-
piric. Softw. Eng., vol. 15, no. 3, pp. 277–295, 2010.

[43] Nguyen T T, An T Q, Hai V T, et al. Similarity-based and rank-
based defect prediction. International Conference on Advanced
Technologies for Communications. IEEE, 2015:321-325.

[44] T. J. Ostrand, E. J. Weyuker and R. M. Bell. Predicting the loca-
tion and number of faults in large software systems. IEEE
Transactions on Software Engineering, 31(4): 340-355, 2005.

[45] A. Janes, M. Scotto, and W. Pedrycz. Identification of defect-
prone classes in telecommunication software systems using de-
sign metrics, Information sciences, 176(24): 3711-3734, 2006.

[46] T. M. Khoshgoftaar and K. Gao. Count models for software
quality estimation. IEEE Transactions on Reliability, 56(2): 212-
222, 2007.

[47] K. Gao and T. M. Khoshgoftaar, A comprehensive empirical
study of count models for software fault prediction. IEEE Trans-
actions on Reliability, 56(2): 223-236, 2007.

[48] W. Afzal, R. Torkar, and R.Feldt. Prediction of fault count data
using genetic programming. Multitopic Conference, 2008. IN-
MIC 2008. IEEE International. IEEE, 2008.

[49] Rathore S S and Kuamr S. Comparative analysis of neural net-
work and genetic programming for number of software faults
prediction. National Conference on Recent Advances in Elec-
tronics & Computer Engineering (RAECE), 328-332, 2015.

[50] S. S. Rathore and S. Kumar. Predicting number of faults in soft-
ware system using genetic programming. Procedia Computer
Science, 62: 303-311, 2015.

[51] S. S. Rathore and S.Kumar. A Decision Tree Regression based
Approach for the Number of Software Faults Prediction. ACM
SIGSOFT Software Engineering Notes, 41(1): 1-6, 2016.

[52] M. Chen and Y. Ma. An empirical study on predicting defect
numbers. In Proceedings of the 28th International Conference on
Software Engineering and Knowledge Engineering, 397-402,
2015.

[53] S. S. Rathore and S. Kumar. An empirical study of some soft-
ware fault prediction techniques for the number of faults predic-
tion. Soft Computing, 1-18, 2016.

[54] Hosmer Jr D W, Lemeshow S, Sturdivant R X. Applied logistic
regression. John Wiley & Sons, 2013.

[55] Loh W Y. Classification and regression trees. Wiley Interdisci-
plinary Reviews: Data Mining and Knowledge Discovery, 2011,
1(1): 14-23.

[56] Breiman L. Bagging predictors. Machine learning, 1996, 24(2):
123-140.

308
Authorized licensed use limited to: Wuhan University. Downloaded on January 13,2025 at 08:00:44 UTC from IEEE Xplore. Restrictions apply.

[57] Peterson L E. K-nearest neighbor. Scholarpedia, 2009, 4(2):
1883.

[58] Xu M, Watanachaturaporn P, Varshney P K, et al. Decision tree
regression for soft classification of remote sensing data. Remote
Sensing of Environment, 2005, 97(3): 322-336.

[59] Asai H T S U K. Linear regression analysis with fuzzy model.
IEEE Transaction Systems Man and Cybermatics, 1982, 12(6):
903-07.

[60] Hoerl A E, Kennard R W. Ridge regression: Biased estimation
for nonorthogonal problems. Technometrics, 1970, 12(1): 55-67.

[61] Gardner M W, Dorling S R. Artificial neural networks (the mul-
tilayer perceptron)—a review of applications in the atmospheric
sciences. Atmospheric environment, 1998, 32(14-15): 2627-
2636.

[62] Basak D, Pal S, Patranabis D C. Support vector regression. Neu-
ral Information Processing-Letters and Reviews, 2007, 11(10):
203-224.

[63] Altman. An introduction to kernel and nearest-neighbor nonpar-
ametric regression. The American Statistician, 1992, 46(3): 175-
185.

[64] Carpenter B. Lazy sparse stochastic gradient descent for regular-
ized multinomial logistic regression. Alias-i, Inc., Tech. Rep,
2008: 1-20.

[65] Quiñonero-Candela J, Rasmussen C E. A unifying view of
sparse approximate Gaussian process regression. Journal of Ma-
chine Learning Research, 2005, 6(Dec): 1939-1959.

[66] Carpenter B. Lazy sparse stochastic gradient descent for regular-
ized multinomial logistic regression. Alias-i, Inc., Tech. Rep,
2008: 1-20.

[67] R. Herbrich, T. Graepel, and K. Obermayer. Large Margin Rank
Boundaries for Ordinal Regression. Advances in Large Margin
Classifiers, pages 115-132, 2000.

[68] Freund Y, Iyer R D, Schapire R E, et al. An Efficient Boosting
Algorithm for Combining Preferences. Fifteenth International
Conference on Machine Learning. Morgan Kaufmann Publishers
Inc. 1998:170-178.

[69] Burges C, Shaked T, Renshaw E, et al. Learning to rank using
gradient descent. Proceedings of the 22nd international confer-
ence on Machine learning. ACM, 2005: 89-96.

[70] Wu Q, Burges C J C, Svore K M, et al. Adapting boosting for
information retrieval measures[J]. Information Retrieval, 2010,
13(3): 254-270.

[71] Cao Z, Qin T, Liu T Y, et al. Learning to rank: from pairwise
approach to listwise approach. Proceedings of the 24th interna-
tional conference on Machine learning. ACM, 2007: 129-136.

[72] Xu J, Li H. Adarank: a boosting algorithm for information re-
trieval. Proceedings of the 30th annual international ACM
SIGIR conference on Research and development in information
retrieval. ACM, 2007: 391-398.

[73] Metzler D, Croft W B. Linear feature-based models for infor-
mation retrieval. Information Retrieval, 2007, 10(3): 257-274.

[74] G. Boetticher, T. Menzies and T. Ostrand, The PROMISE Re-
pository of Empirical Software Engineering Data,
<http://promisedata.org/repository>, 2007.

[75] Z. He, F. Peters, T. Menzies, and Y. Yang. Learning from open-
source projects: An empirical study on defect prediction. In
2013 ACM / IEEE International Symposium on Empirical Soft-
ware Engineering and Measurement, Baltimore, Maryland, USA,
45–54, 2013.

[76] S. Wang, T. Liu, and L. Tan. Automatically Learning Semantic
Features for Defect Prediction. In Proceedings of International
Conference on Software Engineering, 2016.

[77] C. Tantithamthavorn, S. Mcintosh, A. E. Hassan, et al, An Em-
pirical Comparison of Model Validation Techniques for Defect
Prediction Models, IEEE Transactions on Software Engineering,
2017, 43(1):1-18.

[78] LaValle S M, Branicky M S, Lindemann S R. On the relation-
ship between classical grid search and probabilistic roadmaps.
The International Journal of Robotics Research, 2004, 23(7-8):
673-692.

[79] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, K. Matsumoto,
Automated parameter optimization of classification techniques
for defect prediction models, in: Proceedings of the 38th Interna-
tional Conference on Software Engineering, ACM, 2016, pp.
321–332.

[80] S. Lessmann, B. Baesens, C. Mues, S. Pietsch, Benchmarking
classification models for software defect prediction: A proposed
framework and novel findings, IEEE Trans. Softw Eng. 34 (4)
(2008) 485–496.

[81] Osman H, Ghafari M, Nierstrasz O. Hyperparameter optimiza-
tion to improve bug prediction accuracy, Machine Learning
Techniques for Software Quality Evaluation (MaLTeSQuE),
IEEE Workshop on. IEEE, 2017: 33-38.

[82] Shan C, Zhu H, Hu C, et al. Software defect prediction model
based on improved LLE-SVM, Computer Science and Network
Technology, 2015 4th International Conference on. IEEE, 2015,
1: 530-535.

[83] T. Menzies, J. Greenwald, and A. Frank, Data mining static code
attributes to learn defect predictors, IEEE Trans. Softw. Eng.,
vol. 33, no. 1, pp. 2–13, 2007.

[84] H. Wang, T. M. Khoshgoftaar, and N. Seliya, How many soft-
ware metrics should be selected for defect prediction, in Proc.
24th Int. Florida Artificial Intelligence Research Society Conf.,
2011, pp. 69–74.

[85] T. M. Khoshgoftaar, K. Gao, and A. Napolitano, An empirical
study of feature ranking techniques for software quality predic-
tion, Int. J. Softw. Eng. Knowl. Eng., vol. 22, no. 2, pp. 161–183,
2012.

[86] C. Tantithamthavorn. ScottKnottESD: The Scott-Knott Effect
Size Difference (ESD) Test. https://cran.r- project.org/web/
packages/ScottKnottESD/index.html, 2016.

[87] A. J. Scott and M. Knott. A cluster analysis method for grouping
means in the analysis of variance. Biometrics, 507-512, 1974.

[88] L. C. Borges and D. F. Ferreira. Power and type I errors rate of
Scott- Knott, Tukey and Newman-Keuls tests under normal and
no-normal distributions of the residues. Revista de Matemática e
Estatística, 21(1): 67-83, 2003.

[89] B. Ghotra, S. McIntosh, and A. E. Hassan. Revisiting the impact
of classification techniques on the performance of defect predic-
tion models. In37th International Conference on Software Engi-
neering, 789-800, 2015.

[90] Khoshgoftaar T M, Golawala M, Van Hulse J. An empirical
study of learning from imbalanced data using random forest.
Tools with Artificial Intelligence, 2007. ICTAI 2007. 19th IEEE
international conference on. IEEE, 2007, 2: 310-317.

[91] https://www.microsoft.com/
[92] Yu X, Liu J, Yang Z, et al. The Bayesian Network based pro-

gram dependence graph and its application to fault localization.
Journal of Systems and Software, 2017, 134: 44-53.

309
Authorized licensed use limited to: Wuhan University. Downloaded on January 13,2025 at 08:00:44 UTC from IEEE Xplore. Restrictions apply.

