
An Empirical Study of Learning to Rank Techniques 
for Effort-Aware Defect Prediction 

 
Xiao Yu1,2, Kwabena Ebo Bennin2, Jin Liu1*, Jacky Wai Keung2*, Xiaofei Yin3, Zhou Xu1 

1School of Computer Science, Wuhan University, Wuhan, China 
2Department of Computer Science, City University of Hong Kong, Hong Kong, China 

3School of Computer Science, Fudan University, Shanghai, China 
*Corresponding authors: {jinliu@whu.edu.cn, jacky.keung@cityu.edu.hk}

 
Abstract—Effort-Aware Defect Prediction (EADP) ranks soft-

ware modules based on the possibility of these modules being 
defective, their predicted number of defects, or defect density by 
using learning to rank algorithms. Prior empirical studies com-
pared a few learning to rank algorithms considering small num-
ber of datasets, evaluating with inappropriate or one type of per-
formance measure, and non-robust statistical test techniques. To 
address these concerns and investigate the impact of learning to 
rank algorithms on the performance of EADP models, we exam-
ine the practical effects of 23 learning to rank algorithms on 41 
available defect datasets from the PROMISE repository using a 
module-based effort-aware performance measure (FPA) and a 
source lines of code (SLOC) based effort-aware performance 
measure (Norm(Popt)). In addition, we compare the performance 
of these algorithms when they are trained on a more relevant 
feature subset selected by the Information Gain feature selection 
method. In terms of FPA and Norm(Popt), statistically significant 
differences are observed among these algorithms with BRR 
(Bayesian Ridge Regression) performing best in terms of FPA, 
and BRR and LTR (Learning-to-Rank) performing best in terms 
of Norm(Popt). When these algorithms are trained on a more rele-
vant feature subset selected by Information Gain, LTR and BRR 
still perform best with significant differences in terms of FPA and 
Norm(Popt). Therefore, we recommend BRR and LTR for build-
ing the EADP model in order to find more defects by inspecting a 
certain number of modules or lines of codes.  

Index Terms—effort-aware defect prediction; learning to rank; 
empirical study; Scott-Knott ESD test.  

I. INTRODUCTION 
Software defect prediction (SDP) has been an active re-

search area in the field of software engineering attracting more 
and more attention from both industry and academia [1], [2]. 
SDP models predict whether a software module is defective 
based on some software features such as source lines of codes 
(SLOC) and McCabe’s cyclomatic complexity. Accurate pre-
diction results can help allocate limited testing resources by 
suggesting that software testers pay more attention on those 
predicted defective modules [3], [4], [5], [17], [18].   

However, traditional SDP models [30], [32], [33] based on 
some binary classification algorithms are not sufficient for 
software testing in practice, since they do not distinguish be-
tween a module with many defects or high defect density (i.e., 
number of defects/lines of source codes) and a module with a 
small number of defects or low defect density [5], [6], [7], [34]. 
Clearly, both modules require a different amount of effort to 

inspect and fix, yet they are considered equal and allocated the 
same testing resources.  Therefore, Mende et al. [8] proposed 
effort-aware defect prediction (EADP) models to rank software 
modules based on the possibility of these modules being defec-
tive, their predicted number of defects, or defect density. 

Generally, EADP models are constructed by using learning 
to rank techniques [5]. These techniques can be grouped into 
three categories, i.e., the pointwise approach, the pairwise ap-
proach, and the listwise approach [11], [12], [29]. There exist a 
vast variety of learning to rank algorithms in literature. It is 
thus important to empirically and statistically compare the im-
pact and effectiveness of different learning to rank algorithms 
for EADP. To the best of our knowledge, few prior studies [9], 
[10], [15], [16], [43] evaluated and compared the existing 
learning to rank algorithms for EADP.  

Most of these studies however conducted their study with 
few learning to rank algorithms across a small number of da-
tasets. Previous studies [15], [16], [43] conducted their study 
with as many as five EADP models and few datasets.  For ex-
ample, Jiang et al. [15] investigated the performance of only 
five classification-based pointwise algorithms for EADP on 
two NASA datasets. Nguyen et al. [43] investigated three re-
gression based pointwise algorithm and two pairwise algo-
rithms for EADP on five Eclipse CVS datasets. 

In addition, the results of most studies were evaluated with 
an inappropriate or one type of performance measure and non-
robust statistical tests. Evaluation of EADP models with AUC 
(Area Under the Curve), precision, recall and SRCC (Spearman 
Rank Correlation Coefficient) [43] is not suitable, because they 
do not take the effort into consideration [36], [37], [38]. Jiang 
et al. [15] and Yang et al. [10] employed one type of perfor-
mance measure, i.e., three module-based effort-aware perfor-
mance measures (Lift Chart (LC), Cumulative Lift Chart 
(CLC), and Fault-percentile-average (FPA)), while Mende et al. 
[16] and Bennin et al. [9] employed another type of perfor-
mance measure, i.e., two SLOC-based effort-aware perfor-
mance measures (Popt and Norm(Popt)). Module-based perfor-
mance measures evaluate how many defects can be found when 
we inspect a certain number of modules, while SLOC-based 
performance measures evaluate how many defects can be 
found when we inspect a certain number of lines of codes. It is 
thus crucial to investigate which learning to rank algorithm is 
best for different application scenarios, i.e., software testers 
may need to find more defects by inspecting a certain number 
of modules or lines of codes.  
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Prior studies [9], [10] concluded that the effectiveness of 
different learning to rank algorithms are not significantly dif-
ferent from each other. These empirical findings may be sus-
ceptible to the statistical test techniques they employed in the 
experiments, such as the Friedman test with Nemenyi test in [9], 
[15], [16], because Ghotra et al. [19] pointed out that these 
techniques have some limitation for multiple comparison anal-
ysis. Lastly, previous results have shown that eliminating irrel-
evant features from the original dataset can improve the per-
formance of predictive models [5], [31]. It is thus important to 
apply feature selection techniques to software defect datasets, 
since feature selection techniques are able to filter out irrele-
vant features by calculating the contributions of software fea-
tures [25], [26], [35].  

Considering the above issues, we address the following re-
search questions using 41 releases of 11 available and com-
monly-used software projects from the PROMISE data reposi-
tory [74]. 

(1) RQ1: Which is the best learning to rank algorithm 
for EADP?  

For RQ1, we conduct an extensive comparative study on 
the impact of 6 classification-based pointwise learning to rank 
algorithms, 9 regression-based pointwise learning to rank algo-
rithms, 4 pairwise learning to rank algorithms and 4 listwise 
learning to rank algorithms for EADP evaluated with the mod-
ule-based effort-aware performance measure (FPA) and the 
SLOC-based effort-aware performance measure (Norm(Popt)).  
The experimental results show that Bayesian Ridge Regression 
(BRR) performs best in terms of FPA, and BRR and Learning 
to Rank (LTR) perform best in terms of Norm(Popt). The exper-
imental results are supported by the state-of-the-art multiple 
comparison technique, i.e., Scott-Knott ESD test [86]. 

(2) RQ2:  Which is the best performing algorithm when 
trained on a relevant feature subset selected by Information 
Gain?  

To filter out irrelevant features and significantly improve 
prediction performance, we adopt Information Gain as the fea-
ture selection method for this study, similar to the study in [5]. 
Experimental results show that eliminating irrelevant software 
features from the original dataset can improve the performance 
of EADP models. LTR and BRR perform best in terms of FPA 
and Norm(Popt) when these algorithms are trained on a more 
relevant feature subset selected by Information Gain. The re-
sults are also supported by the Scott-Knott ESD test.   

We recommend that software testers first employ Infor-
mation Gain to eliminate irrelevant software features, and then 
use LTR and BRR to build the EADP model when they aim to 
inspect a certain number of modules or lines of code to find 
more defects. 

The remainder of this paper is organized as follows.  Sec-
tion II briefly introduces the learning to rank algorithms. Sec-
tion III and Section IV present the experiment setup and exper-
iment results, respectively. Section V discusses the potential 
threats to validity. Section VI presents the related work. Finally, 
Section VII addresses the conclusion and points out the future 
work. 

 

II. BACKGROUND 
A software module can be represented as Mi=(xi,yi), where 

xi=(x1, x2,…, xm) is a m-dimensional software feature vector of 
the i-th module, and yi is the number of defects in the i-th mod-
ule. A software defect dataset can be represented as 
S={Mi=(xi,yi)} n 

i=1, where n is the number of modules in S. The 
goal of EADP is to learn from S to obtain a prediction model to 
rank new modules according to the possibility of these modules 
being defective, their predicted number of defects, or defect 
density, where Mj ≻ Mk means that the possibility of Mj being 
defective, the number of defects or defect density in Mj is larger 
than that in Mk.  

In this section, we briefly introduce the 23 learning to rank 
algorithms due to the space limitation. These algorithms cover 
three families, including 15 pointwise algorithms, 4 pairwise 
algorithms, and 4 listwise algorithms. Figure 1 shows an over-
view of the three types of approaches, and Table I provides an 
overview of the 23 algorithms.  
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Figure 1.  An overview of the three types of learning to rank approaches. 

A. The Pointwise Approach 
The pointwise approach tries to predict the possibility of a 

module being defective or the number of defects to rank the 
modules. As shown in Figure 1, there are three modules (i.e., A, 
B, and C) that need to be ranked. Assuming that the pointwise 
approach predicts that the number of defects in module A is 
Number(A), the number of defects in module B is Number(B), 
the number of defects in module C is Number(C), and Num-
ber(A)>Number(B)>Number(C), then the predicted ranking of 
A, B, and C is A ≻  B ≻  C. In the following, we first introduce 
the six classification-based learning to rank algorithms used in 
this study. 

(1) Naïve Bayes (NB) [13]: It is a classification algorithm 
based on the Bayes’ theorem with the “naive” assumption that 
every pair of software features are independent. 

(2) Logistic regression (LogR) [54]: It is a classification al-
gorithm to classify software modules into discrete outcomes. It 
maximizes the entropy of the labels conditioned on the soft-
ware features with respect to the distribution.  

(3) Classification and Regression Tree (CART) [55]: It par-
titions the  training dataset  into small segments  using  the Gini  
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TABLE I.  PARAMETER VALUE OVERVIEW OF THE LEARNING TO RANK ALGORITHMS STUDIED IN OUR WORK 

Family Label Algorithm Parameter Description Parameter Value 

Classification-
based 

Pointwise 
approach 

1 Naïve Bayes(NB) Laplace Correction {0} 
2 Logistic Regression (LogR) Tolerance for stopping criteria {0.1,0.01,0.001,0.0001,0.00001} 

3 Classification and Regression Tree 
(CART) 

The minimum number of samples required to split an internal node {2 ,6,10,14,18} 
The minimum number of samples required to be at a leaf node {1,3,5,7,9} 

4 Bagging The number of base learners {10,20,30,40,50} 
5 Random Forest (RF) The number of trees in the forest {10,20,30,40,50} 
6 K-nearest Neighbors (KNN) Number of neighbors {1,5,9,13,17} 

Regression-
based 

Pointwise 
approach 

7 Decision Tree Regression (DTR) The minimum number of samples required to split an internal node {2 ,6,10,14,18} 
The minimum number of samples required to be at a leaf node {1,3,5,7,9} 

8 Linear Regression (LR) Whether the regressor will be normalized before {true, false} 
9 Bayesian Ridge Regression (BRR) Stop the algorithm if w has converged {0.1,0.01,0.001,0.0001,0.00001} 

10 Neural Network Regression (NNR) The size of hidden layers {2,4,8,16,32,64} 
Size of minibatches for stochastic optimizers {8,16,32,128,256} 

11 Support Vector Regression (SVR) Penalty parameter C of the error term {0.01,0.1,1,10,100} 
12 K-nearest Neighbors Regression 

(KNR) The number of neighbors {1,5,9,13,17} 

13 Gradient Boosting Regression (GBR) 
The number of boosting stages to perform {100,200,300,400,5000} 

The minimum number of samples required to split an internal node {2 ,6,10,14,18} 
The minimum number of samples required to be at a leaf node {1,3,5,7,9} 

14 Gaussian Process Regression (GPR) The number of restarts of the optimizer for finding the kernel’s 
parameters {0,1,2,3,4} 

15 Stochastic Gradient Descent 
Regression (SDGR) Constant that multiplies the regularization term {0.1,0.01,0.001,0.0001,0.00001} 

 
Pairwise 
approach 

16 Ranking SVM Penalty parameter C of the error term {0.01,0.1,1,10,100} 
17 RankBoost The number of rounds to train {100, 200,300,400,500} 
18 RankNet The number of epochs to train {16,32,64,128,256} 
19 LambdaRank The number of epochs to train {16,32,64,128,256} 

Listwise 
approach 

20 ListNet The number of epochs to train {16,32,64,128,256} 
21 AdaRank The number of rounds to train {100, 200,300,400,500} 
22 Coordinate Ascent The number of random restarts {2,4,6,8,10} 
23 LTR Feasible solution space [-20,20] 

 
index, and labels these small segments with one of the class 
labels (i.e., defective or non-defective). 

(4) Bagging [56]: It is an ensemble classifier that fits a 
number of weak classifiers on the original dataset, and then 
combine them as a final strong classifier. In the experiment, we 
employ decision tree as the meta-classifier. 

(5) Random Forest (RF) [14]: It is an ensemble classifier 
that fits a number of decision tree classifiers on various subsets 
of the original dataset, and use averaging to improve the pre-
dictive accuracy and control over-fitting. 

(6) K-nearest Neighbors (KNN) [57]: It finds k training 
software modules closest to the new software module, and pre-
dicts the label of the new software module from these training 
modules.  

Additionally, we introduce 9 regression-based learning to 
rank algorithms as follows. 

(1) Decision Tree Regression (DTR) [58]. It builds a re-
gression model in the form of a decision tree structure by learn-
ing from the training dataset.  

(2) Linear Regression (LR) [59]. It trains a linear model: 
y=⟨b, x⟩ +b0                                   (1) 

where b=(b1,b2,…,bm) represents a m-dimensional vector of 
regression coefficients, x=(x1, x2,…, xm) is a m-dimensional 
software feature vector of the module,  b0 is the error term, and 
y is the number of defects or defect density in the module.  

 (3) Bayesian Ridge Regression (BRR) [60]. It is a proba-
bilistic method that builds a regression model using Bayesian 
inference. It combines priori information about parameters (the 
coefficient of software features) with the observed training data 
to get the posterior distribution of the parameters. 

(4) Neural Network Regression (NNR) [61]: It learns a non-
linear function approximator using backpropagation with no 
activation function in the output layer.  

(5) Support Vector Regression (SVR) [62]: It produces a 
function f(x) with at most !  -deviation from the target value y. 
Constructing an SVR model is formalized as solving: 

Minimize 
!
" # "                                  (2) 

subject to
!"- $, &' -( ≤ *
$, &' + (-!" ≤ *                          (3) 

where xi is the features of a module with target value yi. 
(6) K-nearest Neighbors Regression (KNR) [63]: It finds k 

training software modules closest to the new software module, 
and predicts the number of defects or the defect density of the 
new software module based the mean of the number of defects 
or the defect density of these nearest neighbors. 

(7) Gradient Boosting Regression (GBR) [64]: It is a boost-
ing regression method, which combines weak regression mod-
els to create a final strong regression model. In the experiment, 
we employ decision tree regression as the meta regression 
model. 
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(8) Gaussian Process Regression (GPR) [65]:  It is a regres-
sion algorithm to undertake non-parametric regression with 
Gaussian processes.  

(9) Stochastic Gradient Descent Regression (SDGR) [66]:  
It is a linear model fitted by minimizing a regularized empirical 
loss with SGD (Stochastic Gradient Descent). 

B. The Pairwise Approach 
The pairwise approach transforms EADP problem into a 

classification problem, i.e., learning a binary classifier f that 
can identity which module contains more defects or has higher 
defect density in a given module pair. As shown in Figure 1, 
assuming that the pairwise approach predicts that module A 
contains more defects than module B (i.e., f(A)>f(B)), module 
A contains more defects than module C (i.e., f(A)>f(C)), and 
module B contains more defects than module C (i.e., f(B)>f(C)), 
then the predicted ranking of A, B, and C becomes A≻B≻C. We 
introduce the four pairwise learning to rank algorithms used in 
this study as follows. 

(1) Ranking SVM [67]: It first transforms the ranking prob-
lem into classification by computing x1−x2, where x1 and x2 are 
the feature vectors of a pair of modules (i.e., M1 and M2), and 
then uses SVM to classify (x1−x2) into +1 or −1. If the class 
label is +1, M1 contains more defects than M2; otherwise, M2 
contains more defects than M1.  

(2) RankBoost [68]: It adopts AdaBoost to classify the 
modules pairs. The only difference between them is that the 
distribution is defined on modules pairs in RankBoost while 
that is defined on individual modules in AdaBoost. It aims to 
minimize the exponential loss on module pairs. 

(3) RankNet [69]: The loss function of RankNet is also de-
fined on module pairs, but the hypothesis is defined with the 
use of a scoring function, which is optimized by using the gra-
dient descent method.  

(4) LambdaRank [70]: LambdaRank optimizes an upgraded 
version of the loss function in RankNet with less computing 
complexity and better performance on measures using the gra-
dient descent method.  

C. The Listwise Approach 
The listwise approach directly optimizes the performance 

measures to obtain a ranking model. As shown in Figure 1, 
assuming that the listwise approach predicts that the ranking 
list PA,B,C has the best performance measure among all possible 
ranking lists (i.e., PA,B,C, PA,C,B, PB,A,C, PB,C,A, PC,A,B, and PC,B,A), 
so the predicted ranking of A, B, and C will be A ≻ B ≻ C. We 
introduce the four pairwise learning to rank algorithms used in 
this study as follows. 

(1) ListNet [71]: It uses a neural network approach with the 
gradient descent method to minimize a loss function, similar to 
RankNet. The loss function is defined using the probability 
distribution on all possible ranking lists. 

(2) AdaRank [72]: It is another boosting method which 
combines weak rankers to create the final ranking model. 
AdaRank directly minimizes the performance measures by 
updating the distribution of software modules and computing 
the combination coefficient of the weak rankers. 

(3) Coordinate Ascent [73]: It trains a ranking model by 
minimizing the mean average precision (MAP) values. It does 
a number of restarts to guarantee avoidance of the local mini-
mum. 

(4) Learning-to-Rank (LTR) [5]. It trains a simple linear 
model, i.e., f(x)= <w, x> by directly optimizing the FPA values 
using the composite differential evolution algorithm, and then 
ranks new modules based on the predicted relative number of 
defects or defect density. 

III. EXPERIMENTAL SETUP 

A. Datasets 
In this experiment, we employ 41 releases of 11 open 

source software projects, which can be obtained from the 
PROMISE data repository [74], [75], [76]. The details about 
the projects are shown in Table II, where Module represents the 
number of modules in the project, #Defects represents the total 
number of defects in the project, %Defect represents the per-
centage of defective modules in the project, and Avg is the av-
erage value of defects of all defective modules in the project. 
The 20 software features of the projects are listed in Table III. 

TABLE II.  DETAILS OF EXPERIMENT DATASET 

Project Release Module #Defects %Defects Avg 
Ant  1.3,1.4,1.5,1.6,1.7 1692 637 20.7 1.82 
Camel 1.0,1.2,1.4,1.6 2784 1371 20.2 2.44 
Ivy 1.1,1.4,2.0 704 307 16.9 2.58 
Jedit 3.2,4.0,4.1,4.2,4.3 1749 943 17.3 3.11 
Log4j 1.0,1.1,1.2 449 645 57.9 2.48 
Lucene 2.0,2.2,2.4 782 1314 56.0 3.0 
Poi 1.5,2.0,2.5,3.0 1378 1377 51.3 1.95 
Synapse 1.0,1.1,1.2 635 265 25.5 1.64 
Velocity 1.4,1.5,1.6 639 731 57.4 1.99 
Xalan 2.4,2.5,2.6,2.7 3320 2525 54.4 1.4 
Xerces init,1.2,1.3,1.4 1643 2071 39.8 3.17 

TABLE III.  FEATURES OF THE DATASET 

No. Feature Description 
1 wmc Weighted methods per class 
2 dit Depth of inheritance tree 
3 noc Number of children 
4 cbo Coupling between object classes 
5 rfc Response for a class 
6 lcom Lack of cohesion in methods 
7 ca Afferent couplings 
8 ce Efferent couplings 
9 npm Number of public methods 

10 lcom3 Lack of cohesion in methods 
11 loc Lines of code 
12 dam Data access metric 
13 moa Measure of aggregation 
14 mfa Measure of functional abstraction 
15 cam Cohesion among methods of class 
16 ic Inheritance coupling 
17 cbm Coupling between methods 
18 amc Average method complexity 
19 max_cc Maximum McCabe’s cyclomatic complexity 
20 avg_cc Average McCabe’s cyclomatic complexity 
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B. Performance Measures 
Menzies et al. [27], [28], [36], Kamei et al. [37], and 

D’Ambros et al. [38] suggested that software testers should 
consider the effort when testing the predicted defective soft-
ware modules. Evaluation of EADP models with AUC, preci-
sion, recall, F-measure [43] is not suitable for evaluating the 
performance of EADP models, because they do not take the 
effort into consideration. Therefore, researchers have proposed 
some effort-aware performance measures to evaluate EADP 
models, such as cost effectiveness (CE) [39], [40], [41], Popt 
[16], Norm(Popt) [37], [20], cumulative lift chart (CLC) [15], 
and fault percentile average (FPA) [42].   

CE, Popt and Norm(Popt) are SLOC based performance 
measures. The difference between CE and Norm(Popt) is that 
CE compares the prediction model with the baseline model, 
while Norm(Popt) compares the prediction model with the op-
timal model. That is, CE reports how much better than the 
baseline model a prediction model is, rather than tells us how 
closed to the optimal model a prediction model is. Therefore, 
we employ Norm(Popt) as the performance measure in this pa-
per. 
      (1) Norm(Popt)=	

"#$%-'()	("#$%)
',-	("#$%).'()	("#$%)

                                   (4) 

Here, Popt is defined as 1-∆opt, where ∆opt is the area between 
the optimal model (modules are ranked by decreasing actual 
defect densities) and the prediction model (modules are ranked 
by the decreasing predicted defect densities) in the SLOC-
based cumulative lift chart (Figure 2). max(Popt) is the Popt val-
ue of the optimal model, while min(Popt) is the Popt value of the 
worst model (modules are ranked by increasing actual defect 
densities) in the SLOC-based cumulative lift chart (Figure 2). 
In this chart, the x-axis is the cumulative percentage of SLOC 
to inspect, and the y-axis is the cumulative percentage of de-
fects found in the SLOC.   

 
 Figure 2.  A SLOC-based cumulative lift chart. 

CLC and FPA are module based performance measures. 
Yang et al. [5] have proved that FPA and CLC are linearly re-
lated. In the experiment, we also employ FPA to measure the 
performance, because Yang et al. [5] pointed out that FPA is 
the state of the art performance measure for evaluating EADP 
models.  

FPA is the average of the proportions of actual defects in 
the top modules to the all defects in the defect dataset [5]. A 
higher FPA means a better ranking, where the modules with 
most defects are ranked first [5]. Assume that n modules in a 

software defect dataset are ranked by increasing order of the 
predicted number of defects, as M1, M2, M3, …, Mn, and 
Y=y1+y2+,…,+yn is the total number of defects in the software 
defect dataset. Therefore, Mn is predicted to contain most de-
fects. The proportion of the actual defects in the top m predict-
ed modules to the whole defects is: 

                                     
!
" #$%

$&%-()!   .                                (5) 
Then, FPA is define as: 
                                

!
"

!
#

"
$%! &'"

'%"-$)!   .                        (6) 

C. Experimental Procedure 
We employ out-of-sample bootstrap validation technique 

recommended by Tantithamthavorn et al. [77], because it has 
been suggested to generate the best balance between the bias 
and variance of training and testing datasets. The out-of-sample 
bootstrap process is made up of the following three steps: 

(1) N bootstrap modules are selected at random with re-
placement from an original defect dataset, where N is the num-
ber of software modules in the original defect dataset.  

(2) An EADP model is trained using the bootstrap modules 
(i.e., training data).  On average, 36.8% modules in the original 
dataset will not appear in the bootstrap modules. 

(3)  We calculate the Norm(Popt) and FPA values for each 
learning to rank algorithm tested on the modules of the original 
defect dataset that do not appear in the bootstrap modules. 

The experimental procedure is shown in Figure 3. We re-
peat the out-of-sample bootstrap 20 times. For the first research 
question, we compare the 23 learning to rank algorithms. The 
parameter configurations for each algorithm are presented in 
Table I. In this experiment, we use the grid search [78] to tune 
parameters, because it is commonly used in the field of soft-
ware engineering [22], [23], [24], [79], [80], [81], [82]. 

For the second research question, we use Information Gain 
to investigate the effectiveness of different features on the ex-
perimental results. We employ Information Gain for the fol-
lowing reasons: (1) a number of empirical studies [83], [84], 
[85] have demonstrated the effectiveness of Information Gain 
for defect prediction; (2) empirical validation of feature selec-
tion for EADP is limited in literature. Only Yang et al. [5] ap-
plied Information Gain to EADP models. Therefore, we also 
employ Information Gain in this paper. In this paper, we adopt 
the iterative subset, by selecting the top 2,3,...,18,19 top fea-
tures.  For the implementations of the pointwise algorithms and 
Information Gain, we use the python machine learning library 
sklearn to avoid the potential faults as much as possible. For 
the implementation of the pairwise and listwise algorithms ex-
cept LTR, we use the source code provided by Microsoft [91]. 
We carefully implemented LTR following the original paper 
[5], since the authors did not provide the source codes. 

It is worth noting that we use the defect density (number of 
defects/SLOC) as the target variable and 19 software features 
(except SLOC) to build the EADP model when the model is 
evaluated with Norm(Popt). We first discretize the number of 
defects into “defective” and “non-defective” classes, and fur-
ther use these classes to train the classification-based pointwise 
learning to rank algorithms to build the EADP model.  
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Figure 3.  The experimental procedure. 

D. Statistical Comparison Tests 
The Scott-Knott test [87] is a multiple comparison tech-

nique that produces statistically distinct ranks at the signifi-
cance level of 0.05 (α=0.05) using hierarchical clustering algo-
rithm. This test ranks and clusters the learning to rank algo-
rithms into significantly different groups, in which the learning 
to rank algorithms in distinct groups have significant differ-
ences while the learning to rank algorithms in the same group 
have no significant differences [31]. Therefore, the Scott-Knott 
test can group the learning to rank algorithms distinctly without 
any overlapping [88].  For more robust result analysis, we use 
the extended Scott-Knott with Cohen’s d effect size awareness 
(Scott-Knott ESD) [86], which merges any pair of ranks that 
have a negligible Cohen’s d effect size between them to post-
processes the statistically distinct ranks produced by the tradi-
tional Scott-Knott test [86]. 

We use the double Scott-Knott test [89] to divide these 
learning to rank algorithms into different groups (α=0.05). The 
double Scott-Knott test contains two steps (shown in Figure 4): 
Initially, we provide the FPA and Norm(Popt) values of the 20 
bootstrap iterations of each learning to rank algorithms on each 
dataset to the Scott-Knott ESD test. This results in 41 different 
Scott-Knott ESD ranks (i.e, one from each dataset) for each 
learning to rank algorithm. Furthermore, we obtain the final 
rankings of these algorithms across all of the studied datasets 
with the 41 different Scott-Knott ESD ranks being the input to 
the Scott-Knott ESD test. 

 
Figure 4.  The procedure of the double Scott-Knott test. 

 

IV. EXPERIMENT RESULTS 
In this section, the experimental results and answers to the 

two research questions in Section I are presented. 

A. RQ1: Which is the best learning to rank algorithm for 
EADP? 
To answer this question, we compare 23 learning to rank 

algorithms. The boxplots in Figure 5 show the distribution of 
FPA values of each algorithm with the Scott-Knott ESD test 

results across all studied datasets. Different colors of the 
boxplot indicate different Scott-Knott ESD test ranks. From 
top down, the order is red, pink, rose red, yellow, orange, 
chocolate, blue, sky blue, green, purple, gray, black. Table IV 
reports the algorithms that belong to the same group and the 
statistical properties of the algorithm rankings for each group 
in terms of FPA, including the median ranking, average 
ranking and standard deviation.  
 

 
Figure 5.  The boxplots of the FPA values. 

TABLE IV.  STATISTICAL RESULTS IN TERMS OF FPA 

Overall 
Ranking Algorithms Median 

Ranking 
Average 
Ranking 

Standard 
Deviation 

1 BRR 2.07 2.07 0 
2 LTR 2.56 2.56 0 

3 RankBoost, GBR, 
RF, LR 

2.92 2.94 0.080 

4 NB, Bagging 3.29 3.45 0.159 
5 LogR 4  4 0 
6 DTR 4.97 4.97   0 
7 SVR, KNR 5.46 5.65 0.033  

8 
Ranking SVM, 
Coordinate Ascent, 
CART 

7.10 7.07 0.072  

9 KNN, NNR 7.80 7.85 0.049 

10 ListNet, SGDR, 
RankNet 

9.66 9.62 0.172 

11 AdaRank, 
LambdaRank 

10.22 10.23 0.012 

12 GPR 11.15 11.15 0 
 
As shown in the Figure 5 and Table IV, we observe that 

the 23 learning to rank algorithms are clustered into twelve 
distinct groups without overlapping, which implies that there 
exist clear separations between these algorithms. As shown in 
Figure 5 and Table IV, BRR obtains the best ranking among 
all learning to rank algorithms in terms of FPA. LTR has a 
higher ranking than other learning to rank algorithms except 
BRR.  A pairwise algorithm (RankBoost), two regression 
based pointwise algorithm (GBR and LR), a classification 
based pointwise algorithm (RF) belong to the third group. In 
addition, three classification based pointwise algorithms (NB, 
Bagging and LogR) perform well and belong to the fourth and 
fifth groups, respectively.  
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The boxplots in Figure 6 show the distribution of 
Norm(Popt) values of each algorithms with the Scott-Knott 
ESD test results across all studied datasets. Table V reports the 
algorithms that belong to the same group and the statistical 
properties of the algorithm rankings for each group. As shown 
in Figure 6 and Table V, BRR and LTR attain the best ranking. 
GBR and LR (two regression based pointwise algorithms) 
belong to the second and third group, respectively. 

 

 
Figure 6.  The boxplots of the Norm(Popt) values. 

TABLE V.  STATISTICAL RESULTS IN TERMS OF NORM(POPT) 

Overall 
Ranking Algorithms Median 

Ranking 
Average 
Ranking 

Standard 
Deviation 

1 BRR, LTR 2.80 2.89 0.085 
2 GBR 3.41 3.41  0  
3 LR 3.85 3.85  0  
4 DTR 4.51 4.51  0  
5 KNR, RankBoost 5.06 5  0.06  

6 Bagging, GPR, RF, 
LogR 

5.5   5.439 0.107 

7 Ranking SVM, CART 6.05 5.92 0.122 
8 Coordinate Ascent 6.59 6.59 0 

9 
ListNet, RankNet, 
KNN, NNR, AdaRank, 
LambdaRank, NB 

7.13 7.146 0.159 

10 SGDR, SVR 7.90 7.83 0.073 
 

In summary, BRR performs best among all learning to 
rank algorithms in terms of FPA, and BRR and LTR perform 
best among all learning to rank algorithms in terms of 
Norm(Popt). The result is supported by the Scott-Knott ESD 
test. 

B. Which is the best performing algorithm when trained on a 
relevant feature subset selected by Information Gain? 
This question aims to explore whether the conclusion of 

RQ1 is consistent after removing irrelevant software features 
from the original datasets using Information Gain method. We 
adopt the iterative subset, by selecting the top 2,3,...,18,19 
features. Since the average FPA and Norm(Popt) values of all 
learning to rank algorithms on all datasets are highest when all 
algorithms are trained on top 10 features, we select the top 10 
features following the setup in [90]. Due to the space limit, we 
do not list the detail FPA and Norm(Popt) values of each 

algorithm trained on each feature subset. The average FPA 
value of all algorithms trained on top 10 features is 0.629, 
which is higher than that (0.617) of all algorithms trained on 
original datasets. The average Norm(Popt) value of all 
algorithms trained on top 10 features is 0.552, which is higher 
than that (0.549) of all algorithms trained on original datasets. 

The boxplots in Figure 7 show the distribution of FPA val-
ues of each algorithm trained on the top 10 features across all 
studied datasets with the Scott-Knott ESD test results. Table VI 
reports the algorithms that belong to the same group and the 
statistical properties of the algorithm rankings for each group in 
terms of FPA. As shown in the Figure 7 and Table VI, BRR 
and LTR belong to the first group. LR and RankBoost belong 
to the second and third group, respectively. Three classification 
based pointwise algorithms (NB, LogR and RF) perform well 
and belong to the fourth group. 

 
 

 
Figure 7.  The boxplots of the FPA values when the algorithms are trained on 

the top 10 features. 

TABLE VI.  STATISTICAL RESULTS IN TERMS OF FPA WHEN THE 
ALGORITHMS ARE TRAINED ON TOP 10 FEATURES 

Overall 
Ranking Algorithms Median 

Ranking 
Average 
Ranking 

Standard 
Deviation 

1 BRR, LTR 1.98 1.95 0.024 
2 LR 2.51 2.51 0 
3 RankBoost 2.80 2.80 0 
4 NB, LogR, GBR, RF 3.61 3.61 0.062 
5 Bagging 4.22 4.22 0 
6 SVR, NNR 4.80 4.88   0.073 

7 Ranking SVM, DTR, 
KNR 

5.36 5.37 0.090 

8 ListNet 6.61 6.61 0 

9 CART, Coordinate 
Ascent 

7.17 7.23 0.061 

10 KNN, RankNet 7.68 7.90 0.220 

11 AdaRank, SGDR, 
LambdaRank 

9.537 9.577 0.172 

12 GPR 10.366 10.366 0 
 

The boxplots in Figure 8 show the distribution of 
Norm(Popt) values of each algorithm trained on the top 10 
features across all studied datasets with the Scott-Knott ESD 
test results. Table VII reports the algorithms that belong to the 
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same group and the statistical properties of the algorithm 
rankings for each group in terms of Norm(Popt). As shown in 
the Figure 8 and Table VII, LTR and BRR belong to the first 
group, and GBR and LR belong to the second group. 
RankBoost, RF, DTR and LogR belong to the third group. 

In summary, LTR and BRR perform best among all 
learning to rank algorithms trained on the top 10 features in 
terms of FPA and Norm(Popt). The result is supported by the 
Scott-Knott ESD test. 
 

 
Figure 8.  The boxplots of the Norm(Popt) values when these algorithms are 

trained on the top 10 features. 

TABLE VII.  STATISTICAL RESULTS IN TERMS OF NORM(POPT) WHEN 
THE ALGORITHMS ARE TRAINED ON TOP 10 FEATURES 

Overall 
Ranking Algorithms Median 

Ranking 
Average 
Ranking 

Standard 
Deviation 

1 LTR, BRR 2.34 2.89 0.146 
2 GBR, LR 3.22 3.22  0  

3 RankBoost, RF, DTR, 
LogR 

4.29 4.24 0.128 

4 KNR, Bagging 5.56 4.57 0.012 
5 Ranking SVM, NB 4.80 4.91 0.012 
6 NNR 5.39  5.39 0 
7 SVR 5.59 5.59 0 

8 
CART, RankNet, 
ListNet, Coordinate 
Ascent, KNN 

6.63 6.59 0.148 

9 GPR, AdaRank 7.32 7.49 0.171 
10 SGDR, LambdaRank 7.92 8.02 0.097 

C. Discussion 
The performance of the three types of learning to rank algo-

rithms might be explained via the difference of the training 
utility function. 

(1) As mentioned in Section III, the listwise approach di-
rectly optimizes the performance measure to obtain a ranking 
function. LTR performs well in terms of FPA (LTR belongs to 
the second group and first group, when it is trained on all fea-
ture sets and top-10 feature subsets, respectively), because it 
directly optimizes the FPA value. LTR also performs well for 
Norm(Popt), because Norm(Popt) and FPA are both effort-aware 
performance measures. The only difference between Norm(Popt) 
and FPA is that Norm(Popt) is SLOC-based, and FPA is mod-
ule-based. However, other listwise algorithms have poor per-

formance. The reason might be that the goal of these algo-
rithms is to optimize some information retrieval performance 
measures, such as mean average precision (MAP), which do 
not take the effort into consideration [36], [37], [38]. 

(2) Some regression-based pointwise algorithms perform 
well in terms of FPA, such as BRR, GBR and LR. These algo-
rithms outperform other regression algorithms for several rea-
sons. BRR and LR are multiple linear regression models, 
whereas the other regression algorithms are not linear models. 
Furthermore, there is a strong linear relationship between soft-
ware features and the number of defects [5]. Therefore, the two 
algorithms have strong capability to identify and build the rela-
tionship between the software features and the number of de-
fects. In addition, there exist strong correlations among the 
software features, i.e., multicollinearity [10]. BRR can reduce 
multicollinearity when constructing EADP models [10]. This is 
one reason why BRR performs best. GBR is an ensemble learn-
ing algorithm, which grow an ensemble of regression trees and 
allow them to vote on the decision to improve the performance. 

(3) Some classification-based pointwise algorithms perform 
well in terms of FPA, such as RF, NB, Bagging, LogR (belong 
to the third or fourth group). In contrast to current practices in 
defect prediction studies, the classification-based pointwise 
algorithms lead to better performance when the number of de-
fects in the defect datasets is not used to build prediction mod-
els.  The finding is in agreement with a recent study [21], 
which found that building defect prediction classifiers using the 
number of defects does not always lead to better performance.  
One possible reason for other types of learning to rank algo-
rithms using the number of defects having poorer performance 
than these classification-based pointwise algorithms is that the 
number of defects in each module in these datasets is highly 
imbalanced. That is, the modules with many defects occupy 
only a small part of this project, whereas the defect-free mod-
ules occupy a great part of this project, followed by the mod-
ules with one defect. These imbalanced datasets can be better 
handled by these classification-based algorithms, as they em-
ploy the class labels instead of the information of the number 
of defects.  In addition, Bagging and RF are ensemble learning 
algorithms, which grow an ensemble of classification trees and 
allow them to vote on the decision to handle the data imbalance 
problem. 

(4) In most cases, the pairwise algorithms have poor per-
formance. The reasons might be as follows. The goal of pair-
wise algorithms is to minimize the number of incorrect rank-
ings. Here, an incorrect ranking means that a module with less 
defects or lower defect density is ranked ahead of a module 
with more defects or higher defect density in a given module 
pair. When a model ranks the modules with more defects or 
higher defect density correctly, the model will obtain higher 
FPA value or Norm(Popt) value. Therefore, EADP models 
should rank the modules with more defects or higher defect 
density correctly, and a higher cost should be assigned to the 
incorrect ranking of a module with more defects or higher de-
fect density than a module with less defects or lower defect 
density. Subsequently, pairwise algorithms allocate the same 
costs for incorrect ranked modules with more  defects or higher  
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TABLE VIII.  RELATED WORKS ABOUT EMPIRICAL STUDIES FOR EADP	

Study Datasets used Learning to Rank Techniques Performance 
Measures 

Statistical 
Tests 

 

Main Findings 

Jiang et 
al. [15]  

Corpus: NASA 
Number of datasets: 8 

NB, LogR, KNN, C4.5, Bagging CLC Friedman test, 
Nemenyi test 

KNN outperforms others on the PC1 dataset, 
and C4.5 outperforms others on the KC2 
dataset. 

Mende et 
al. [16] 

Corpus: NASA 
Number of datasets: 
13 

NB, LogR, CART, Bagging, RF CE, Popt Nemenyi’s 
post-hoc test  

Bagging outperforms others. 

Nguyen et 
al. [43] 

Corpus: Eclipse CVS 
Number of datasets: 5 

KNR, LR, MARS (multivariate 
adaptive regression splines), 
Ranking SVM, RankBoost 

SRCC None RankBoost has more stable prediction 
performance. 

Bennin et 
al. [9] 

Corpus: Open Source 
Software 
Number of datasets: 
25 

LR, LAR (least angel 
regression), RVM (relevance 
vector machine), KNR, K*, 
NNR, SVR, DTR, GBR, RF 

Norm(Popt) Nemenyi test  K* outperforms best when using cross-
validation setup, M5 performs best when using 
cross-release setup. There is not statistically 
significant difference among all compared 
algorithms.  

Yang et 
al. [10] 

Corpus: PROMISE 
Number of datasets: 
41 

LAR (lasso regression), RR, 
NBR (negative binomial 
regression), PCR (principal 
component regression), RF, LTR 

CLC, FPA Wilcoxon 
rank-sum test 

RR can achieve better results than LR and 
NBR, slightly (not significantly) better results 
than LAR, PCR and LTR, and slightly worse 
results than RF when using cross-release 
setup. 

Our study Corpus: PROMISE 
Number of datasets: 
41 

NB, LogR, CART, Bagging, RF, 
KNN, DTR, LR, BRR, NNR, 
SVR, KNR, GBR, GPR, SDGR, 
Ranking SVM, RankBoost, 
RankNet, LambdaMart, ListNet, 
AdaRank, Coordinate Ascent, 
LTR 

FPA, 
Norm(Popt) 

Scott-Knott 
ESD test 

In terms of FPA and Norm(Popt), statistically 
significant differences are observed among 
these algorithms with BRR (Bayesian Ridge 
Regression) performing best in terms of FPA, 
and BRR and LTR performing best in terms of 
Norm(Popt). When these algorithms are trained 
on a more relevant feature subset selected by 
Information Gain, LTR and BRR still perform 
best with significant differences in terms of 
FPA and Norm(Popt). 

defect density and incorrect ranked modules with one defect or 
lower defect density. That is, the training utility function of 
these pairwise algorithms also do not take the effort into con-
sideration. 

V. THREATS TO VALIDITY 
In this section, we discuss several validity threats that may 

have impacted the results of our empirical studies. 
External validity. Threats to external validity occur when 

the results of our experiments cannot be generalized. Although 
these datasets have been widely used in many software defect 
prediction studies [75], [76], we cannot generalize the results 
for all datasets especially commercial datasets. Additionally, 
we acknowledge the existence of several prediction models. 
Our study employed 23 prediction models which is sufficient 
for an empirical study. Adoption of other prediction models not 
used in this study is left for a future study. 

Internal validity.  Threats to internal validity refer to the bi-
as of the choice of learning to rank algorithms and feature se-
lection method. The reasons we employ the learning to rank 
algorithms are as follows: (1) Our selection of the classifica-
tion-based pointwise algorithms closely resembles the choice 
by Jiang et al. [15] and Mende et al. [16]. (2) Our selection of 
the regression-based pointwise algorithms closely resembles 
the choice by Chen et al. [52] and Rathore et al. [53]. (3) Our 
selection of the pairwise and listwise algorithms closely resem-
bles the choice by Nguyen et al. [43] and Shi et al. [11]. Shi et 

al. [11] investigated the same pairwise and listwise   algorithms   
for   bug    localization, which is also a research hotspot in the 
field of software engineering [92]. We use Information Gain as 
the feature selection method following the work in [5]. In addi-
tion, with regards to the experimental implementation, the re-
sults could be influenced by the parameters used and experi-
ment setup.  

Construct validity. In our experiments, we use FPA and 
Norm(Popt) as the evaluation measures, because the former is 
module-based effort-aware performance measure, and the latter 
is SLOC-based effort-aware performance measure. The two 
performance measures can investigate which learning to rank 
algorithm is best for different application scenarios, i.e., soft-
ware testers may need to find more defects by inspecting a cer-
tain number of modules or lines of codes. 

Conclusion validity. Threats to conclusion validity focus on 
the statistical analysis method. In this work, we use Scott-Knott 
ESD test to statistically analyze the learning to rank algorithms, 
because Tantithamthavorn et al. [87] have suggested that the 
Scott-Knott ESD test is superior to other post-hoc tests. 

VI. RELATED WORK 
Table VIII compares our study with the prior empirical 

studies for EADP. As shown in Table VIII, these prior studies 
have some limitations: (1) Comparison of few learning to rank 
algorithms considering small number of datasets.  For example, 
Nguyen et al. [43] investigated five algorithms on five open 
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source software projects. (2) Inappropriate or only one type of 
performance measure. For example, Nguyen et al. [43] em-
ployed Spearman rank correlation coefficient as the perfor-
mance measures. Jiang et al. [15] and Yang et al. [10] em-
ployed three module-based effort-aware performance measures, 
i.e., LC, CLC, and FPA.  Mende et al. [16] and Bennin et al. [9] 
employed two SLOC-based effort-aware performance 
measures, i.e., Popt and Norm(Popt). (3) Inappropriate statistical 
test techniques. Prior studies employ inappropriate statistical 
test techniques, such as the Friedman test and Nemenyi test in 
[9], [15], [16]. Ghotra et al. [64] pointed out that these statisti-
cal test techniques have limitations for multiple comparison 
analysis. The results of prior studies are inconsistent, since the 
studies were conducted under different conditions, e.g., da-
tasets of different domains, using different learning to rank 
algorithms, using different experiment setups. 

It is worthy to mention that in recent years, various regres-
sion algorithms have been applied to predict the number of 
defects, including Poisson regression (PR) [44], [45], [46], [47], 
genetic programming (GP) [48], [49], [50], decision tree re-
gression (DTR) [51], etc. In addition, Chen et al. [52] and 
Rathore et al. [53] performed an empirical study of some re-
gression algorithms for predicting the number of defects, and 
found that DTR, LR, and BRR achieved better root mean 
square error (RMSE) and average absolute error (AAE) values. 
However, Yang et al. [5] pointed out that these approaches with 
higher predictive accuracy (smaller RMSE or AAE value) may 
result in a worse ranking of modules. Therefore, we revisit the 
impact of these regression-based learning to rank algorithms 
for EADP by using Norm(Popt) and FPA as the performance 
measures. 

VII. CONCLUSION AND FUTURE WORK 
Effort-Aware defect prediction (EADP) models can help to 

allocate testing resources more efficiently in the absence of 
testing resources. A number of learning to rank algorithms have 
been used for building EADP models. However, it is still a 
challenge on deciding on the best performing learning to rank 
algorithms for EADP.  Accordingly, in this paper, we conduct a 
large-scale empirical study to investigate the impact of 23 
learning to rank algorithms for EADP. In order to obtain a 
comprehensive evaluation, we use both a module-based effort-
aware performance measure (FPA) and a SLOC-based effort-
aware performance measure (Norm(Popt)) to compare the pre-
diction performance of the 23 algorithms. The experimental 
results show that BRR performs best in terms of FPA, and 
BRR and LTR perform best in terms of Norm(Popt) among the 
23 algorithms when they are trained on original feature subset, 
and LTR and BRR still perform best when they are trained on 
the top 10 features. In the future, we also plan to employ more 
project datasets to validate the generalization of our findings. 
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