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Abstract—With the rapid development of the Indus-
trial Internet of Things, log-based anomaly detection
has become vital for smart industrial construction that
has prompted many researchers to contribute. To detect
anomalies based on log data, semisupervised approaches
stand out from supervised and unsupervised approaches
because they only require a portion of labeled data and are
relatively stable. However, the state-of-the-art semisuper-
vised approaches still suffer from two main problems: man-
ual parameter setting and unsatisfactory performance with
high false positives. We propose AdaLog, an integrated
semisupervised approach based on self-adaptive cluster-
ing, for industrial anomaly detection. In particular, the clus-
tering step performs automatic label probability estimation
by distinguishing 12 situations so that the label probability
of each unlabeled data can be carefully calculated, leading
to high accuracy. In addition, AdaLog employs a pretrained
model to learn contextual information comprehensively and
a transformer-based model to detect anomalies efficiently.
To alleviate class imbalance, an undersampling method is
incorporated. The results on three popular datasets demon-
strate that AdaLog significantly outperforms three state-
of-the-art semisupervised approaches by 17.8%–2489.8%
on average in terms of F1-score, and is even superior to
two supervised approaches in most cases with average
improvements of 10.9%–23.8%.

Index Terms—Clustering, deep learning, intelligent
anomaly detection, transformer.
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I. INTRODUCTION

DUE to the needs of intelligent data processing and analy-
sis [1], [2], [3] in the Industrial Internet of Things (IIoT),

anomaly detection has attracted a lot of attention [4]. A trivial
industrial system anomaly can lead to a series of problems, such
as data corruption and product performance degradation [5], [6].
To this end, logs have been widely utilized in various reliability
enhancement tasks, such as system status checks, monitoring
facility identification, and anomaly detection, because logs are
essential data for recording system runtime information [7].
In particular, log-based anomaly detection has inspired a line
of research using machine learning and deep learning. Gen-
erally, existing approaches can be categorized into supervised
(e.g., LogRobust [8], NeuralLog [5]), semisupervised (e.g.,
DeepLog [9], LogAnomaly [10], and PLELog [11]), and un-
supervised approaches (e.g., LogCluster [12]).

Typically, supervised approaches perform better than the oth-
ers since tons of data with labels (i.e., normal or abnormal)
are used during model training. However, these approaches are
not practical in the industry because of their high demand for
large labeled datasets and the sensitivity to mislabeled data [6],
[11]. Regarding unsupervised techniques, nonnegligible log data
instability can lead to unfavorable performance. Because of
frequent log modifications, some incoming log sequences do not
appear in the training set [11]. Therefore, effectively deploying
unsupervised approaches in the industry can be very challenging.

Compared with supervised approaches, semisupervised ap-
proaches only require a small amount of labeled data in model
training. It dramatically reduces the cost of manual labeling and
the reliance on labeled data. Compared with unsupervised ap-
proaches, semisupervised approaches know part of the training
label information (e.g., the correlations between features and
labels), which can be utilized by semisupervised approaches to
maximize the training objective.

Although existing semisupervised approaches achieve decent
accuracy on public log datasets (e.g., Hadoop Distributed File
System (HDFS) [13]), several crucial problems have been over-
looked and remain unresolved, hindering their usage in practice.
First, real-world logs data are significantly imbalanced, i.e.,
there are many more normal logs than abnormal logs. For exam-
ple, only 0.82% of the logs in Thunderbird dataset are anoma-
lous. The highly imbalanced real-world data lead to a situation
where anomalies are often identified as normal cases by existing
approaches. Second, most semisupervised approaches rely on
clustering algorithms that cluster the unlabeled training data
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into different groups. This process is notoriously sensitive to the
parameter settings (e.g., cluster size and minimum samples [11]
and similarity threshold [14]), which often requires extensive
manual efforts. Third, the adopted clustering algorithms have a
huge impact on the performance of the whole semisupervised
pipeline [11], [14]. Existing clustering algorithms simply predict
labels for unlabeled samples without distinguishing different sit-
uations (e.g., the correlation between samples in a cluster). This
rough labeling often results in severe performance degradation
(e.g., lower precision and specificity) in the subsequent steps
due to high false positives (FP).

To address these problems, we propose AdaLog, a semisuper-
vised approach based on self-adaptive clustering for Log-based
anomaly detection. AdaLog adopts a self-adaptive clustering
method based on K-Means by dividing label probability calcu-
lation into 12 situations, which largely enhances the clustering
performance. Specifically, AdaLog considers the distance be-
tween each unlabeled sample and its cluster centroid and the
distance averages of labeled two class samples. In this way,
the label probability of each unlabeled data is carefully calcu-
lated and used for the subsequent model training. In addition,
by employing the Elbow method [15] to compute the sum of
squared distances between each log and its corresponding cluster
centroid, AdaLog mitigates the burden of manual parameter
tuning, allowing for the recommended number of clusters to
be automatically determined. To tackle dataset imbalance, Ada-
Log incorporates an undersampling method before clustering
to reduce the imbalanced ratio of normal and abnormal data.
Moreover, AdaLog employs a pretrained BERT model [16] for
semantic representation and a transformer-based model [17] for
log sequence classification.

We evaluate the performance of AdaLog with comprehensive
experiments on three widely used log anomaly datasets (i.e.,
HDFS [13], Blue Gene/L supercomputer (BGL) [18], and Thun-
derbird [18]). The results demonstrate that AdaLog remarkably
outperforms three state-of-the-art (SOTA) semisupervised ap-
proaches with an average improvement (in terms of F1-score)
of 2489.8% (DeepLog [9]), 2448.9% (LogAnomaly [10]), and
17.8% (PLELog [11]), respectively. Moreover, AdaLog even
outperforms two SOTA supervised approaches in F1-score by
23.8% (LogRobust [8]) and 10.9% (NeuralLog [5]). The ab-
lation studies also indicate the effectiveness of our proposed
self-adaptive clustering method and the necessity of the under-
sampling method.

The main contributions of this article are as follows.
1) We propose AdaLog, a semisupervised log-based

anomaly detection approach that addresses the three main
concerns of existing semisupervised approaches.

2) The core of AdaLog is a self-adaptive clustering method
with 12 especially designed situations for label probabil-
ity calculation.

3) The experimental results show that AdaLog outperforms
SOTA semisupervised and supervised methods in F1-
score by 17.8%–2489.8% and 10.9%–23.8%, respec-
tively.

4) Our implementation is publicly accessible.1

1https://github.com/AdaLog2023/AdaLog

II. RELATED WORK

A. Anomaly Detection With Supervised Techniques

In existing log-based anomaly detection papers, supervised
approaches often achieve better performance compared with
semisupervised and unsupervised approaches because super-
vised approaches leverage a large amount of labeled training
data in their evaluation. Many machine-learning-based methods
were proposed to detect anomalies in the early years. Liang
et al. [19] introduced four classifiers to predict failure log events.
The decision tree model applied by Chen et al. [20] was used
to classify logs on eBay’s web request logging system, and
the regression-based approach presented by Farshchi et al. [21]
was used to detect application operation failures. Subsequently,
deep-learning-based methods were proposed to detect log-based
anomalies. For example, Zhang et al. [22] combined a log
template extraction method with TF-IDF to represent templates
as vectors and applied an LSTM model for log-based system
failure prediction. Similarly, Vinayakumar et al. [17] employed a
stacked-LSTM network for log anomaly detection. Wu et al. [23]
provided an agile solution EdgeLSTM for sequential computa-
tion in IoT data, which uses Grid LSTM and multiclass SVM.
This method was deployed for anomaly detection applications.
To further optimize the LSTM model applied in time-series data
analysis, a hyperparameter optimization method was proposed
by Wu et al. [24] to reduce the time cost and enhance the
performance. LogRobust [8] and NeuralLog [5], as state-of-the-
art supervised approaches mentioned in Section IV-B, utilize
a pretrained model (i.e., FastText and BERT) for embedding
and a deep learning model (i.e., Bidirectional LSTM (BLSTM)
and Transformer) combining with attention mechanism for pre-
diction. Supervised approaches require substantial labeled data,
which is often infeasible in practice. Different from these ap-
proaches, AdaLog is semisupervised, which only needs a small
amount of labeled data yet achieves comparable accuracy as
supervised approaches.

B. Anomaly Detection With Semisupervised and
Unsupervised Techniques

Compared with supervised approaches, semisupervised and
unsupervised approaches are more likely to be applied in prac-
tice due to their less reliance on labeled data. DeepLog [9]
used an LSTM model to learn log patterns from normal log
sequences automatically, it can detect anomalies if incoming
log sequences cause the model to deviate from normal execu-
tion. To learn normal patterns, LogAnomaly [10] considered
semantic information by matching log sequences against their
generated templates. Wu et al. [3] adopted an LSTM model
and a Gaussian Bayes model for outlier detection in the IIoT.
PLELog [11] combined the HDBSCAN clustering method for
probabilistic label estimation and an attention-based GRU model
for log sequence classification. LogCluster [12], an unsupervised
approach, considered the weights of log events and grouped
log sequences via a hierarchical clustering algorithm. However,
the unsupervised approach usually performs worse than those
semisupervised approaches that combine a part of normal la-
beled data and deep learning techniques. Unlike existing semisu-
pervised approaches, AdaLog effectively enhances anomaly
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Fig. 1. Four-phrase framework of AdaLog.

detection performance because it considers various cases of label
probability estimation via a self-adaptive clustering method.

III. ADALOG

The workflow of AdaLog is illustrated in Fig. 1, which
contains four modules: data preprocessing, semantic embedding
and undersampling, self-adaptive clustering, and classification
model building.

1) AdaLog preprocesses the log messages in a standard
format (see Section III-A).

2) The processed log data is tokenized and transformed into
vector representations by a pretrained BERT model (see
Section III-B). After that, the training log messages are
grouped into log sequences with/without ground-truth
labels (i.e., labeled or unlabeled), and then, are processed
through undersampling.

3) The remaining log sequences are collected together for
automatic clustering and label probability estimation (see
Section III-C).

4) AdaLog builds the transformer-based model for classifi-
cation (see Section III-D) and trains it using the training
data with estimated labels. Once deployed, AdaLog first
generates log vectors by steps 1) and 2) given a test
log sequence. The vectors are then fed into the trained
model, from which the predicted output will be normal
or abnormal.

A. Data Preprocessing

The first step of AdaLog is preprocessing the raw log
messages. To avoid the errors caused by log parsing (e.g., Drain,
Spell, AEL, and IPLoM) due to the lack of semantic information
and semantic misunderstanding [5], we keep the full information
of each log message. The raw log messages are tokenized into
word-based tokens and then separated by common delimiters
(e.g., commas, semicolons, and white spaces). Inspired by
NeuralLog [5], AdaLog removes all noncharacter tokens, such
as numbers, operators, and punctuations, which preserves most
of the informative content. In addition, AdaLog converts the
capital letters to lower letters to make the overall process case
insensitive. An example of preprocessing is shown in Table I.

TABLE I
EXAMPLE OF PREPROCESSING ON BGL LOG

B. Semantic Embedding and Undersampling

To better understand the semantic information of log mes-
sages, we adopt a deep learning pretrained model BERT [16]
to extract features and represent log messages as embedding
vectors. The architecture of the pretrained model consists of
multilayers of bidirectional transformer encoder. Every encoder
utilizes the self-attention mechanism to determine the terms they
should pay more attention on and draw global dependencies
between inputs and outputs. Hence, each input log message
from the training set is passed through the first-layer encoder
to generate embedding vectors, which serve as the input of the
next layer of the encoder. The word embeddings generated by
the last-layer encoder of BERT are used for the next step. In this
way, each log message can be represented as a fix-length vector,
i.e., V = {v1, v2, . . ., vN}, where N is the number of tokens in
each log message. Subsequently, the log messages are grouped
into log sequences by session or fixed windows.

As we have mentioned in Section I, class imbalance exists in
the log-based anomaly detection datasets. Therefore, we employ
an undersampling method [25] to remove a certain proportion of
normal log sequences to alleviate this problem. We did not use
oversampling since oversampling may lead to overfitting during
the model construction process, especially when abnormal data
are very limited. To handle the varying degrees of imbalance in
the datasets, we empirically design the following heuristic rule:
use an undersampling ratio range, and then, specify three quar-
ters of the undersampling range as the specific undersampling
ratio to conduct undersampling. Finally, we remove normal log
sequences from the training dataset according to the order of
the collected data. The remaining normal log sequences and
all abnormal log sequences are sent to the clustering stage as
training data.
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C. Self-Adaptive Clustering

Typically, the training dataset of semisupervised approaches
consists of labeled and unlabeled data. To utilize labeled data,
semisupervised approaches employ clustering algorithms to
form groups of similar samples, based on which we can estimate
the label probability of the unlabeled data according to especially
designed different situations.

Existing clustering methods can be classified into four cat-
egories. Since the hierarchical-based clustering technique has
the drawback of high time complexity, the density based and
grid based are sensitive to parameter selection, AdaLog uses
K-Means [26], a widely used partition-based method to cluster
the samples. The principle of this method is to optimize the
squared error distortion between the samples and the centroids to
minimize the within-cluster variance by adjusting the centroids.

1) K-Means Clustering With Elbow Method: As explained
previously, we choose the effective and straightforward method
K-Means for rough clustering. To ensure the most suitable k
(i.e., the number of clusters), we use the Elbow method [15] to
compute the recommended k∗. The Elbow method is centered
around the computation of the sum of squared errors (SSE). The
SSE measures the sum of the squared distances between each
data sample and its corresponding cluster centroid, which repre-
sents the within-cluster variability. The SSE can be regarded as
the clustering error of all samples, and serves as an indicator of
the clustering quality. When the number of clusters, denoted by
k, is smaller than the true number of clusters, increasing k will
lead to a significant decrease in SSE due to the increased degree
of aggregation within each cluster. However, as k approaches
the true number of clusters, denoted by k∗, the rate of decrease
in SSE will begin to plateau, resulting in an elbow-shaped curve.
The value of k∗ corresponding to the elbow point represents the
optimal number of clusters for the given dataset. To compute the
SSE for each value of k within a range K = (0, 50), we sum the
squared distance as shown in the following equation:

SSEk =
k∑

i=1

∑

p∈Ci

|p−mi|2 (1)

where Ci represents the ith cluster, p denotes a sample point
belonging to Ci, and mi indicates the centroid of Ci. Based on
our empirical findings, we recommend adopting the first two
optimal k∗ values for subsequent operations, as they may be
very close in certain scenarios. For each chosen k∗, we employ
K-Means to cluster our training data on the embedding space.
K-Means iteratively computes centroids by calculating the index
of the cluster to which each sample is assigned and the distance
between each sample and its nearest cluster centroid. When the
calculated index of each sample’s cluster is its nearest cluster,
the iteration stops, and the centroids will no longer change. In
this way, the labeled/unlabeled data has its corresponding cluster
under each optimal k∗.

2) Label Probability Estimation: In this step, our aim is to
compute the probability Pnormal for each unlabeled sample being
normal under each k∗ value, and the final Pnormal is obtained
by taking the average. Compared to other approaches, AdaLog
proposes a novel way to leverage the clustering results and

existing labeled samples in the clusters by considering 12 espe-
cially designed situations. By doing so, existing labeled data can
contribute to the label probability estimation of unlabeled data.
We discuss 12 scenarios and demonstrate the computation in
Table II. In addition, we keep the Pnormal = 1 for labeled normal
samples and Pnormal = 0 for labeled anomalous samples.

The 12 scenarios can be classified as five main situations
(S 1–S 5) based on which cluster an unlabeled sample belongs
to. We calculate the label probability Pnormal for each unlabeled
sample by comparing the distances d, dA, and dN .

dN =
1
Nn

Nn∑

i

di

dA =
1
Na

Na∑

j

dj

(2)

where d represents the distance from the unlabeled sample to
its corresponding cluster centroid. dN and dA are the average
distances between each labeled normal/anomalous sample in this
cluster and the cluster centroid. Nn and Na indicate the number
of labeled normal and abnormal samples, respectively.

The first situation S 1 is that the corresponding cluster only
contains one known category (normal or abnormal). S 1.1 indi-
cates the cluster only has labeled normal samples (i.e., so we have
dN ). Therefore, this unlabeled sample is very likely to be normal,
and a large probability (Pnormal is almost closer to 1) is given to
this sample. In contrast, S 1.2 describes the situation in that only
labeled abnormal samples exist in the cluster (i.e., so we have
dA). Accordingly, a small probability (Pnormal is almost closer
to 0) is given to this sample. S 2 demonstrates another situation
the cluster does not contain any labeled samples. Since there is
no preference for the possible estimated categories, we assign a
medium probability to the unlabeled sample (i.e.,Pnormal = 0.5).

For the S 3 and S 4 (i.e., the cluster contains two known
categories), the average distances dN and dA should be con-
sidered to decompose the situation. For each subsituation, we
introduce two coefficient parameters P1 and P2 for calculating
Pnormal as shown in Table II. P1 represents the confidence degree
in which the sample is more inclined to be normal or abnormal,
according to the average distances (i.e., dN and dA) from the
normal and abnormal samples to the cluster centroid. P2 refers
to the confidence degree that the unlabeled sample is more likely
to be normal or abnormal, depending on which category the
sample is closer to (i.e., |d− dN | and |d− dA|). In addition, we
utilize constants (i.e., 0.5) to ensure that the Pnormal is located
in the reasonable range. If dN < dA (i.e., S 3), it demonstrates
that the cluster may be more toward the normal category. For
S 3.1, if the situation satisfies d < dN , the unlabeled sample is
closer to the cluster centroid, so it is more likely to be normal
(i.e., Pnormal ∈ (0.5, 1)). The coefficient parameters (P1 and P2)
expressed as dN

dA
and dN−d

dA−d are used to assess the degree to which
the sample tends to be normal. Take the following scenario as
an example.

1) If the dN approximates to dA, it becomes challenging to
determine to which category the sample is more likely
to belong because known normal and abnormal data are
very close in distance within the cluster. Therefore,P1 as a
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TABLE II
SITUATIONS OF SELF-ADAPTIVE CLUSTERING

coefficient cannot excessively bias the sample toward the
normal category, even if the sample is closer to the nor-
mal category. Similarly, Since the distance between this
sample and each category is very close, P2 does not make
much effort to push the sample to one of the categories.
Consequently, P1 and P2 should be very close to 1, re-
sulting in a more neutral label probability for this sample.

2) In contrast, if the dA is far away from dN , P1 and P2

should be more biased toward 0, which increases the
probability of the sample being normal.

For S 3.2, when the sample lies between the two categories
(i.e., dN ≤ d < dA), two situations may arise. If (d− dN ) ≤
(dA − d) (S 3.2.1), this means that although the sample is likely
to be in either of the two categories, the sample is closer to the
normal category (i.e., Pnormal ∈ (0.5, 1)). These two coefficient
parameters (1 − dN

dA
) and (1 − d−dN

dA−d ) cause the sample to be
shifted in the normal direction; else if (d− dN ) > (dA − d)
(S 3.2.2), the sample is more likely to be an anomaly (i.e.,
Pnormal ∈ (0, 0.5)), and P1 and P2 are formulated as (1 − dN

dA
)

and (1 − dA−d
d−dN

) to decide the degree to which the sample is
biased like an anomaly. S 3.3 indicates that the sample is farther
from the cluster centroid and even further than the abnormal
category (i.e., dN < dA ≤ d), therefore, it is more prone to be
an anomaly (i.e., Pnormal ∈ (0, 0.5)). (1 − dN

dA
) and (1 − d−dA

d−dN
)

are used to calculate the degree to which the sample is inclined
to the abnormal category.

Similarly, the S 4 with dA < dN is derived from the same
calculation idea of the S 3. This situation demonstrates that the
cluster is more likely to gravitate toward the abnormal category
due to the fact that known anomalous data are closer to the
cluster centroid. The last situation S 5 is that dN = dA. Since

we cannot judge which category of the unlabeled sample is more
likely to belong, we assign theP = 0.5 to it under this condition.
It can be regarded as a special case of the aforementioned cases.
Furthermore, we list the range of the calculated Pnormal for each
situation in Table II. It also implies that self-adaptive clustering
is reasonable and rigorous.

In this way, unlabeled log sequences can be automatically
classified into one of the 12 situations, then their correspond-
ing label probabilities of being normal are calculated. We use
(Pabnormal = 1 − Pnormal) to represent the probability that a sam-
ple is an anomaly. The probability pair (Pnormal, Pabnormal) for
each log sequence is sent to the next classification model.

D. Classification Model Building

Based on the training data with ground-truth labels or label
probabilities computed by the clustering method, we finally
utilize a transformer-based classification model [17] to detect
anomalies. Since a log sequence contains many log messages,
relative position information should be incorporated. To this end,
a sinusoidal encoder [17] used to generate the embedding pi at
position i is added to the corresponding embedding vector vi,
which is fed into the classification model as illustrated in step
4) of Fig. 1.

The network structure of the transformer encoder solves the
limitation of the parallel ability, and better deals with the prob-
lem of long dependencies within log sequences. Typically, the
transformer encoder stacks several identical layers. Each layer
uses multihead attention and a feed-forward network that con-
tains two fully connected layers, plus layer normalization and
residual connection. In this way, the combination of attention
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TABLE III
STATISTICS OF THREE DATASETS

scores for each log message is obtained through the fully con-
nected layers [27]. Afterward, the output of this transformer
encoder is sequentially connected to a pooling layer, a dropout
layer, and a fully connected layer with a softmax function.
Since we train with the estimated label probabilities of the log
sequences rather than binary labels (i.e., 0 or 1), the transformer-
based model will try to optimize the loss between the computed
label probabilities and the predicted binary labels. We have
such a computation setup for two reasons. The first reason
explains why we utilize estimated label probabilities. AdaLog
as a semisupervised method, there is no guarantee that every
unlabeled data will be correctly classified by the predictions
of the clustering method, and the mislabeled data may bias
the training. Hence, we compute the label probabilities of the
data to reduce the noise effect to some extent. The second
reason explains why we choose the binary labels predicted by
the transformer-based model to compute the loss instead of the
probabilistic ones. Owing to the binary classification task, the
final prediction result should be normal or abnormal (i.e., 0 or 1).
If we use both probabilities to calculate the loss simultaneously,
some labels of the data are likely to be neutral, making it difficult
to judge the boundary between these two categories.

During the training, the best-trained parameters of this model
will be saved for anomaly prediction. If a new log sequence
comes, it is preprocessed and embedded before being fed into the
trained model. Finally, its predicted label (normal or abnormal)
will be generated as output with the aforementioned steps.

IV. EXPERIMENTAL SETTINGS

A. Datasets

To evaluate AdaLog’s performance in detecting anomalies,
we use three widely used datasets: HDFS dataset [13], BGL
dataset [18]), and Thunderbird dataset [18]. In particular,
Thunderbird is an extremely imbalanced dataset, which better
reflects anomaly detection in practice. Similar to previous
works [5], [6], [11], we group log messages of the HDFS
dataset by session windows according to the log’s identifier
(i.e., block_id). For other datasets (i.e., BGL and Thunderbird),
log messages are grouped with fixed window sizes (i.e., 20, 100,
and 200). In Table III, the number of log messages, the grouping
strategies, and the corresponding grouped log sequences with
abnormal proportions are presented in order.

B. Baselines

Recently, log-based anomaly detection as an interesting and
novel research problem has attracted many studies proposing

models to detect anomalies. Since supervised methods usually
have the best performance and our approach is semisupervised,
we choose the state-of-the-art semisupervised approaches (i.e.,
DeepLog [9], LogAnomaly [10], and PLELog [11]) and su-
pervised approaches (i.e., LogRobust [8] and NeuralLog [5])
introduced in Section II as baselines.

C. Parameter Settings

In our experiments, we employ the default values of hyper-
parameters that have been widely used in related work [5], [16],
[28]. Specifically, we set the layer of the transformer encoder
to be 1, the number of attention heads to be 12, and the size of
the feed-forward network followed by multihead self-attention
to be 2048. The classification model is optimized by using an
improved regularization technique in the Adam optimizer [29],
which involves decoupling the weight decay from the gradient-
based update. This model was trained with the learning rate
of 3e− 4, the dropout rate is 64, the adopted loss function is
weighted binary cross-entropy, and the number of epochs is 20.
Furthermore, we use PCA for dimensionality reduction so that
the number of components for our self-adaptive clustering is
100, the same as PLELog [11].

To make a fair comparison, we adopt the parameter val-
ues provided by the original authors. DeepLog [9] and
LogAnomaly [10] adopt a two-layer LSTM with 128 neurons.
LogRobust [8] utilizes two BLSTM layers with 128 neurons and
one attention layer. PLELog [11] employs a single-layer GRU
network for prediction, and its clustering parameter settings
remain the same as they introduced (that is, the minimum cluster
size and the minimum number of samples are 100) to calculate
the number of clusters through HDBSCAN. NeuralLog [5] has
the same parameter settings as the transformer encoder we
described previously. In [10], LogAnomaly applied a synonym-
and antonym-based approach to representing log templates as
semantic vectors. However, the employed template2vec model
was trained with domain-specific antonyms and synonyms, some
of which were manually added by operators. Furthermore, the
model was trained with the index of log events (i.e., sequential
and quantitative vectors), thereby ignoring the semantics of the
logs. Due to the unavailability of the information, we follow
the empirical study [6], using a pretrained FastText word2vec
model [30] to compute semantic vectors for log templates. The
semantic vectors obtained from language models are usually
more informative.

The log sequences used in our study are continuous and
sequential because of their chronological ordering and grouping
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TABLE IV
PERFORMANCE OF DIFFERENT APPROACHES ON THREE DATASETS

based on window size or session window. Hence, the con-
ventional k-fold cross-validation method is not applicable in
our timing-related problems, considering the time dependencies
present in the data. To assess the effectiveness of AdaLog, we
perform each experiment 20 times and report the median value
in Table IV. These results are more reliable and applicable in
practical scenarios.

D. Evaluation Metrics

Log-based anomaly detection is an imbalanced binary classi-
fication problem. To evaluate the effectiveness of AdaLog, we
refer to previous works and adopt the precision= TP

TP+FP , recall=
TP

TP+FN , and F1-score= 2×precision×recall
precision+recall metrics for comparison.

In addition, Le et al. [6] demonstrated that specificity= TN
TN+FP

is necessary for evaluation, especially under the imbalanced
data distribution. Thus, we introduce this metric in our study.
Specifically, TP, TN, FP, and FN refer to the number of true
positives (an abnormal log sequence is correctly predicted to
be anomalous), true negatives (a normal log sequence is cor-
rectly predicted to be normal), false positives (a normal log
sequence is incorrectly predicted to be abnormal), and false
negatives (an abnormal log sequence is incorrectly predicted
to be normal), respectively. Precision indicates the percentage
of correctly detected anomalies among all detected anomalies;
recall refers to the percentage of correctly detected anomalies
over all anomalous log sequences; specificity represents the
percentage of correctly detected normal ones over all real nor-
mal log sequences; and the F1-score considers both precision
and recall, which is a comprehensive evaluation metric. The
higher the F1-score value, the more accurate the proposed
approach is in predicting both categories (i.e., normal and
abnormal).

TABLE V
COMPARISON OF THE EFFECTIVENESS OF DIFFERENT CLUSTERING

APPROACHES ON THE TRAINING SET

TABLE VI
COMPARISON OF THE EFFECTIVENESS OF DIFFERENT CLUSTERING

METHODS ON THE TEST SET

TABLE VII
STATISTICS ON THE UNDERSAMPLING RATIO OF DATASETS

V. RESULTS AND DISCUSSION

In Section V-A, we present a comprehensive evaluation of
the performance of our proposed AdaLog approach as well
as SOTA approaches. Subsequently, we conduct ablation stud-
ies to assess the effectiveness of the self-adaptive clustering
method, undersampling technique, and overall methodology in
Sections V-B, V-C, and V-D, respectively. In Section V-B, we
compare our proposed clustering method against the HDBSCAN
clustering method used in PLELog, both without (see Table V)
and with (see Table VI) the classification model. Additionally,
we investigate the efficacy of the undersampling method at
different sampling ratios in Section V-C. Finally, in Section V-D,
we analyze how varying sizes of labeled data impact the perfor-
mance of AdaLog. These sections provide a detailed analysis
of our experimental results, further contributing to the overall
efficacy and understanding of the proposed approach.

In Tables IV–VIII, the column M indicates the evaluation
metrics, and P, R, S, and F1 represent precision, recall, speci-
ficity, and F1-score, respectively. For each dataset, the grouping
methods are abbreviated as session or the values of the window
sizes (i.e., 20, 100, and 200).
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TABLE VIII
RESULTS OF ADALOG WITHOUT OR WITH UNDERSAMPLING

A. Detection Accuracy

As shown in Table IV, in terms of F1-score, compared with
all semisupervised approaches, our approach AdaLog performs
best on all datasets, improving existing approaches by 2489.8%
(DeepLog), 2448.8% (LogAnomaly), and 17.8% (PLELog) on
average. On HDFS dataset, all semisupervised approaches per-
form well, and AdaLog outperforms these three approaches
by 6.2% on average. On BGL dataset, regardless of window
size, DeepLog and LogAnomaly have a relatively low F1-score
because of the poor precision; that is, they are likely to mislabel
normal log sequences as anomalies. AdaLog is superior to these
two approaches by 237.0% and 221.2% on average, respectively.
In contrast, PLELog performs better but still 21.8% worse
than AdaLog on average. Every dataset has a class imbalance
problem, especially Thunderbird dataset, where abnormal log
sequences in the test set only account for 0.1%–0.3% of the
entire test set under different window sizes. Beneficial from the
undersampling method, AdaLog outperforms other approaches
most apparently on this dataset with various window sizes,
where AdaLog improves DeepLog, LogAnomaly, and PLELog
by 5569.5%, 5491.7%, and 17.7% on average, respectively.

Even though AdaLog is a semisupervised approach, its per-
formance (F1-score) on all datasets is even 23.8% and 10.9%
better than the supervised approaches LogRobust and NeuralLog
on average. On HDFS dataset, AdaLog outperforms LogRobust
by 1.3%. On BGL and Thunderbird datasets, AdaLog improves
LogRobust by 21.8% and 39.2% for three window sizes, sep-
arately. Compared with NeuralLog, even though AdaLog per-
forms worse on BGL and Thunderbird datasets at ws = 20, it is
on average 31.7% better in other cases and 10.9% better on all
datasets. In cases where there is a significant imbalance between
the two classes in the training set, AdaLog is found to exhibit
suboptimal performance relative to NeuralLog. Adding more
anomalous data in the supervised approaches may help alleviate
overfitting and improve the overall performance.

B. Clustering Effectiveness

To compare the clustering algorithms employed in AdaLog
and PLELog, we adopt the same methods of preprocessing and
generating word embeddings (i.e., BERT). In this experiment,
we do not perform undersampling to ensure that differences in
comparisons are entirely due to clustering. The results on the

training set are demonstrated in Table V, and Table VI indi-
cates the comparison on the test set with the transformer-based
classification model for anomaly prediction.

In Table V, we compare our self-adaptive clustering method
with HDBSCAN employed in PLELog on the training set. On
the whole, our clustering method can more accurately label
unlabeled data on all datasets. We can find that both clustering
methods perform much better on both HDFS and BGL datasets
than Thunderbird dataset. On both datasets, the recall of two
clustering methods achieves high values, while the precision
calculated by AdaLog is higher than the HDBSCAN adopted by
PLELog. On HDFS dataset, our self-adaptive clustering method
outperforms HDBSCAN in terms of F1 by 10.2%. The im-
provements of our clustering method over HDBSCAN by 6.0%
on average on BGL dataset. Because of the severe imbalance
problem on Thunderbird dataset, two clustering methods have
difficulty in correctly classifying log sequences. Overall, on
all datasets, our self-adaptive clustering method outperforms
HDBSCAN in the term of F1-score with 64.1% on average.

In Table V, we directly classify unlabeled data on the training
set into normal and abnormal based on label probabilities.
Nonetheless, to predict the labels of samples in the test set,
we use the transformer-based classification model for training
and validation. Similarly, the results displayed in Table VI also
illustrate that our clustering method is far better than HDB-
SCAN in terms of all evaluation metrics. When combining
the HDBSCAN clustering method and the same classification
model, the results are not satisfactory. Even on the Thunderbird
dataset, the value of TP is 0 (i.e., no anomaly can be correctly
predicted), which results in a recall of 0 and makes precision and
F1-score invalid values. The reason is that the label probability
calculated by HDBSCAN has a large error. Incorporating the
classification model, the self-adaptive clustering outperforms
HDBSCAN by 864.1% (on average) in terms of F1-score on three
datasets.

C. Undersampling Effectiveness With Different Ratios

In Table VII, we summarize the raw ratios of normal and
abnormal data, the undersampling ratio ranges, and the specific
undersampling ratios used in AdaLog (i.e., 75% of the range
as it is practice-recommended on all three datasets). Table VIII
shows the comparison of AdaLog with (75% of the range) or
without undersampling. For the sake of rigor, we choose five
values within the undersampling ratio ranges to observe the
effect of the undersampling ratio on AdaLog’s performance. The
trend is illustrated in Fig. 2.

The results shown in Table VIII demonstrate that the perfor-
mance with undersampling outperforms without undersampling
except for only one case (i.e., on Thunderbird dataset with
ws = 100). The possible reason is that the percentage of anoma-
lies in the training set is much larger than that in the test set, and
the use of undersampling may enlarge the difference between
the two and lead to a little deviation in prediction. Overall,
compared with the model without undersampling, the one with
undersampling improves the performance on average by 0.5%
(HDFS), 1.7% (BGL), and 19.4% (Thunderbird), respectively.
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Fig. 2. Effect of the undersampling ratio on AdaLog’s performance in F1-score. The percentages 0% and 100% indicate the minimum and
maximum values of the undersampling range. (a) HDFS. (b) BGL. (c) Thunderbird.

To explore whether this chosen undersampling ratio is rea-
sonable for each dataset, we conduct experiments on the un-
dersampling ratio within a set range shown in Table VIII. We
take different undersampling values, i.e., 0% (minimum), 25%,
50%, 75%, and 100% (maximum), as the undersampling ratio.
The performance trend is illustrated in Fig. 2. The horizontal
and vertical axis refers to the percentages of the ratio range
and the performance in terms of F1-score, respectively. On the
HDFS dataset, performance drops slowly from 0.991 (min) to
0.992 (25%), and rises to 0.993 (75%), then drops sharply to
0.975 at a 30:1 ratio of the two classes (max). Unlike HDFS, the
performance of the BGL dataset shows a steady upward trend
until reaching 75% of the ratio range. The up and down trends are
flatter when the window size is 20 or 100, and the corresponding
ranges of the variation are 0.033 and 0.054, respectively. In
comparison, the change (i.e., 0.211) is more significant in the
case of ws = 200. The performance climbed from 0.650 (min)
to 0.765 (50%), followed by a sharp rise to 0.861 (75%), and
then, a slow decline to 0.840 (max).

On Thunderbird, the most imbalanced dataset, the variation
range widens to 0.352 (ws = 200). When the window size is
20 or 200, the trend of change is similar. There is a modest
decrease, and then, a considerable increase, followed by a minor
decay. At the peak points, the percentage of the ratio range is
75%. When ws = 100, the performance continues to rise to
0.766 as the percentage increases from min to 75%, after which
the performance decreases to 0.549 (max). To sum up, for any
dataset, within the range of undersampling ratios, 75% is a very
reasonable undersampling ratio.

D. Overall Effectiveness With Different Labeled Ratios

As a semisupervised approach, AdaLog utilizes a part of
labeled training data to predict the unknown ones. The operation
benefits the model will be less sensitive to the data, thereby
keeping stability. Fig. 3 represents how the performance of
the proposed AdaLog in F1-score changes when the labeled
proportion (represented as lp) ranges (i.e., 10% to 90% in ten
percentages).

On HDFS dataset, the performance of AdaLog continues to
rise steadily, from 0.869 to 0.997. Especially when lp increases
from 50% to 90%, the performance gap of AdaLog is tiny, and
the improvement is only 0.4%. This result represents that Ada-
Log on HDFS dataset maintains outstanding performance even

Fig. 3. Effect of the labeled training data size on AdaLog’s perfor-
mance in F1-score. (a) HDFS. (b) BGL. (c) Thunderbird.

with the proportion of labeled data changes. On BGL dataset, the
changing trend of AdaLog’s performance is relatively consistent
in different window sizes. The performance change of AdaLog
under different window sizes is basically a sharp improvement
first (especially the lp changes from 10% to 20%), and then,
a slow increase (i.e., 50%–90%). When ws = 20, the F1-score
dramatically increases from 0.519 to 0.899 (an improvement of
73.2%) as lp changes from 10% to 20%, then gradually grows to
0.955 when lp is 50%. Similarly, under ws = 100, the F1-score
has an improvement of 42.5% with the changes of lp from 10%
to 20%. Afterward, this value rises by 27.6% until lp increases
to 50%. When ws = 200, the F1-score greatly improves from
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0.449 to 0.861 (an improvement of 91.8%) with the change in lp
from 10% to 50%. When the labeled ratio changes from 50% to
90%, the performance of AdaLog is slightly improved by 2.2%
(ws = 20), 3.7% (ws = 100), and 3.8% (ws = 200), respec-
tively. The experimental results demonstrate that as the amount
of labeled data increases, the performance of AdaLog on BGL
dataset also steadily improves. However, when the proportion of
labeled data changes from 50% to 90%, the performance does
not change much.

AdaLog has an unusual behavior on the Thunderbird dataset
compared to the other two datasets. In Table IV, supervised
methods generally perform better than semi-supervised methods
since the former use more semantic information for training.
Then, on the Thunderbird dataset, due to the severe imbalanced
problem, supervised methods will likely overfit anomalies. Once
some anomalies that the model has not seen appear, the model
is likely to predict them as normal logs. Fig. 3(c) clarifies this
point intuitively. When the window size is 20, the performance
of AdaLog spikes from 0.001 (lp = 10%) to 0.775 (lp = 50%),
then slowly rises to 0.857 (lp = 70%) before dropping slightly
to 0.833 (lp = 90%). When the window sizes are 100 and 200,
the performances of AdaLog change significantly. They rise
sharply to 0.735 (lp = 50%) and 0.541 (lp = 60%), respectively,
then drop magnificently. The experimental findings suggest that
augmenting the amount of training data is not invariably con-
ducive to enhanced performance, and the data category should
be considered. In instances of pronounced class imbalance,
such a practice may engender training drift, yielding diminished
recall and F1-score. In summary, AdaLog performs well as a
semisupervised method with 50% labeled training data, even
better with extreme imbalance.

VI. CONCLUSION

In this article, we proposed an efficient semisupervised
method AdaLog to enhance the performance of anomaly de-
tection. To improve the accuracy of data labeling, AdaLog
utilized a self-adaptive clustering method to calculate the label
probability of unlabeled data more accurately, which consid-
ered 12 especially designed situations based on the distance of
labeled data. To alleviate the class imbalance problem, AdaLog
employed an undersampling method to improve the performance
of AdaLog. Furthermore, we adopted a pretrained model for
word embedding and a transformer-based model for prediction.
Experimental results showed that AdaLog achieves a superior
performance than five SOTA semisupervised and supervised
approaches for industrial log-based anomaly detection.

The authors in [31], [32], and [33] had pointed out that
data-driven deep learning models were vulnerable to pertur-
bations in input data, making them susceptible to adversarial
attacks. Although leveraging the transformer, a deep learning
model, for anomaly prediction, it was noteworthy that AdaLog
was semisupervised and employed a self-adaptive clustering
technique to estimate label probabilities on unlabeled data. This
enabled subsequent training steps to be less sensitive and less
prone to deviation. However, to further enhance the robustness of
the proposed approach, it was imperative to integrate advanced
techniques, such as adversarial ones, to resist external attacks.

Incorporating adversarial training or defense mechanisms, as
well as techniques like input perturbation, may be promising
directions to explore in future work. Strengthening the overall
effectiveness and resilience of AdaLog would allow for its
expansion to other applications within the IIoT domain.
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