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Abstract—Evaluating the code generation capabilities of Large
Language Models (LLMs) remains an open question. Existing
benchmarks like HumanEval and MBPP focus primarily on algo-
rithmic and basic programming tasks, which do not fully capture
the intricacies of real-world coding challenges. Recently, more
advanced benchmarks—such as CoderEval, EvoCodeBench, and
ClassEval—have been introduced to address this gap, evaluating
LLMs on practical coding tasks from GitHub repositories, such
as non-standalone function generation and class-level code gener-
ation. However, even the most sophisticated LLMs struggle with
these complex tasks; for instance, GPT-4 achieves only a 37.0%
pass@1 on ClassEval. Prior studies show that developers often
discard LLM-generated code or abandon code generation models
when outputs are incorrect or require extensive debugging, which
leads them to rely on LLMs primarily for simpler tasks that
high-performing models can handle reliably.

In response to this gap, we introduce RealisticCodeBench, a
benchmark specifically designed to reflect the types of problems
developers commonly tackle with LLMs. By mining high-star
GitHub repositories for code samples tagged as generated by
ChatGPT or Copilot, we collect real-world coding tasks that
capture typical LLM usage scenarios. We modify these tasks,
generate reference solutions and test cases, and adapt the prob-
lems into multiple programming languages. This effort results
in RealisticCodeBench, comprising a total of 417 programming
problems translated across multiple languages: 392 in Python,
376 in JavaScript, 372 in TypeScript, 339 in Java, and 353
in C++, each with corresponding reference solutions and test
cases. We evaluate 12 general-purpose and code-specific LLMs
on RealisticCodeBench. Our findings reveal that GPT-4 achieves
the highest average pass@1 score across languages, closely
followed by DeepSeek-V2.5-236B, suggesting that DeepSeek-V2.5-

236B provides a viable open-source alternative to GPT-4 for
large companies with sufficient GPU resources and privacy
concerns. CodeGeeX4-9B, a cost-effective model, emerges as a
suitable substitute for GPT-3.5 for individual developers and
smaller organizations with similar privacy considerations. Ad-
ditionally, LLM performance discrepancies between HumanEval
and RealisticCodeBench suggest that some LLMs are either
overly specialized for HumanEval-style problems or insufficiently
optimized for real-world coding challenges. Finally, we analyze
failed cases, summarize common LLM limitations, and provide
implications for researchers and practitioners.

Index Terms—Code Generation, Large Language Model,
Benchmark, GitHub

I. INTRODUCTION

Code generation, which automatically creates code snippets
from natural language descriptions, has been widely adopted
to enhance development efficiency and productivity, attracting
significant attention in academic research [1], [2], [3], [4],
[5]. Recent advances in Large Language Models (LLMs)
have further accelerated progress in this field. Various LLMs,
including GPT-4 [6], DeepSeek-V2.5 [7], CodeLlama [8],
and CodeGeeX [9], have been developed by researchers and
organizations through training on massive general and code-
specific datasets.

To evaluate the performance of these emerging LLMs on
code generation tasks, several benchmarks have been intro-
duced, starting with HumanEval [10] and MBPP [11].
Reporting performance on these benchmarks has seemingly



become mandatory for a model to be considered competitive
in code generation [12]. Indeed, nearly all new LLMs
released in 2023-2024 highlight code generation results on
one or both of these benchmarks. While they have been
widely used and provide valuable insights, the programming
problems they contain are largely algorithmic and basic pro-
gramming problems, which do not fully reflect the challenges
of real-world coding [13]. To address this, more complex
benchmarks—such as CoderEval [14], EvoCodeBench [15],
ComplexCodeEval [16], and ClassEval [17]—have been
developed to assess LLM performance on more challenging,
practical coding tasks collected from real-world GitHub code
repositories, such as non-standalone function generation and
class-level code generation. These benchmarks offer a deeper
understanding of the upper limits of LLM capabilities when
tackling intricate programming problems.

However, developers currently tend not to rely on LLMs for
overly complex coding tasks, primarily due to the low success
rates of LLMs on more challenging benchmarks. For example,
GPT-3.5 achieves only a 21% pass@1 rate for non-standalone
function generation on CoderEval [14], while GPT-4 reaches
just a 37.0% pass@1 rate for class-level code generation
on ClassEval [17], which can discourage developers from
using LLMs for such sophisticated code generation tasks.
A large-scale survey conducted by Liang et al. [18] found
that developers often discard LLM-generated code or abandon
the use of code generation models when they fail to meet
functional or non-functional requirements, when developers
struggle to control the models to produce the desired output,
or when significant effort is needed to debug and refine
the LLM-generated code. In other words, while developers
often work on complex programming problems like those in
CoderEval [14], EvoCodeBench [15], ComplexCodeEval
[16], and ClassEval [17], current LLMs are not yet ready to
generate such sophisticated code at scale. Instead, developers
are more likely to use LLMs for simpler, more manageable
coding tasks that high-performing models (e.g., GPT-4) can
generate correctly without requiring extensive debugging or
modification. Therefore, to better align benchmarks with cur-
rent developer practices of using LLMs for code generation,
we need to shift our focus toward understanding the types of
code developers are actually generating with LLMs daily and
create benchmarks based on these practical use cases.

To achieve this, we collect real-world coding tasks that
reflect typical LLM code generation scenarios by mining high-
star GitHub repositories for code samples explicitly labeled
as generated by ChatGPT or Copilot. Specifically, Yu et al.
[19] find that nearly all LLM-generated code on GitHub is
produced by tools like ChatGPT or Copilot, with very few
samples from other LLMs. Developers frequently annotate
such code snippets with comments like “the code is generated
by ChatGPT,” indicating they are created using these tools.
Using search terms like “generated by ChatGPT”, we leverage
the GitHub REST API to locate and collect relevant Python,
Java, JavaScript, TypeScript, and C++ code samples from
high-star projects, which represent how developers use LLMs

for code generation in real-world scenarios. After collecting
the samples, we carefully filter out overly simplistic, repetitive,
or difficult-to-test codes. We then make slight modifications
to each sample’s requirements while preserving the original
intent and complexity. Where applicable, we also adjust the
number and types of input and output parameters to fur-
ther mitigate data leakage risks. Using GPT-4, we generate
reference solutions for each modified programming problem,
followed by manual corrections. GPT-4 also creates multiple
test cases based on the problem descriptions and reference
solutions, which are refined manually to ensure accuracy
and adequate line and branch coverage. Next, we use GPT-
4 to generate multi-language versions of each programming
problem, followed by manual validation of the accuracy of the
translated solutions, test cases, and coverage. It is important
to note that some programming problems do not translate di-
rectly across languages due to language-specific data types or
operations. In such cases, we retain the problems as language-
specific to reflect real-world development practices. Finally,
we invite 13 experienced engineers to assess whether the pro-
gramming problems, including their multi-language versions,
represent realistic development scenarios and if proprietary
developers would also likely use LLMs to solve them. Only
problems approved by a majority (at least 10 out of 13 engi-
neers) are retained. Ultimately, we construct our benchmark,
RealisticCodeBench, comprising 417 programming problems
translated across multiple languages: 392 in Python, 376
in JavaScript, 372 in TypeScript, 339 in Java, and 353 in
C++. Each problem includes corresponding reference solutions
and test cases, spanning 9 distinct domains such as data
structures and algorithms, text processing, file handling, data
visualization and graphic applications, network programming,
and frontend development. This provides a comprehensive
assessment of LLM capabilities on coding challenges that
developers currently address with LLM assistance.

Based on RealisticCodeBench, we conduct extensive ex-
periments on 12 general-purpose and code-specific models
commonly studied in recent benchmarks, such as GPT-4,
GPT-3.5, DeepSeek-V2.5-236B, Llama 3.1-8B, CodeGeeX4-
9B, DeepSeek-Coder-6.7B, CodeLlama-7B, and StarCoder2-
7B. Experimental results show that, across five programming
languages, GPT-4 achieves the highest average pass@1 score
at 67.27%, with DeepSeek-V2.5-236B close behind at 66.08%.
This suggests that companies with sufficient resources and
privacy concerns could consider deploying DeepSeek-V2.5-
236B as an open-source alternative to GPT-4 for everyday
coding tasks. CodeGeeX4-9B achieves an average pass@1
score of 48.14%, compared to GPT-3.5’s 58.83%, showing
only a moderate gap between them. Thus, individual develop-
ers and smaller organizations with similar privacy concerns
can deploy CodeGeeX4-9B as an affordable substitute for
GPT-3.5, using a setup with two NVIDIA GeForce RTX
3090 (24GB) GPUs (approximately $3,000) to balance pri-
vacy, cost, and code generation performance. Furthermore, we
observe substantial performance discrepancies of some LLMs
between HumanEval and RealisticCodeBench. While models



like CodeGeeX4-9B reach impressive pass@1 scores on Hu-
manEval (82.3%) and DeepSeek-Coder-6.7B scores 78.6%,
their performance drops substantially on RealisticCodeBench’s
Python subset (55.47% and 47.73%, respectively). This sug-
gests that current LLMs may either be overly specialized for
HumanEval-style problems or lack optimization for practical
coding tasks. Finally, by analyzing failed cases, we identify
critical areas where LLMs fall short in RealisticCodeBench,
offering insights into potential improvements for practical code
generation capabilities.

In summary, our contributions are as follows:
(1) We propose RealisticCodeBench, a benchmark that

aligns with the types of coding problems developers typically
solve with LLMs in practical development settings.

(2) We systematically benchmark the code generation capa-
bilities of 12 LLMs using RealisticCodeBench. Based on the
results, we provide implications for researchers and practition-
ers.

(3) We for the first time conduct a comprehensive literature
review to identify and analyze a set of 51 code generation
benchmark studies from 2021. Researchers can use this set as
a foundation for further studies.

II. BACKGROUND AND RELATED WORK

A. LLMs for Code Generation

Code generation involves creating code snippets based
on given natural language requirements. General LLMs are
typically trained on a combination of general textual data,
code corpora, and instructions. Among the most well-known
general LLMs are GPT-4 [6] and GPT-3.5 [20], both of
which have demonstrated significant capabilities across a wide
range of tasks. Additionally, other general-purpose models like
DeepSeek-V2.5 [7], Llama 3.1 [8], Phi-3 [21], Mistral [22],
and ChatGLM [23] have gained attention for their capabilities.
Technical reports for these models often emphasize their
strengths not only in general natural language processing tasks
but also their promising potential in code generation.

On the other hand, specialized code LLMs are primarily
trained on large-scale code-specific datasets with tailored
instructions, often outperforming general-purpose LLMs in
code generation tasks. Notable examples include CodeGen
[24], StarCoder [25], CodeLlama [26], DeepSeek-Coder [27],
and CodeGeeX [9]. For instance, DeepSeek-Coder is trained
from scratch on 2 trillion tokens, with a composition of 87%
code and 13% natural languages in both English and Chinese.
StarCoder2 is trained on 17 programming languages from the
Stack v2 [25]. These models are designed to focus more
specifically on understanding and generating code, typically
demonstrating superior performance in handling code-related
tasks compared to general LLMs.

B. Code Generation Benchmarks

Literature Search: To understand the progress of code
generation benchmarks, we conduct a literature search cov-
ering publications from 2021 to 2024 by using a forward

snowballing approach1 [28]. The starting year of 2021 is
selected, as it marks the publication of the earliest prominent
benchmarks for code generation, which included test cases for
evaluating LLMs’ code generation accuracy (i.e., APPS [29],
HumanEval [10], and MBPP [11]). Although earlier code
generation benchmarks, such as Concode [30] and JuICe [31],
were proposed before 2021, they mainly focused on evaluating
deep learning models, like LSTM and Transformer, rather
than LLMs. Moreover, these datasets lacked test cases, relying
instead on metrics like exact accuracy and BLEU to compare
model performance. Consequently, they are rarely used in later
research evaluating LLMs for code generation.

Therefore, our search process begins by gathering all papers
that cite APPS [29], HumanEval [10], and MBPP [11] using
Google Scholar. We then filter these citations to identify
papers proposing new benchmarks or significantly extending
existing ones in the context of code generation, considering
only studies written in English with full text available. We
exclude papers that introduce benchmarks for unrelated fields
(e.g., program repair, code completion, or code translation) and
focus solely on those proposing code generation benchmarks.
For each selected paper, we recursively examine their citations,
focusing on new or updated benchmarks developed. This
process continues until no further relevant papers are found,
ensuring that no significant benchmark developments are
missed during the search. Finally, the overall search process
results in 51 code generation benchmark.

The benchmarks identified can be broadly classified into two
categories. The first category, comprising 22 papers [11], [32],
[33], [34], [35], [36], [37], [38], [36], [39], [40], [41], [42],
[43], [44], [45], [46], [47], [48], [49], [50], [51], focuses on
domain-specific code generation abilities, such as generating
security code [39], [42], VHDL code [46], bioinformatics
code [40], Verilog code [36], data science code [11],
[33], [34], AI code [41], object-oriented code in Java [43],
parallel code [47], Infrastructure-as-Code (IaC) programs
[49], etc. The second category focuses on evaluating general
code generation capabilities, which aligns with the goals of our
benchmark. Due to space constraints, we only limit our focus
to the capabilities of the general benchmarks. Tables I and
II provide an overview of 29 selected benchmarks, including
details such as the year of introduction, target programming
language, the source of programming problems, target code
granularity, the number of programming problems (“#Tasks”),
average lines of code (“#LOC”) in reference solutions, average
token lengths of the problem’s input information (usually the
requirements and function signature) (“#Tokens”), and the best
model performance (usually GPT-4) in terms of pass@1. Table
I lists benchmarks where the best LLM’s pass@1 exceeds
60%, while Table II includes those where the best LLM’s
pass@1 falls below 60%. In the tables, “ ” indicates that the
corresponding information was not provided in the benchmark
paper.

Table I includes a total of 13 benchmarks where the

1The literature search was conducted on October 2024.



TABLE I: The current general code generation benchmarks with pass@1 scores above 60%

Benchmark Year Language Source Granularity #Tasks #LOC #Tokens Pass@1
HumanEval [10] 2021 Python Manual Function 164 11.5 24.4 90.2 % (GPT-4o)
MBPP [11] 2021 Python Manual Function 974 6.8 24.2 83.5 % (GPT-4)

MultiPL-E [52] 2022 Multilingual HumanEval,
MBPP Function 164,

974
11.5,
6.8

24.4,
24.2

90.2 % (GPT-4o),
83.5 % (GPT-4)

Multi-HumanEval [53] 2022 Multilingual HumanEval Function 164 11.5 24.4 90.2 % (GPT-4o)
MBXP [53] 2022 Multilingual MBPP Function 974 6.8 24.2 83.5 % (GPT-4)
HumanEval+ [54] 2023 Python HumanEval Function 164 11.5 24.4 76.2 % (GPT-4)
HumanEval-X [9] 2023 Multilingual HumanEval Function 820 11.5 24.4 90.2 % (GPT-4o)

StudentEval [55] 2023 Python Manual Function 48 - - 63.6 %
(StarChat-Alpha)

EvoEval [56] 2024 Python HumanEval Function 828 - - 62.0 % (GPT-4)
ENAMEL [57] 2024 Python HumanEval Function 142 11.5 24.4 83.1 % (GPT-4)

ScenEval [58] 2024 Java
W3Resources,

Stack Overflow,
Textbooks

Statement,
Function,

Class
12864 1-50 - 75.6 % (ChatGPT)

RACE [59] 2024 Python
HumanEval+,

MBPP+,
ClassEval,
LeetCode

Class,
Function 923 - - 70.1 %

(GPT-4-o1-mini)

LBPP [12] 2024 Python Manual Function 161 - - 64.0 %
(Claude-3.5-Sonnet)

RealisticCodeBench 2024 Multilingual GitHub Function,
Class 417 30.6 95.2 83.46% (GPT-4)

pass@1 exceeds 60% in LLM evaluations. Among them,
4 benchmarks [10], [11], [55], [12] are manually created,
2 [58], [59] are created by collecting open-source data,
while 7 [52], [53], [54], [9], [56], [57], [59] are adapted or
extended versions of HumanEval, and 3 [52], [53], [59] are
adapted or extended versions of MBPP. Chen et al. [10] first
proposed the HumanEval dataset, which consists of 164 hand-
written Python programming problems, primarily involving
pure algorithm and string manipulation. At that time, the State-
Of-The-Art (SOTA) model Codex-12B achieved a pass@1 of
28.8% on this dataset. Subsequently, Cassano et al. [52],
Athiwaratkun et al. [53], and Zheng et al. [9] extended
HumanEval to other language versions, forming MultiPL-
E, Multi-HumanEval, and Humaneval-X. Currently, the lat-
est SOTA LLMs achieve impressive results on HumanEval
(Python) [12], with pass@1 reaching 90.2% for GPT-4o when
employing a model debugger strategy [60] as shown on the
leaderboard 2, and 84.1% for GPT-4 in a zero-shot setting
[27]. Furthermore, Liu et al. [54] proposed HumanEval+,
which adds more test cases to each programming problem in
HumanEval to ensure a more rigorous evaluation, achieving
76.2% pass@1 on GPT-4. Later, Xia et al. [56] revamped
HumanEval to create new, more innovative, challenging, and
diverse tasks, forming EvoEval, achieving a pass@1 of 62.0%
on GPT-4. Recently, Qiu et al. [57] proposed ENAMEL,
which selected 142 tasks from HumanEval with relatively high
complexity to test LLMs’ ability to generate efficient (low time
complexity) code, achieving a pass@1 of 83.1% on GPT-4.

Another classic general code generation benchmark is the
MBPP dataset proposed by Austin et al. [11], which includes
974 manually created short Python programs. The problems

2https://paperswithcode.com/sota/code-generation-on-humaneval

range from simple numeric manipulations to tasks requiring
basic usage of standard library functions. Subsequently, Cas-
sano et al. [52] and Athiwaratkun et al. [53] expanded MBPP
to create the MultiPL-E and MBXP multilingual datasets.
Currently, the latest SOTA model, GPT-4, achieves a pass@1
of up to 83.5% on MBPP with the use of multi-agent strategies
[61], as shown on the leaderboard 3.

Among other manually created datasets, Babe et al. [55] in-
troduced StudentEval, which contains 48 introductory Python
problems from first-year computer science courses, including
quizzes, lab exercises, and homework tasks with minor modi-
fications to prevent releasing answers to current assignments.
StarChat-Alpha-15.5B achieved the highest pass@1 of 63.6%
on this benchmark. Later, Matton et al. [12] invited annotators
with competitive programming expertise to create LBPP, a
collection of 161 Python tasks similar in type but more
challenging than those in HumanEval. On LBPP, Claude-3.5-
Sonnet achieved a pass@1 rate of 64.0%.

Recently, two additional benchmarks were created from
open-source data. Paul et al. [58] developed ScenEval, collect-
ing various statements, methods, and classes from open-source
platforms like W3Resources, Stack Overflow, and textbooks to
cover a wide range of scenarios. ChatGPT achieved a pass@1
of 75.6% on this relatively simple benchmark. Zheng et al.
[59] combined datasets such as HumanEval, MBPP, ClassEval,
and LeetCode to form RACE, a dataset of moderate com-
plexity where GPT-4o-mini and Claude-3.5-Sonnet achieved
pass@1 rates of 70.1% and 62.3%, respectively.

3https://paperswithcode.com/sota/code-generation-on-mbpp



Motivation 1: Many widely-used benchmarks in Table I
predominantly focus on algorithmic and basic programming
tasks, allowing SOTA LLMs to achieve relatively high
pass@1 (often exceeding 60%). However, these tasks fail to
capture the complexity and diversity of real-world coding
scenarios that developers face.

From Table II, there are a total of 14 benchmarks where
the pass@1 is below 60% in existing LLM evaluations, and
2 benchmarks [63], [16] without a pass@1 metric. Among
them, APPS [29], AixBench [62], and ODEX [64] have
limited use, and there have been no studies evaluating the
latest LLMs on these benchmarks. Consequently, their pass@1
performance only remains around 50%, based on the state-of-
the-art Codex series models available in 2022. However, at
that time, HumanEval had a pass@1 of only 28.81% with
Codex-12B [10], suggesting that these three benchmarks
would perform much better on today’s SOTA models, likely far
exceeding 60%. Furthermore, APPS consists of varying levels
of competitive programming problems, while AixBench and
ODEX focus on simple coding tasks, neither of which fully
reflect real-world development needs.

For the two benchmarks without a pass@1 metric, the
MCoNaLa benchmark [63] focuses solely on statement-level
code generation scenarios collected from Stack Overflow. In
contrast, ComplexCodeEval [16] includes function-level tasks
sourced from real and complex development environments in
GitHub repositories. However, it lacks test cases needed to
accurately assess the code generation accuracy of LLMs.

Notably, the NCB benchmark [13] shares similarities with
our benchmark, containing 402 high-quality Python and Java
problems carefully selected from natural user queries on the
CodeGeeX online coding platform. However, NCB’s query
problems are not necessarily solvable by LLMs, resulting in
a pass@1 of 52.8% for GPT-4. In contrast, our benchmark
includes only problems that LLMs can solve, with developers
accepting and uploading these LLM-generated solutions to
GitHub. By collecting LLM-generated code from GitHub, our
benchmark more accurately reflects scenarios where develop-
ers use LLMs in real-world coding tasks.

Excluding the benchmarks mentioned above, the remaining
benchmarks fall into two categories: those targeting algorith-
mic tasks for competitive programming [65], [68], [71], [70]
and those focused on generating complex non-standalone func-
tions or classes [66], [15], [14], [17], [67], [69]. CodeApex
[65], LiveCodeBench [70], and XCoderEval [71] feature
algorithm challenges from platforms like LeetCode and Code-
forces, with pass@1 scores of 58.4%, 40.3%, and 30.5%, re-
spectively. However, such competitive programming problems
are rarely encountered in real-world development scenarios.
For benchmarks involving complex, non-standalone functions
and classes, low pass@1 scores are mainly due to the intricate
dependencies inherent to these tasks. For instance, HumanEvo
[66], EvoCodeBench [15], and DevEval [67] focus on com-
plex function dependencies or repository-level dependencies,
resulting in pass@1 scores of 27.0%, 20.7%, and 53.0% on

GPT-4, respectively. Similarly, ClassEval [17], a benchmark
of 100 manually created Python problems simulating real-
world class generation scenarios, yielded a 37.0% pass@1
score on GPT-4.

Motivation 2: Although these benchmarks focus on practi-
cal coding tasks involving non-standalone function genera-
tion and class-level code generation, developers often avoid
using LLMs for complex challenges due to low success rates
[18]. Instead, they typically apply LLMs to simpler tasks
that models like GPT-4 can handle.

To better align benchmarks with current LLM usage prac-
tices, we therefore introduce RealisticCodeBench—a bench-
mark designed to reflect the types of problems developers
commonly tackle with LLMs.

III. REALISTICCODEBENCH

Figure 1 provides an overview of the process for con-
structing RealisticCodeBench. The pipeline consists of two
primary steps: 1) collecting and filtering high-quality code
generated by ChatGPT/Copilot from GitHub (Section III-A),
and 2) constructing the benchmark using a semi-automated
pipeline supported by GPT-4, which includes adapting prob-
lem requirements, writing reference solutions and test cases,
and generating multi-language versions of each programming
problem (Section III-B). The entire process of constructing the
benchmark, which includes 417 programming problems across
various languages, requires approximately 700 person-hours to
complete.

A. Data Collection

We first collect and filter high-quality code samples gener-
ated by ChatGPT/Copilot from GitHub.

ChatGPT/Copilot-Generated Code Collection. Yu et al.
[19] find that nearly all code samples generated by LLMs on
GitHub are created using tools like ChatGPT or Copilot, with
very few produced by other LLMs. Developers often annotate
their code with comments such as “the code is generated by
ChatGPT/Copilot” to indicate its origin. These annotations
typically follow the format x+y+z, where x is a verb from {
generated, written, created, implemented, authored, coded },
y is a preposition from { by, through, using, via, with }, and
z is a tool identifier from { ChatGPT, Copilot, GPT-3, GPT-4
}. Following the approach of Yu et al. [19], we use these
triplets x+y+z, such as “generated by ChatGPT” to locate and
collect relevant code snippets via the GitHub REST API. We
specifically focus on code written in Python, Java, JavaScript,
TypeScript, and C++, as these languages not only dominate
the landscape of LLM-generated code on GitHub but are also
widely used across various real-world development domains.
To ensure the quality of the collected samples, we prioritize
repositories with high star ratings to source reputable code.

Suitable Programming Problems Filtering. Although we
initially gather over 2,100 code samples generated by Chat-
GPT/Copilot from GitHub, not all of them are suitable for
inclusion in our benchmark. We begin by manually filtering



TABLE II: The current 14 general code generation benchmarks with pass@1 scores below 60%, along with 2 benchmarks
without pass@1 scores

Benchmark Time Language Source Granularity #Tasks #LOC #Tokens Pass@1
APPS [29] 2021 Python Contest Sites Function 5000 21.4 58 47.3 %

(Code-davinci-002)

AixBench [62] 2022 Java Open-sourced data Function 175 - - 49.1 %
(aiXcoder XL)

MCoNaLa [63] 2023 Python Conala Statement 896 1 27.6 -

ODEX [64] 2023 Python CoNaLa,
mCoNaLa Function 945 - 21.1 47.0 %

(Code-davinci-002)
CodeApex [65] 2023 C++ Online OA platform Function 476 ˜12 ˜50 58.4 % (GPT-4)

HumanEvo [66] 2024 Python,
Java

PyPI,
GitHub

Function,
Repository 400 - - 27.0 % (GPT-4)

CoderEval [14] 2024 Python, Java GitHub Function 230 30 108.2 21.0 % (GPT-3.5)

EvoCodeBench [15] 2024 Python GitHub Function,
Repository 275 - - 20.7 % (GPT-4)

ClassEval [17] 2024 Python Manual Class 100 45.7 123.7 37.0 % (GPT-4)

DevEval [67] 2024 Python PyPI Function,
Repository 1874 - - 53.0 % (GPT-4)

NCB [13] 2024 Python,
Java Online Services Function 402 - - 52.8 % (GPT-4)

MHPP [68] 2024 Python Manual Function 140 12.2 ˜150.2 53.6 % (GPT-4)

BigCodeBench [69] 2024 Python
GitHub,

Huagging face,
Croissant

Function 1140 10 - 51.1 % (GPT-4o)

LiveCodeBench [70] 2024 Python
LeetCode,
AtCoder,

and CodeForces
Function 511 - - 40.3 % (GPT-4)

XCodeEval [71] 2024 Multilingual Open-sourced data Function 20M - - 30.5 % (GPT-3.5)

ComplexCodeEval [16] 2024 Python,
Java

PyPI,
GitHub Function 11081 35.9 278.8 -

ComplexCodeEval [16] 2024 Python,
Java

PyPI,
GitHub Function 11081 35.9 278.8 -

ComplexCodeEval [16] 2024 Python,
Java

PyPI,
GitHub Function 11081 35.9 278.8 -
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Python
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import re

from typing import Dict, Any

Reference Solution

Import Statements

def convert_named_to_positional_query(sql: str, params: 

Dict[str, Any], delimiter: str) -> Dict[str, Any]:

Function Signature

"""
    Convert a SQL query ......
""" Requirement Description

1

2

3

4

5
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42

    result = {}  
    param_pattern = rf"\{delimiter}(\w+)"
    ......    
    # Return the final result containing the positional SQL, 
    # parameter list, and executed SQL.
    return {
        "positional_sql": positional_sql,
        "param_list": values,
        "execute_sql": execute_sql
    } Reference Solution

Test Suite
1
2
3
4
5
6
7
8
9

    def test_basic_named_parameters(self):
        sql = "SELECT * FROM users WHERE username = $username AND age = $age"
        params = {"username": "john_doe", "age": 30}
        delimiter = "$"
        expected = { "positional_sql": "SELECT * FROM users WHERE username = $1 AND age = $2",
            "param_list": ["john_doe", 30],
            "execute_sql": "SELECT * FROM users WHERE username = john_doe AND age = 30"}
        result = convert_named_to_positional_query(sql, params, delimiter)
        self.assertEqual(result, expected)

    def test_sql_with_empty_string_parameter(self):

         ......        

Test Case 1

Test Case 5

......

16
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58

import re
from typing import Dict, Any

Modified Problem

Import Statements

def convert_named_to_positional_query(sql: str, params: 
Dict[str, Any], delimiter: str) -> Dict[str, Any]:
"""
    Convert a SQL query from named parameters to 
positional parameters,  the named parameters flag is the 
given delimiter. Return a dict of positional_sql, param_list, 
execute_sql
    Args:
        sql (str): The SQL query containing named parameters
        params (Dict[str, Any]): A dictionary mapping named 
             parameters to their values.
        delimiter (str): The delimiter used for the named 
             parameters in the SQL query.such as $,#,:
    Returns:
        Dict[str, Any]: A dictionary containing:
            - 'positional_sql': The SQL query with positional 
               placeholders
            - 'param_list': A list of values corresponding to the 
               positional parameters.
            - 'execute_sql': The SQL query with actual values 
               substituted in.
""" Requirement Description
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Function Signature
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Fig. 1: The overview of the construction pipeline for RealisticCodeBench

out overly simplistic code (e.g., code that merely calculates
the Euclidean distance between two points). Additionally, we
exclude samples with solutions that are difficult to test. Finally,
we review the remaining samples to eliminate tasks that are
overly similar (e.g., multiple samples that validate whether
a string is a valid email address), ensuring the benchmark
includes a diverse and varied set of programming problems.

After this filtering process, we are left with 207 refined Python
code samples, 33 Java samples, 83 JavaScript samples, 51
TypeScript samples, and 47 C++ samples.

B. Benchmark Construction

Once we have collected code samples generated by Chat-
GPT and Copilot from GitHub, we move forward with con-



structing our benchmark. As shown in Figure 1, each pro-
gramming problem in RealisticCodeBench includes an input
description (comprising the function signature and requirement
description). Additionally, the benchmark contains a reference
solution for each programming problem, which serves as a
reference implementation, along with a test suite to verify the
correctness of the generated code. Typically, LLMs generate
code snippets based on the input descriptions, and the cor-
rectness of these snippets is validated using the provided test
suite.

Modification of Programming Problems. Since most of
the original code samples only indicate that they are generated
by ChatGPT or Copilot without describing their functional-
ity, we first leverage GPT-4’s advanced capabilities in code
comment generation [72] to produce concise summaries for
each code sample. This allows us to clearly understand the
core functionality of the code, making it easier to modify the
programming problems and prevent data leakage. Data leakage
is a concern because many LLMs are pre-trained on code
from GitHub, which can lead to inadvertent memorization
of specific content [73], [74]. Consequently, these models
may solve programming tasks by recalling solutions they
encountered during pre-training. To mitigate this risk, we
apply slight modifications to the requirements of the original
code samples, similar to existing benchmark practices [32],
ensuring that the code’s intent and task complexity remain
largely unchanged. Additionally, we modify the number and
types of input and output parameters where feasible. In the
adapted function signatures, we explicitly outline the imple-
mentation requirements for LLMs, specifying the function’s
objectives, input parameters, and return value constraints for
each programming language. For instance, one GitHub project
with 30 stars includes a method that converts a SQL string
with named parameters (e.g., $variable) to a format compatible
with asyncpg (using $1, $2, etc.) and returns the new SQL
string and the list of values in the correct order 4. The input
parameters are defined as sql (the original SQL string with
named parameters) and params (a dictionary of parameters),
while the output is a tuple (new sql string, list of values). In
our modified requirement (as shown in Figure 1), we specify:
Convert a SQL query from named parameters to positional
parameters, the named parameters flag is the given delimiter.
Return a dictionary of positional sql, param list, execute sql.
Here, the input parameters increase to three, and the output
changes to a dictionary format.

Reference Solution Generation. We then use GPT-4 to
generate solutions for each adapted programming problem
by providing the problem description (including the function
signature and requirement description) as prompts. Although
GPT-4 is a highly capable tool, it can still produce incorrect
code during generation. Therefore, each solution is meticu-
lously reviewed by three expert programmers, each with over
four years of coding experience, to ensure accuracy. If any

4https://GitHub.com/jerber/fastgql/blob/4c308e742685e0a1cf4dc6d05f29cfbaea2d039a/
fastgql/query\ builders/sql/query\ builder.py\#L464

bugs are identified by one of the programmers, they revise the
code to correct the errors. The revised version is then reviewed
by the other two experts to confirm that the corrections are
accurate, ensuring that the reference solutions are both reliable
and error-free. These reference solutions are not used directly
as evaluation benchmarks but are included to support the
development of test cases and facilitate future research efforts.

Test Case Generation. We also utilize GPT-4 to generate
high-quality test cases for each adapted programming problem.
The prompt provided to GPT-4 begins with the instruction:
“Please create test cases for this programming problem and
the reference solution. Ensure that the test cases cover a
wide range of inputs, including typical use cases, edge cases,
corner cases, and invalid inputs.” Following this, we include
the description of the programming problem and its reference
solution in the prompt. After the test cases are generated, the
same three expert programmers review and correct any issues
related to formatting or outputs. If one of the programmers
identifies any errors, they revise the test cases accordingly.
The updated test cases are then reviewed by the other two
experts to verify the accuracy of the corrections. Once this
process is complete, the line and branch coverage for each
function is reassessed. If coverage is still below 100%, one of
the programmers manually writes additional test cases to strive
for complete coverage, whenever feasible. These additional
test cases are also reviewed by the other two experts to ensure
their correctness.

Multi-Language Version Creation. To create multi-
language versions of each programming problem in Realistic-
CodeBench, we leverage GPT-4’s translation and adaptation
capabilities to generate code in Python, Java, JavaScript,
TypeScript, and C++. The translation process begins with
a structured prompt that includes the original problem, its
reference solution, and specific instructions to adapt the code
while following each language’s conventions. This includes
placing docstrings before function declarations in languages
like Java, JavaScript, TypeScript, and C++, and modifying
symbols in docstrings (e.g., replacing single quotes with
double quotes where necessary). Additionally, we ensure that
function parameter types are accurately matched to the syntax
and typing conventions of each language. For both reference
solutions and test cases, we tailor naming conventions to each
language’s standards. JavaScript, Java, and TypeScript adopt
CamelCase, while C++ and Python adhere to snake case.
Certain programming tasks may not translate directly across
languages due to unique data types or operations. In such
cases, we retain the language-specific nature of the problem
to reflect real-world coding practices. For example, a Python
programming problem that calculates and returns the memory
size of an object (such as a PyTorch tensor or NumPy array)
remains in Python, as PyTorch and NumPy are specific to
the Python ecosystem and do not have direct equivalents
in Java, JavaScript, TypeScript, or C++. Following initial
translations, the same three expert programmers conduct a
thorough review of each translated version and its associated
test cases, making any necessary corrections or adjustments



to align with standard coding practices and language-specific
nuances. If any language version lacks full line and branch
coverage, additional test cases are created and reviewed to
close the coverage gap.

Expert Review. We engage 13 experienced engineers to
assess if the programming problems collected from GitHub
could also represent coding tasks proprietary developers might
address using LLMs (the three expert programmers mentioned
earlier are not included in this group). Nearly three-quarters
of these engineers come from major IT companies (e.g.,
Microsoft, Huawei, ByteDance, Tencent, Alibaba, Bilibili, and
Meituan), while the rest are from smaller IT companies. With
an average of 7.7 years of software development experience
(ranging from 4 to 11 years and a median of 6 years), these
engineers bring valuable industry insight to our benchmark
validation. Over the past one to two years, they have used
either their company’s internal LLM tools or external tools
like ChatGPT in their daily coding tasks. We ask these engi-
neers to assess whether the programming problems, including
their multi-language versions, represent realistic development
scenarios and whether developers would likely use LLMs
to solve such problems. Only those programming problems
approved by a majority (at least 10 out of 13 engineers) are
retained, ensuring the benchmark mirrors tasks developers are
likely to employ LLMs for in practical projects. Ultimately,
4 programming problems are excluded. For example, one
problem involved reading a JSON file and converting it into a
Python data type—a task achievable in a single line of Python
code (json.loads()), making LLM assistance unnecessary. An-
other excluded task is creating a logging class to print log
information, as developers typically use established logging
frameworks (e.g., logging in Python or log4j in Java) rather
than implementing custom logging logic.

C. Benchmark Characteristics

The final benchmark comprises 417 programming problems
translated across multiple languages: 392 in Python, 376 in
JavaScript, 372 in TypeScript, 339 in Java, and 353 in C++,
each accompanied by reference solutions and test cases. These
417 problems include 401 function-based tasks and 16 class-
based code generation tasks. As indicated in Table I, the
average token length for problem input information, which
includes the requirements and function signature, is 95.2
across the five languages. The average LOC in the reference
solutions for these languages are 30.6. This complexity is
greater than that seen in benchmarks such as HumanEval and
MBPP but lower than that in benchmarks designed for more
complex development scenarios like ClassEval. This suggests
that our tasks and code generation requirements are more
challenging than those in HumanEval but less so than those
in ClassEval.

Based on functionality, these 417 problems cover nine
distinct domains, as shown in Table III: data structures and
algorithms, text processing, file handling, mathematical prob-
lems and scientific computing, date and time processing, data
visualization and graphic applications, network programming,

frontend development, and security. This diversity also intro-
duces a range of complex input data types, classified into eight
categories, including strings, sequences, numbers, matrices,
dictionaries, functions, complex data, and files. The first six are
common basic data types, where sequences represent ordered
data structures like arrays and tuples, numbers include integers,
floating points, and boolean numbers represented by 0 or
1, and complex data covers unique data types specific to
different languages, such as DataFrame in Python, Objects
in JavaScript/TypeScript, and Structs in C++. Files include
data files used in development in various formats (e.g., csv,
xlsx, json, jsonl, xml, and yaml), as well as image files and
office files like pdf, docx, and doc. This diverse input not only
reflects the complexity found in real-world development but
also enhances the broad applicability of the benchmark test.

IV. EXPERIMENTAL SETUP

We aim to comprehensively evaluate a diverse range of
general-purpose and code-specific models that have been
widely studied in recent code generation benchmarks [17].
Table IV provides an overview of the LLMs examined,
with the “Organization” column indicating the institution that
developed the LLM, the “Sizes” column indicating model
sizes in billions of parameters, the “Release Time” showing
when the LLM was released, and “Open-Source” indicating
whether the model’s weights are publicly available. Overall,
we evaluate 12 LLMs to ensure a thorough examination of
the generalizability. Due to resource constraints, we limit our
investigation to open-source models (except DeepSeek-V2.5)
with parameter sizes of 10 billion, excluding smaller models
(under 5 billion parameters) due to their limited efficacy.
Additionally, we focus on models with relatively similar
parameter sizes to minimize the impact of size differences
and facilitate clearer performance comparisons across models.
For closed-source models like GPT-4 and GPT-3.5-turbo, we
use the OpenAI API interface (accessed in September 2024).
For DeepSeek-V2.5 5, we rely on the DeepSeek API interface
(also accessed in September 2024), as this model, while open-
sourced, requires eight GPUs with 80GB memory each to run
in BF16 format for inference. For other open-source models,
we obtain publicly released versions, with a preference for
instruct versions trained using instruction fine-tuning, from
official repositories and follow the provided documentation
for setup and usage. These open-source models are run on a
computational infrastructure featuring two NVIDIA GeForce
RTX 3090-24GB GPUs. The maximum generation length for
each solution is limited to 512 tokens to maintain consistency
across models and prevent excessively long outputs.

We assess code generation performance using two distinct
search strategies. In the greedy search setting, we generate a
single code solution (n=1) per task by selecting the token with

5DeepSeek-V2.5 is an upgraded version that combines DeepSeek-V2-Chat
and DeepSeek-Coder-V2-Instruct, integrating the general and coding abilities.
However, the official website has not disclosed the parameter count for
DeepSeek-V2.5. Since the parameter count for DeepSeek-V2 is 236B, we
infer that DeepSeek-V2.5 likely also has 236 billion parameters.



TABLE III: The types of the 417 programming problems

Topic Description Examples #T

Data Structures and Algorithms Utilizing common data structures for processing
non-text data, along with fundamental algorithms

Implementation of linked lists, queues and other data
structures to process non-text data, sorting algorithms,
search algorithms, dictionary lists into list dictionaries

106

Text Processing Perform formatting conversions on strings, regular
expression matching, content extraction, and other
text operations.

Regularly match specific strings, convert string types to
other types, extract content between specified charac-
ters

100

File Handling Read and write files, modify content, convert encod-
ings, change file types, and handle file retrieval in
directories.

Convert JSON files to YAML, modify CSV file content
based on specific rules, filter files in directories

67

Mathematical Problems and Scientific Comput-
ing

Programming for mathematical problems, matrix
and vector operations, data statistics, and related
scientific computing.

Matrix multiplication, BMI calculation, deflection an-
gle conversion, calculus computations

67

Date and Time Processing Perform date format conversions, time calculations,
and time unit conversions.

Convert timestamps to specific timezone formats, con-
vert dates to milliseconds

32

Data Visualization and Graphic Applications Involve data display and image file processing Convert images to grayscale, color statistics of images,
generate gradient colors

20

Network Programming Involve IP address and network interfaces, URL
requests, and domain name resolutions

Obtain local IP address and port, parse URLs to extract
specified parameters, extract domain levels

12

Frontend Development Parse and process web content HTML, CSS, modify
styles, compress HTML

Remove page ads, implement specific element high-
lighting, switch page themes

8

Security Involve data encryption and decryption, complexity
checks of data, etc

Encrypt user passwords, check if input data meets
security requirements, decrypt specific data

5

TABLE IV: The overview of the 12 evaluated LLMs

Model Name Organization Sizes Release Time Open-Source

General

GPT-4 [6] OpenAI - 2023
GPT-3.5 [20] OpenAI - 2022
DeepSeek-V2.5 [7] DeepSeek 236B 2024 ✓

Llama 3.1 [8] Meta 8B 2024 ✓

Phi-3 [21] Microsoft 7B 2024 ✓

Mistral [22] Mistral AI 7B 2024 ✓

ChatGLM [23] THUDM 6B 2024 ✓

Coding

CodeGeex4 [9] THUDM 9B 2023 ✓

DeepSeek-Coder [27] DeepSeek 6.7B 2024 ✓

StarCoder2 [25] BigCode 7B 2024 ✓

CodeGen2.5 [24] Salesforce 7B 2023 ✓

CodeLlama [26] Meta 7B 2023 ✓

the highest probability at each step, providing a deterministic
evaluation of the models’ performance. Additionally, we use
nucleus sampling to generate 10 code solutions (n=10) per
task, with a top-p value of 0.95 and a temperature of 0.8, to
explore the models’ ability to produce diverse outputs.

Following established practices in code generation evalua-
tion, we employ the pass@k metric to assess the functional
correctness of generated code. For each programming problem,
n code solutions are generated by LLMs, and k solutions
are randomly selected for testing against reference test cases.
The pass@k score measures the percentage of programming
problems, among the problems in RealisticCodeBench, for
which at least one of the k-generated solutions is correct (i.e.,
passes all test cases). In our experiments, we report pass rates
for k = 1, 3, and 5. For greedy search, we set n = 1 to compute
pass@1, while for sampling-based evaluation, n = 10 is used
to calculate pass@3 and pass@5. To mitigate high sampling
variance, we adopt the unbiased estimator of pass@3 and
pass@5 implemented in HumanEval [10], ensuring reliable
and consistent evaluations of LLM performance across our
benchmark.

V. EXPERIMENTAL RESULTS

A. RQ1: How do LLMs perform on our RealisticCodeBench
benchmark?

Tables V present the pass@1, pass@3, and pass@5 met-
rics for the 12 evaluated LLMs on our RealisticCodeBench
benchmark, with the top performances for both general and
coding-specific LLMs highlighted in bold. GPT-4 achieves the
highest average pass@1 across the five languages, with an
average pass@1 score of 67.27%, followed by DeepSeek-V2.5
and GPT-3.5, which achieves an average pass@1 of 66.08%
and 58.83%, respectively. GPT-4’s average pass@1 surpasses
that of DeepSeek-V2.5 by 1.19%. In Python, GPT-4 leads
by a margin of 4.84%, yet the gap is much smaller in Java,
JavaScript, and C++ (from 0.47% to 2.37%), with DeepSeek-
V2.5 even outperforming GPT-4 in TypeScript by 3.22%.
Compared to GPT-3.5, DeepSeek-V2.5 achieves a 7.25%
higher average pass@1. This performance trend remains con-
sistent for pass@3, while for average pass@5, DeepSeek-V2.5
slightly surpasses GPT-4. Overall, these results highlight the
superior code generation capabilities of GPT-4, DeepSeek-
V2.5, and GPT-3.5. As an open-source model, DeepSeek-
V2.5 offers a viable alternative for organizations capable of
deploying 8 GPUs with 80GB of memory for inference,
making it a competitive substitute for GPT-4 in code gener-
ation tasks. Among the smaller-parameter open-source mod-
els, CodeGeeX4 stands out as the best performer, achieving
an average pass@1 score of 48.14%, with DeepSeek-Coder
following closely at 40.61%. Notably, the difference between
CodeGeeX4 and GPT-3.5 in the programming languages is not
large, ranging from 4.81% in JavaScript to 14.83% in Python.

Figure 2 illustrates the number of problems each of the
top five LLMs solved on their first attempt across five pro-
gramming languages. The central overlapping sections of the
Venn diagrams show the programming problems all models
can solve, indicating a shared baseline competence. However,



TABLE V: The pass@1, pass@3, and pass@5 scores ( %) of
the 12 LLMs on our RealisticCodeBench benchmark

Model Python Java JavaScript TypeScript C++ Average
Pass@1

General

GPT-4 83.46 60.64 69.62 60.21 62.46 67.27
GPT-3.5 70.30 52.69 60.33 54.59 56.24 58.83
DeepSeek-V2.5 78.62 60.17 67.25 63.43 60.96 66.08
Llama 3.1 51.83 25.14 41.54 34.05 22.50 35.01
Phi-3 45.15 24.52 46.20 38.42 26.08 36.07
Mistral 33.57 24.01 32.88 20.81 22.97 26.84
ChatGLM 26.50 12.23 23.45 18.25 9.02 17.89

Coding

CodeGeex4 55.47 40.47 55.52 45.94 43.34 48.14
DeepSeek-Coder 47.73 34.41 42.62 40.77 37.53 40.61
StarCoder2 45.92 31.17 40.48 36.20 35.53 37.86
CodeGen2.5 41.76 27.64 40.26 36.42 20.31 33.27
CodeLlama 44.30 27.97 38.60 36.08 32.24 35.83

Pass@3

General

GPT-4 85.80 65.31 78.90 69.08 66.31 75.02
GPT-3.5 74.43 56.40 68.93 57.99 60.16 63.58
DeepSeek-V2.5 89.94 66.72 77.86 72.45 66.79 74.75
Llama 3.1 54.06 28.32 47.17 37.37 25.32 38.44
Phi-3 47.20 26.08 47.12 40.56 29.15 38.02
Mistral 36.40 25.78 36.99 22.19 24.02 29.07
ChatGLM 28.72 13.64 25.56 20.12 10.26 19.66

Coding

CodeGeex4 58.06 43.20 56.66 47.29 47.20 52.30
DeepSeek-Coder 50.12 36.24 45.93 43.44 39.12 44.65
StarCoder2 50.97 33.24 45.06 40.24 38.66 41.63
CodeGen2.5 43.42 28.46 41.34 38.08 23.89 35.03
CodeLlama 46.24 29.04 40.12 38.26 35.18 38.41

Pass@5

General

GPT-4 86.62 70.54 84.53 73.25 70.02 76.99
GPT-3.5 76.02 61.18 74.02 62.25 64.44 67.58
DeepSeek-V2.5 90.79 69.28 80.19 76.33 69.23 77.16
Llama 3.1 55.50 32.12 48.32 38.04 27.43 40.28
Phi-3 48.76 27.26 49.06 42.18 33.24 40.10
Mistral 37.62 27.32 38.75 25.31 27.21 31.24
ChatGLM 29.35 15.16 28.32 23.48 12.60 21.78

Coding

CodeGeex4 61.64 45.62 63.33 50.35 49.12 54.01
DeepSeek-Coder 51.90 40.18 47.28 45.92 41.48 45.35
StarCoder2 51.56 35.73 49.10 43.60 40.57 44.11
CodeGen2.5 43.66 30.27 43.22 41.64 25.46 36.85
CodeLlama 48.25 31.19 42.37 40.09 36.20 39.62

the distinct segments unique to each model highlight their
specific strengths. GPT-4 and DeepSeek-V2.5 stand out with
the largest unique areas, demonstrating their superior perfor-
mance in solving programming problems that other models
cannot, which underscores their stronger performance in code
generation across the five languages.

There are notable differences in pass@1 scores across
the five programming languages. Python consistently shows
higher pass rates across all models, with GPT-4 achieving an
83.46% pass@1, while languages like Java and C++ have
comparatively lower scores. This disparity may stem from
Python’s extensive presence in LLM training data and its
simpler syntax, which likely contributes to better performance
on Python tasks. Across all models, the improvement from
pass@1 to pass@3 and pass@5 remains relatively modest. For
instance, GPT-4’s pass rate rises from 67.27% at pass@1 to

76.99% at pass@5, DeepSeek-V2.5 improves from 66.08% to
77.16%, and GPT-3.5 from 58.83% to 67.58%. We calculate
the Levenshtein distance and conduct manual inspections for
cases where models failed to solve the problem, revealing
that the generated code among the five responses remained
relatively similar. This observation indicates a lack of diversity
in the generated solutions, suggesting that LLMs may not
possess the depth of understanding necessary to solve certain
complex problems effectively, even when allowed to generate
multiple attempts.

� Answer to RQ1: GPT-4 achieves the highest average
pass@1 across five languages, closely followed by the
open-source model DeepSeek-V2.5. Among the smaller-
parameter open-source models, CodeGeeX4 stands out
with strong performance, showing a small gap compared
to GPT-3.5.

B. RQ2: How does the performance of LLMs differ between
RealisticCodeBench and HumanEval?
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Fig. 2: The number of problems solved by GPT-4, GPT-3.5,
DeepSeek-V2.5, CodeGeex4, and DeepSeek-Coder

In this section, we compare the pass@1 performance of
12 LLMs on RealisticCodeBench and HumanEval, exclud-
ing MBPP due to limited data availability (with only four
models reporting pass@1 results on MBPP). We also omit
more complex benchmarks like ClassEval and CoderEval,
where all LLMs’s pass@1 scores are generally low, making
it challenging to assess performance correlation with Real-
isticCodeBench. Figure 3 displays a scatter plot illustrating
the pass@1 performance of the 12 LLMs on HumanEval and
RealisticCodeBench (Python). The pass@1 results for GPT-4,
GPT-3.5, DeepSeek-Coder, and CodeLlama are sourced from
the DeepSeek-Coder technical report published in January
2024 [27]. Results for Llama3.1 [8], Phi-3 [21], Mistral
[75], ChatGLM [23], StarCoder2 [25], and CodeGen2.5 [24]
are drawn from their respective technical reports, while results
for DeepSeek-V2.5 and CodeGeeX4 are based on their official
evaluations on Huggingface and GitHub 6. The scatter plot
includes a green dashed line representing a linear fit and a light

6https://huggingface.co/deepseek-ai/DeepSeek-V2.5, https://GitHub.com/
THUDM/CodeGeeX4
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Fig. 3: The performance comparison of pass@1 for 12 LLMs
between HumanEval and RealisticCodeBench

blue region indicating variance, suggesting that 8 of the LLMs
exhibit linearly proportional growth in performance between
HumanEval and RealisticCodeBench. This observation implies
that, in most cases, RealisticCodeBench reflects the coding
abilities of LLMs similarly to HumanEval.

However, despite DeepSeek-V2.5 outperforming GPT-4
on HumanEval, GPT-4 achieves higher pass@1 results on
RealisticCodeBench. Additionally, some models such as
CodeGeeX4, Llama 3.1, DeepSeek-Coder, and Phi-3 display
notably mismatched performances, as highlighted in the red-
shaded area. Specifically, CodeGeeX4 drops substantially from
a pass@1 of 82.3% on HumanEval to 55.47% on Realis-
ticCodeBench; Llama 3.1 decreases from 72.6% to 51.83%;
DeepSeek-Coder falls from 78.6% to 47.73%; and Phi-3
declines from 61.0% to 45.15%.

Several factors may explain this phenomenon. First,
some LLMs’ training sets might be overly optimized for
HumanEval-style problems. Previous studies [70], [13], [66],
[12] indicate that high performance on HumanEval often
results from overfitting, as it is widely used and its data may
contaminate LLM pre-training datasets. For example, GPT-4
[6] reported that 25% of HumanEval had been contaminated
in their pre-training corpus. Additionally, contamination may
arise from instruction fine-tuning datasets [12], as noted by
Phi [76], [77], which reported considerable overlap between
synthetic prompts and specific test samples in HumanEval.

Second, RealisticCodeBench poses more challenging tasks
than HumanEval, as it is designed to better reflect real-
world coding scenarios where developers intend to use LLMs.
RealisticCodeBench also adjusts requirements and parameters
to prevent data leakage, thus revealing limitations in the
generalization abilities of models like DeepSeek-Coder, Llama
3.1, and CodeGeeX4 when faced with real-world requirements
and leakage-free tasks.

� Answer to RQ2: LLMs generally perform worse on
RealisticCodeBench compared to HumanEval, with sub-
stantial performance drops observed in models such as
CodeGeeX4, Llama 3.1, DeepSeek-Coder, and Phi-3.

C. RQ3: What are the common errors during code generation
on RealisticCodeBench?

We further analyze cases where the highest-performing
GPT-4 generates incorrect code within five attempts. In in-
stances where GPT-4 fails to produce a correct solution during
these first five tries, we extend the generation process to ten
attempts. Most of these additional attempts yield correct solu-
tions, suggesting that generating multiple responses with GPT-
4 often leads to accurate answers. However, some problems
remain unresolved. We identify three primary types of issues,
as illustrated in Figure 4.

(1) Lack of Robust Parameter Handling and Edge
Case Coverage: A common issue in GPT-4’s generated
code involves inadequate handling of parameter types, missing
boundary conditions, or incomplete exception handling. For
instance, in Example 1, GPT-4 generates code for Dijkstra’s al-
gorithm without accounting for negative-weight edges, which
are incompatible with this algorithm. Dijkstra’s algorithm is
fundamentally unsuitable for graphs with negative weights, yet
the generated code lacks a mechanism to detect and handle this
limitation. By incorporating one or two specific test cases in
the prompt, GPT-4 generates a corrected version of the code,
highlighting its dependency on explicit prompt guidance for
handling such constraints.

(2) API Misuse and Incorrect Imports: Another recur-
ring issue involves incorrect API usage or errors in package
imports. In Example 2, GPT-4 attempts to use the date-
time.datetime.now() function without properly importing the
necessary class from the datetime module. Instead of using
from datetime import datetime to correctly import the required
functionality, GPT-4 incorrectly accesses datetime.datetime,
resulting in an API error. By providing GPT-4 with the specific
error message returned during code execution, we prompt
the model to correct the import statement, demonstrating that
runtime error feedback can improve the accuracy of generated
code.

(3) Incorrect Mathematical Formula Application: For
problems involving mathematical calculations, GPT-4 occa-
sionally misapplies formulas when the prompt does not explic-
itly provide the correct one. For example, in Example 3, GPT-
4 is tasked with calculating an integral using Simpson’s Rule
over the interval [a, b]. However, in the absence of an explicit
formula in the prompt, GPT-4 incorrectly uses another integra-
tion method. When we provide the Simpson’s Rule formula
directly in the prompt, GPT-4 generates the correct solution,
emphasizing the need for precise mathematical instructions
when dealing with formula-based computations.

� Answer to RQ3: Common errors in GPT-4’s code
generation on RealisticCodeBench include insufficient
handling of edge cases and parameter robustness, API
misuse or incorrect imports, and the misapplication of
mathematical formulas.



VI. DISCUSSION

A. Implications

Our results highlight several implications for LLM re-
searchers and practitioners.

Unlike widely-used benchmarks such as HumanEval and
MBPP, which focus primarily on algorithmic and basic pro-
gramming tasks, our benchmark reflects the types of code de-
velopers commonly generate with LLMs in real-world devel-
opment scenarios. Compared to other GitHub-derived bench-
marks like CoderEval and ClassEval—which are designed to
test the upper bounds of LLM capabilities—our benchmark
offers a complementary perspective. While we recognize the
value of these other benchmarks, ours serves as a practical
addition, providing insights from a real-world LLM usage
perspective. We recommend that newly developed LLMs be
evaluated using our benchmark to give developers a clearer
understanding of model performance on tasks that reflect
current, practical coding needs that LLMs can address
reliably.

Given data privacy concerns, as noted by Liang et al.
[18], where 41% of developers express fears about LLMs
accessing private codebases, our findings indicate that open-
source models like DeepSeek-V2.5 and CodeGeeX4-9B offer
a viable and privacy-conscious alternative. The performance
differential between DeepSeek-V2.5 and GPT-4, with an av-
erage pass@1 gap of only 1.19%, suggests that DeepSeek-
V2.5, despite requiring a robust hardware setup of 8 GPUs
with 80GB each, is a feasible choice for well-resourced
enterprises that prioritize data privacy. CodeGeeX4-9B shows
competitive performance compared to the proprietary model
GPT-3.5 on some programming languages; for instance, in
Python, it achieves a pass@1 rate of 55.47% and a pass@5
rate of 61.64%, narrowing the accuracy gap with GPT-
3.5 (pass@1 of 70.30%) to only 8.66% when generating
multiple solutions. Moreover, CodeGeeX4-9B’s operational
feasibility on a server equipped with dual NVIDIA GeForce
RTX 3090 (24GB) GPUs—costing around $3,000—makes it
a cost-effective option for individual developers and small
firms. However, for deploying larger models with parameters
exceeding 9B, higher-end GPUs like the NVIDIA A100 or
A800 would be required, with starting costs around $20,000.
Thus, for enterprises with substantial funding and a focus
on data privacy, DeepSeek-V2.5 is recommended, while
CodeGeeX4-9B is advised for privacy-conscious developers
or smaller companies operating within tighter budget
constraints.

The error case analysis in Section V-C underscores the need
for research focused on enhancing LLM robustness in
handling boundary conditions, domain-specific formulas,
and resolving issues related to API misuse and incorrect
imports. For tasks requiring robust parameter handling and
comprehensive edge case coverage, developers are advised
to include specific test cases within the prompt to high-
light these aspects effectively. Incorporating iterative feedback
loops, such as feeding runtime error messages back to the

model, can further improve accuracy in subsequent attempts
and help avoid API misuse and incorrect import issues. For
mathematical or formula-based problems, developers should
provide explicit formulas within the prompt to guide the model
toward accurate computations, thereby reducing the risk of
errors due to incorrect formula application. These strategies
can collectively enhance LLM reliability in code generation
tasks.

B. Threats to Validity

We evaluate a single closed-source LLM (the GPT series
from OpenAI), despite the existence of other closed-source
models such as Google’s Gemini. The decision to focus on
OpenAI’s GPT models is based on their widespread use
and demonstrated effectiveness. However, this may introduce
selection bias, as other models might perform differently under
similar conditions. Moreover, Liang et al. [18] found that
41% of developers are hesitant to use LLMs due to concerns
that code generation tools could access their private codebases.
To address this, we prioritize the exploration of open-source
LLMs. In total, we examine five general-purpose open-source
LLMs and five code-specific open-source LLMs to mitigate
bias and broaden our analysis. Additionally, our computational
resources—two NVIDIA GeForce RTX 3090 GPUs—limit
our ability to evaluate larger open-source models like Star-
Coder 15B and DeepSeek-Coder-V2 16B, which trigger out-
of-memory errors during testing. As a result, our analysis
is restricted to models with a maximum size of 10 billion
parameters. We plan to expand our evaluation to include larger
LLMs as more computational resources become available.

Our study focuses exclusively on LLM-generated code from
high-star GitHub repositories, aiming to reflect open-source
developers’ use of LLMs. We lack access to proprietary
code generated by developers in private companies, which
limits the generalizability of our findings to broader industry
applications. To address this, we invite 13 developers from
major tech companies (e.g., Microsoft, Huawei, ByteDance,
Tencent, Alibaba, Bilibili, Meituan) as well as smaller IT
companies to assess our benchmark’s relevance. These de-
velopers evaluate whether the programming problems in our
benchmark represent realistic development scenarios and if
LLMs would practically be used to generate solutions for
such problems. However, the limited number of programming
problems (417) may not fully capture the diversity of real-
world coding tasks. Additionally, due to the extensive manual
effort involved (about 700 person-hours), we currently limit
our benchmark to this scale. With the increasing use of LLMs
in open-source development, we plan to expand our benchmark
by incorporating more programming problems from GitHub
and other repositories.

To mitigate potential risks of data leakage, we adapt the
programming problems derived from GitHub code, altering the
types and quantities of input/output parameters. We calculate
the Levenshtein distance between the original GitHub code
and the LLM-generated code, finding substantial differences.
For example, the Levenshtein distance between the original
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GitHub Python code and the GPT-4-generated code for the
adapted problem is 509.27. Additionally, we manually re-
view the original GitHub code and the LLM-generated code,
confirming that they are indeed very dissimilar, suggesting
minimal risk of data leakage.

VII. CONCLUSION

We develop RealisticCodeBench to better align with the
types of coding tasks developers commonly address using
LLMs. This benchmark, comprising 392 Python problems,
376 JavaScript problems, 372 TypeScript problems, 339 Java
problems, and 353 C++ problems, represents a wide array
of coding challenges sourced from high-star GitHub reposi-
tories, closely reflecting developers’ everyday coding needs.
Experimental evaluations of 12 general-purpose and code-
specific LLMs reveal that, while GPT-4 achieves the highest
average pass@1, open-source models like DeepSeek-V2.5 and
CodeGeeX4 can serve as viable alternatives for companies
and smaller organizations focused on privacy, cost-efficiency,
and robust code generation. In comparing performance gaps
between HumanEval and RealisticCodeBench, we find that
some LLMs may be overly optimized for HumanEval-style
problems rather than practical coding applications. Lastly, our
analysis of failed cases highlights critical areas where LLMs
fall short in RealisticCodeBench, identifying opportunities for
improvement in handling complex, real-world coding tasks.

VIII. DATA AVAILABILITY

Our RealisticCodeBench benchmark, along with the code
used to evaluate the performance of the 12 LLMs discussed
in this paper, is available at [78].
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