
Information and Software Technology 147 (2022) 106906

A
0

C
s
X
a

b

c

A

K
S
C
H

1

o
t
s
S
G
b
a
s
i
t

x

h
R

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

ASMS: Combining clustering with attention semantic model for identifying
ecurity bug reports
iaoxue Ma a, Jacky Keung a, Zhen Yang a, Xiao Yu b,c,∗, Yishu Li a, Hao Zhang a

Department of Computer Science, City University of Hong Kong, Hong Kong, China
School of Computer Science and Artificial Intelligence, Wuhan University of Technology, Wuhan, China
Wuhan University of Technology Chongqing Research Institute, Chongqing, China

R T I C L E I N F O

eywords:
ecurity bug report
lustering
ybrid neural networks

A B S T R A C T

Context: Inappropriate public disclosure of security bug reports (SBRs) is likely to attract malicious attackers
to invade software systems; hence being able to detect SBRs has become increasingly important for software
maintenance. Due to the class imbalance problem that the number of non-security bug reports (NSBRs)
exceeds the number of SBRs, insufficient training information, and weak performance robustness, the existing
techniques for identifying SBRs are still less than desirable.
Objective: This prompted us to overcome the challenges of the most advanced SBR detection methods.
Method: In this work, we propose the CASMS approach to efficiently alleviate the imbalance problem and
predict bug reports. CASMS first converts bug reports into weighted word embeddings based on 𝑡𝑓 − 𝑖𝑑𝑓
and 𝑤𝑜𝑟𝑑2𝑣𝑒𝑐 techniques. Unlike the previous studies selecting the NSBRs that are the most dissimilar to
SBRs, CASMS then automatically finds a certain number of diverse NSBRs via the Elbow method and 𝑘-means
clustering algorithm. Finally, the selected NSBRs and all SBRs train an effective Attention CNN–BLSTM model
to extract contextual and sequential information.
Results: The experimental results have shown that CASMS is superior to the three baselines (i.e., FARSEC,
SMOTUNED, and LTRWES) in assessing the overall performance (𝑔-measure) and correctly identifying SBRs
(recall), with improvements of 4.09%–24.26% and 10.33%–36.24%, respectively. The best results are easily
obtained under the limited ratio ranges of the two-class training set (1:1 to 3:1), with around 20 experiments
for each project. By evaluating the robustness of CASMS via the standard deviation indicator, CASMS is more
stable than LTRWES.
Conclusion: Overall, CASMS can alleviate the data imbalance problem and extract more semantic information
to improve performance and robustness. Therefore, CASMS is recommended as a practical approach for
identifying SBRs.
. Introduction

Nowadays, bug tracking systems are commonly used to help devel-
pers maintain software products. It is significant for security engineers
o accurately capture software bugs in the bug reports that users have
ubmitted. Such reports can be typically divided into two categories:
ecurity Bug Reports (SBRs) and Non-Security Bug Reports (NSBRs).
enerally, SBRs prioritize being detected, and those security vulnera-
ilities exposed by SBRs should be fixed before they are disclosed [1]. If
security bug is published, it may cause potential security breaches to

ystems and significant damage to the software products [2]. However,
t is not feasible to manually identify SBRs in massive bug reports due
o the lack of security-related professional knowledge and the high

∗ Corresponding author at: School of Computer Science and Artificial Intelligence, Wuhan University of Technology, Wuhan, China.
E-mail addresses: xiaoxuema3-c@my.cityu.edu.hk (X. Ma), jacky.keung@cityu.edu.hk (J. Keung), zhyang8-c@my.cityu.edu.hk (Z. Yang),

iaoyu@whut.edu.cn (X. Yu), yishuli5-c@my.cityu.edu.hk (Y. Li), hzhang339-c@my.cityu.edu.hk (H. Zhang).

cost of time. To identify SBRs more efficiently and accurately, text-
based prediction methods have been proposed to predict whether or
not new bug reports are security-related. Some of these methods [2–
4] first represent bug reports as feature vectors by identifying relevant
keywords and extracting feature information based on term frequency
calculation, such as term-by-document frequency matrix [2] and term
frequency–inverse document frequency (𝑡𝑓 − 𝑖𝑑𝑓) [3,4]. Then, these
methods employ some classification algorithms (e.g., Naïve Bayes,
Logistic Regression, etc.) to construct a prediction model based on the
feature vectors.
vailable online 26 March 2022
950-5849/© 2022 Elsevier B.V. All rights reserved.

ttps://doi.org/10.1016/j.infsof.2022.106906
eceived 22 June 2021; Received in revised form 9 February 2022; Accepted 16 M
arch 2022

http://www.elsevier.com/locate/infsof
http://www.elsevier.com/locate/infsof
mailto:xiaoxuema3-c@my.cityu.edu.hk
mailto:jacky.keung@cityu.edu.hk
mailto:zhyang8-c@my.cityu.edu.hk
mailto:xiaoyu@whut.edu.cn
mailto:yishuli5-c@my.cityu.edu.hk
mailto:hzhang339-c@my.cityu.edu.hk
https://doi.org/10.1016/j.infsof.2022.106906
https://doi.org/10.1016/j.infsof.2022.106906
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2022.106906&domain=pdf

Information and Software Technology 147 (2022) 106906X. Ma et al.

e
v
t
i
t
m
n
s
b
t
m
t
m

(
r

(
T
f
i
e
i
a
m
t

(

m
o
e
f
r
v
a

c
f
b
f
i
d
N
p
a
s
e
t
N
o
t
t

T

t
p
N
s
S
l
a
m
c
b

(
a
o
e
1
d
o
s
r
t
s
a

T
i
f
e
d
S

2

2

n
o
s
f
a
d
t
m
t
I
d
m
h

r
d
m
d
m
T

The challenges of identifying SBRs usually include:

(1) How to alleviate the class imbalance problem of the training
dataset.

Due to the nature of the collected datasets, there is an unavoidable
problem that the percentage of SBRs in datasets only ranges from 0.5%
to 9% [3,5,6]. The prediction models trained on the highly imbalanced
datasets will focus more on the NSBRs and predict unknown bug reports
such as NSBRs. However, security engineers are willing to detect SBRs
more accurately. To alleviate the data imbalance problem, most recent
methods [3,5,6] first rank NSBRs according to some metrics (e.g., key-
word scoring [3,5] and 𝐵𝑀25𝐹𝑒𝑥𝑡 for similarity calculation [6]). Peters
t al. [3] selected the top 100 terms in SBRs with the highest 𝑡𝑓 − 𝑖𝑑𝑓
alues as security-related keywords and found that at least 74% of
he security-related keywords also appeared in the context of NSBRs,
f each keyword is considered a feature, most NSBRs have features
hat overlap with SBRs. Nevertheless, Jiang et al. [6] pointed out that
ost of the security-related keywords selected by Peters et al. [3] may
ot be related to security. Thus, they ranked NSBRs based on content
imilarity instead of the individual word. By calculating the distance
etween bug reports (e.g., Euclidean distance and Minkowski distance),
hey evaluate the similarity between them. The larger the distance, the
ore dissimilar the two bug reports. Then, these methods only retain

he NSBRs that is the furthest to all SBRs in the feature space, i.e., the
ost dissimilar ones.

2) How to capture the semantic and sequential information of bug
eports better.

Most of the previous studies [2,3,5] adopted term-based approaches
e.g., 𝑡𝑓 − 𝑖𝑑𝑓) to evaluate the importance of each term in bug reports.
hey applied machine learning algorithms to build classifiers, which
ail to capture semantic information and the long-term dependency
n sentences. A bug report contains 75.86 terms on average in our
xperiment datasets, and the longest one has 4859 terms. A lot more
nformation is required to train a prediction model, such as the order
nd the semantic information of terms. In contrast, insufficient infor-
ation will cause high-dimensional sparsity in the feature space and

he loss of temporal relationships between terms.

3) How to make the approach more efficient and robust.
Jiang et al.’s method [6] achieve good performance, which requires

any repeated experiments (i.e., perform a total of 240 experiments
n each project), and the ratio of NSBRs to SBRs of the best result on
ach project ranges from 1:1 to 10:1 under the 12 combinations of two
ilters and six classifiers. In addition, the indicator for evaluating the
obustness of the approach is not ideal, i.e., the 𝑔-measure of LTRWES
aries significantly with the resampling ratio. Hence, its 𝑔-measure has
high standard deviation.

Considering the above challenges, we propose a novel approach
alled CASMS (combining Clustering with Attention Semantic Model
or identifying Security bug reports) to efficiently alleviate the im-
alance problem in bug report datasets and improve the overall per-
ormance of bug report classification with good stability. Since it is
mpossible to distinguish the two categories only based on the feature
istance, unlike previous approaches that select the most dissimilar
SBRs to SBRs, we adopted the 𝑘-means clustering algorithm to im-
licitly represent a partition such that it can self-organize data groups
ccording to the original data structure, which divides all NSBRs into
everal clusters and select those samples closest to the centroids from
ach cluster. By this means, gathering NSBRs from each cluster is able
o encompass different potential types of NSBRs to extract diverse
SBRs. Specifically, we first use the Elbow algorithm to calculate the
ptimal number of clusters 𝑘. Then a certain number of samples closest
o the centroid in each cluster are identified. In this way, we can ensure
hat the selected NSBRs are sufficiently diverse.

After that, the retained NSBRs and all SBRs are used for training.
2

he essence of security bug report detection is a text-based analysis m
ask, and a model based on CNN–BLSTM architecture is applied for
rediction. The retained data is first processed by the Convolutional
eural Networks (CNN) layer to capture the correlation between con-

ecutive terms in bug reports, and then the BLSTM (Bidirectional Long
hort-Term Memory) layer is used to extract the correlation between
ong-distance terms. Followed by the Attention layer, it pays more
ttention to the relevant part of the input. In comparison, the prediction
odel takes contextual and sequential information of bug reports into

onsideration, while the general machine learning algorithms adopted
y prior studies [2,3,5,6] cannot.

Although CASMS is 4.83%–14.99% inferior to the three baselines
i.e., FARSEC [3], SMOTUNED [5], and LTRWES [6]) in terms of the
verage false alarm rate (pf) shown in our experimental results, CASMS
utperforms the three baselines by 4.09%–24.26% in terms of the av-
rage 𝑔-measure as a comprehensive metric for evaluating the models,
0.33%–36.24% in terms of the average recall. In addition, the results
emonstrate that the ratio range of the training NSBRs to SBRs for the
ptimal results is narrowed (between 1:1 and 3:1), and the average
tandard deviation of 𝑔-measure of CASMS under several resampling
atios is 1.47%–7.4% lower than that of LTRWES. For instance, for
he Wicket project, the standard deviation of CASMS is 7.44%, and the
tandard deviation of LTRWES with 𝑟𝑠-filter and ms-filter are 11.74%
nd 15.49%, respectively.

In summary, this paper makes the following contributions:

• We propose a novel SBRs detection approach called CASMS,
which can automatically extract diverse NSBRs and learn the
semantic information of bug reports to improve the performance.

• Empirical studies on five real-world projects show that CASMS
is more efficient and robust without much tuning efforts by
automatically finding the optimal number of clusters 𝑘∗ and
narrowing the ratio scope of NSBRs to SBRs.

he organization of the remaining sections is as follows. Section 2
ntroduces the related work and background. Section 3 presents the
ramework of CASMS and the details. Sections 4 and 5 present the
xperimental setup and experiments results, respectively. Section 6
iscusses the threats to validity. Finally, we conclude our work in
ection 7.

. Related work and background

.1. SBR detection

In the early phase, bug tracking systems are used to help engi-
eers to identify duplicate bug reports [7–11], evaluate the severity
r priority of bug reports [12–14], trace bug reports back to relevant
ource documents [15–19], analyze and predict the effort needed to
ix software bugs [20], work on characteristics of software vulner-
bilities [21,22], and evaluate the ability of code analysis tools to
etect security vulnerabilities [23]. Most of these methods applied
extual similarity metrics (e.g., cosine similarity) and machine learning
ethods (e.g., SVM and KNN) to extract textual information, while

he sequential and semantic information have not been considered.
n addition, there are limited studies related to security bug report
etection [2–6], which only applied machine learning methods for
odel training. Therefore, the sequential and semantic information
ave not been considered in these previous studies.

Gegick et al. [2] for the first time raised a problem that bug
eporters are likely to mislabel SBRs as NSBRs due to the lack of security
omain knowledge. In order to identify those SBRs that have been
anually mislabeled as NSBRs, they applied text mining on textual
escriptions of bug reports to generate term-by-document frequency
atrices, and then trained a statistical model based on the matrices.
heir empirical results show that a high percentage (78%) of SBRs are

islabeled as NSBRs on a large Cisco software system, which indicates

Information and Software Technology 147 (2022) 106906X. Ma et al.

𝑡

w
𝑑
w

s
A
r
t
o
a

2

c
d
a
w
w
v
o
a
t
a
m
p
w
d
h
s
f
i
m

that these extracted features (i.e., the security-related keywords) used
for training may cause misclassification of bug reports.

Peters et al. [3] have found that at least 74% of the security-related
keywords appearing in both SBRs and NSBRs, that are considered as
security cross words, may result in mislabeling SBRs. Therefore, they
proposed a framework FARSEC to detect SBRs by filtering NSBRs with
security cross words. They first calculated the 𝑡𝑓 − 𝑖𝑑𝑓 value of each
term and selected the top-100 terms with the highest 𝑡𝑓 − 𝑖𝑑𝑓 values
as security-related keywords, and then used the terms to build term-
document matrices (also called feature set). After that, each term in
the training set was scored, and terms appearing in the feature set were
given higher weights via different filters. Finally, all bug reports were
ranked, and the NSBRs whose scores were higher than a threshold were
filtered. Additionally, they adopted CLNI (Closet List Noise Identifica-
tion) [24], a noise detection algorithm based on Euclidean Distance, for
prediction together.

Goseva et al. [4] proposed a supervised approach and an unsuper-
vised approach to identify security bug reports. For both approaches,
they adopted three methods to extract feature vectors, i.e., Binary Bag-
of-Words Frequency (𝑏𝑓), Term Frequency (𝑡𝑓), and Term Frequency–
Inverse Document Frequency (𝑡𝑓 − 𝑖𝑑𝑓). For the supervised approach,
they combined machine learning algorithms with feature vectors to
classify bug reports. The difference from other methods is that they
attempted different-size training set to determine the smallest size that
can achieve good classification results. Furthermore, they proposed
an unsupervised approach based on the concept of anomaly detection
to identify the security bug reports. Two NASA missions from issue
tracking systems are used to evaluate the proposed two approaches.
However, our study aims to alleviate class imbalance problem and
identify security bug reports more efficiently, which is not consistent
with their focus (e.g., determine the smallest size of training set).
In addition, the dataset they used is far less serious than the class
imbalance problem of our dataset. Thus, this method is not considered
as one of our baselines.

On the basis of FARSEC, Shu et al. [5] combined SMOTE [25]
with the filters proposed by FARSEC to preprocess the data. They
adopted the Differential Evolution (DE) algorithm [26,27] to obtain
the optimal parameters of SMOTE and the learners (i.e., the machine
learning classifiers) separately. According to their experiments, they
recommended using DE just for SMOTE, called SMOTUNED, rather than
learners due to the time-consuming tuning. In the end, the recall (𝑝𝑑) of
the prediction models has been significantly improved with a moderate
increment of false alarm rate (𝑝𝑓), so that SMOTUNED outperforms
FARSEC in terms of 𝑔-measure.

In another recent work, Jiang et al. [6] put forward LTRWES. Unlike
keyword-based FARSEC, LTRWES was a content-based data filtering
approach, which considered the content of bug reports rather than
individual keywords. It first calculated the content similarity between
each NSBR and all SBRs by using a ranking model 𝐵𝑀25𝐹𝑒𝑥𝑡 [28], and
then extracted top-𝑚 NSBRs that were the most irrelevant to SBRs. The
idea of LTRWES is similar to FARSEC, i.e., retain the most dissimilar
NSBRs to SBRs in order to achieve a higher recall rate. To avoid vector
sparsity and extract the semantic information, 𝑤𝑜𝑟𝑑2𝑣𝑒𝑐 was also used
in LTRWES to transform the remaining NSBRs together with SBRs into
low-dimensional vectors before training.

However, there are some problems in the previous methods. (1)
These methods retained the most dissimilar NSBRs to SBRs rather than
diverse NSBRs. (2) They applied some classification algorithms to train
the model, which does not take the semantic and sequential informa-
tion of bug reports into account. (3) Although LTRWES achieved good
performance, it is not robust even though they conducted repeated
experiments many times. For example, under the combination of SVM
classifier and ms filter, they tried the ratio of NSBRs to SBRs from
1:1 to 10:1 for training to find the optimal prediction results, while
3

the number of the remaining training NSBRs ranges from 4 to 770. w
In addition, the 𝑔-measure of LTRWES varies significantly with the
resampling ratio.

Therefore, our approach automatically selects diverse NSBRs via 𝑘-
means clustering algorithm at the data filtering stage and constructs
an Attention CNN–BLSTM model to extract time-series information for
training. To avoid tons of repeated trials, we introduce the Elbow al-
gorithm to find the optimal number of clusters and narrow the optimal
resampling ratio range of NSBRs to SBRs in the training set.

2.2. Textual representation

Text classification is usually defined as the process of identifying the
category of a new document based on the probability suggested by a
designated training corpus with labels [29], which is typically viewed
as a supervised learning task. Since the classification of bug reports into
two categories depends on the interpretation of the text, techniques for
text representation are required to facilitate subsequent training.

2.2.1. tf-idf
Term Frequency–Inverse Document Frequency (𝑡𝑓 − 𝑖𝑑𝑓) is one of

the most popular term-weighting schemes in text analysis and data
mining [30,31]. In the field of information retrieval, 𝑡𝑓 − 𝑖𝑑𝑓 is rep-
resented as a numerical statistic value, reflecting how important a
term is to a document in a corpus or collection. Terms with higher
𝑡𝑓 − 𝑖𝑑𝑓 values indicate a powerful ability to distinguish the categories
of documents and have a stronger relationship with the documents
where these terms appear [29]. Given a document collection 𝐷, a term
𝑡, and an individual document 𝑑 that belongs to 𝐷. The calculation of
𝑓 − 𝑖𝑑𝑓 is as following [30]:

𝑡𝑑 = 𝑓𝑡,𝑑 ∗ 𝑙𝑜𝑔(|𝐷|∕𝑓𝑡,𝐷), (1)

here 𝑓𝑡,𝑑 is the number of times that term 𝑡 appears in the document
, |𝐷| is the size of the corpus, and 𝑓𝑡,𝐷 is the number of documents in
hich the term 𝑡 appears in 𝐷.
𝑡𝑓 − 𝑖𝑑𝑓 is widely used for some tasks related to bug reports,

uch as identifying hidden impact bugs [32] and SBRs detection [3,4].
lthough 𝑡𝑓 − 𝑖𝑑𝑓 supposes each term in bug reports is independent, it
eflects the importance of the term to bug reports where the term exists
o a certain extent. Thus, we apply 𝑡𝑓 − 𝑖𝑑𝑓 to calculate the weight
f terms instead of directly generating word vectors in our proposed
pproach.

.2.2. Word embedding
It has already been proved that word embedding is critical to

onstruct deep learning models in many NLP tasks [33–40]. In the early
ays, the original objective of word embedding was to convert text into
statistical representation, such as the one-hot representation. For each
ord, its corresponding position was set to 1, and the other positions
ere all 0. However, the earliest sparse-populated vector was very
erbose because it set the dimension of the word vector to be the size
f the entire vocabulary, which may cause the dimensional disaster. In
ddition, the contextual information of words was ignored. To address
his problem, Mikolov et al. [41–43] proposed two language learning
lgorithms, CBOW and Skip-Gram based on 𝑤𝑜𝑟𝑑2𝑣𝑒𝑐, to represent the
eaning of a word with respect to other words. The former algorithm
redicts the surrounding words according to the given current word,
hile the latter algorithm predicts the current words based on the
istributed representation of the context [29]. Generally, owing to the
igher calculation complexity of the Skip-Gram model, CBOW is more
uitable for scenarios with small datasets [6,41]. LTRWES, an approach
or security bug report detection, used CBOW to convert the bug reports
nto low-dimensional vectors for further training. Referring to that, we
ultiply the word vectors and the previously calculated weights of

ords to get the feature vectors of our datasets.

Information and Software Technology 147 (2022) 106906X. Ma et al.
2.3. Clustering for dealing with data imbalance

Clustering, as an unsupervised machine learning technique in data
science, automatically groups similar objects into a single cluster based
on certain common characteristics. Within the same cluster, the vari-
ance of entities is minimized. It has been extensively studied in machine
learning, such as feature selection [44,45], distance algorithms [46],
and grouping methods [47]. To identify diverse NSBRs, clustering
algorithms can divide data into several categories in terms of data
features. Typical approaches are introduced below.

By and large, (1) hierarchical-based methods [48] (e.g.,
CHAMELEON) usually cause high time complexity [49,50]. Due to the
high time requirement for this study, they will not be considered in
this study; (2) the parameter setting has a great effect on the clustering
results of density-based methods. For example, DBSCAN [51,52] uses
fixed parameters to identify clusters. However, when the sparse de-
gree of clusters is different, the same criterion may harm the natural
structure of clustering [52], which is contrary to our view of selecting
samples based on the relationship between features; (3) grid-based
methods [53,54] such as CLIQUE are fast, but they are sensitive to
the chosen parameters [55]. Especially the threshold selection, the
high threshold may lose the clusters, and the low threshold may
merge clusters that should be separated. Besides, they cannot handle
irregularly distributed data and are prone to dimensional disasters;
(4) partition-based methods [56] are efficient and straightforward by
referring to [49,50,57]. Although the result is easy to be locally optimal
and the number of clusters 𝑘 needs to be set in advance, combining
multiple trials with the Elbow principle [58,59] can make up for this
problem.

Ultimately, we choose one of the most popular partition-based
method 𝑘-means [60] for data filtering. According to the incoming
data and the set 𝑘, 𝑘-means constructs the initial centroids and adjusts
them in terms of the distance between centroids and samples. The final
centroids generated, as well as the distances between each sample and
its centroid, are stored.

Before trying multiple 𝑘 values in turn, the recommended 𝑘∗ can
be roughly calculated based on the Elbow method. 𝑘-means is to
minimize the square error between the samples and the centroid as the
objective function. The sum of the squared distance error between the
centroid of each cluster and the sample points in the cluster is called
the distortion degree (distortions). For a cluster, the lower the degree
of distortion, the tighter the members in the cluster; the higher the
degree of distortion, and the looser the structure of the cluster. The
degree of distortion will decrease as the number of clusters 𝑘 increases.
However, for data with a certain degree of discrimination, the degree
of distortion improves when a certain critical point is reached and then
slowly declines. This critical 𝑘∗ can be considered as the optimal value.
To avoid spending much more time trying on the value of 𝑘, we use the
Elbow method to find the recommended 𝑘∗, and then employ 𝑘-means
algorithm for clustering and filtering NSBRs.

2.4. Prediction models

2.4.1. Machine learning algorithms
After extracting the feature of bug reports, the recent studies [3–

6] tend to apply some widely used classification algorithms to build
a SBR prediction model, such as Naïve Bayes (NB) [61,62], Logistic
Regression (LR) [63,64], Support Vector Machine (SVM) [65], Random
Forest (RF) [66], Multilayer Perceptron (MP) [67], and K Nearest
Neighbor (KNN) [68]. However, these algorithms cannot keep the in-
formation of previous terms continuously, instead throwing everything
away and restarting the calculation. In other words, the algorithms
cannot capture the sequential information in the input data required
4

to process the following data.
Fig. 1. A SBR instance of the Camel project (the text in the orange font represents
summary and the text in the gray font represents description). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

2.4.2. Time series models
Convolutional Neural Networks (CNN) and Recurrent Neural Net-

works (RNN) are two mainstream architectures for modeling and un-
derstanding natural language. CNN performs excellently in learning
local responses from temporal data, and RNN that allows information
to persist is good at sequential modeling [69]. Recurrent neural net-
works (RNN) [70] is designed to capture long-term dependency within
the sequential data, which adopts a simple mechanism of recurrent
feedback. In the field of information retrieval, term dependencies [71]
are usually defined as statistical co-incidence of terms on the scale of
whole documents. The long-term dependencies can be thought of as
the relatively long intervals of relevant information and locations. Long
Short-Term Memory (LSTM) architecture is derived from RNN. It has
recursive connections so that the previous activation state of neurons
from previous time steps is used as the context for forming the output.
Bidirectional LSTM (BLSTM) was initially proposed by Graves [72] to
avoid gradient exploding and vanishing, and it had been applied in
many speech recognition tasks [72,73]. Hence, BLSTM focuses on ex-
tracting the correlation between long-distance terms but insufficiently
captures the correlation between consecutive terms. For this reason, a
mixed model CNN–BLSTM was designed for extracting features and was
broadly used in multiple fields [74–77]. Attention mechanism [78] was
proposed by the Bengio team to allocate weights to terms. Its purpose is
to give components more weight for identifying which components in
the input sentence have greater impacts on the classification results.
It has been broadly employed in translation, image captioning, and
speech recognition [78–80]. Attention mechanism is originated from
the information retrieval system. The principle of it is that people enter
a sentence (𝑄) and the search engine will match the keywords (𝐾).
Based on the similarity between them, the matching content (𝑉) will
be returned.

In this study, bug reports often contain a summary and a detailed
description (an instance demonstrated in Fig. 1). In our datasets, a bug
report contains an average of 75.86 terms, a median of 44 terms, and
the longest one contains 4859 terms. Since Khandelwal et al. [81] has
pointed out that LSTM language models is capable of using context
size of 200 tokens on average, the LSTM architecture can be applied
to capture the long-dependencies relationship between terms in our
datasets where neither the average length nor the median exceeds 200
terms. Therefore, CNN–BLSTM is an optimal choice as our prediction
model. To be more rigorous, we adopt the self-Attention mechanism in
our prediction model is to automatically discover those terms that play
a critical role in classification.

Information and Software Technology 147 (2022) 106906X. Ma et al.
Fig. 2. CASMS Framework.
3. CASMS framework

The CASMS framework shown in Fig. 2 consists of three stages.
In the first stage, CASMS converts bug reports into weighted word
embeddings based on 𝑡𝑓 − 𝑖𝑑𝑓 and 𝑤𝑜𝑟𝑑2𝑣𝑒𝑐 techniques. In the second
stage, CASMS effectively extracts diverse NSBRs via the Elbow method
and 𝑘-means clustering algorithm. In the third stage, CASMS trains an
effective Attention CNN–BLSTM model using the selected NSBRs and all
SBRs. The detailed processes are explained in the following subsections.

3.1. Data preparation

Preprocessing. Word embedding and 𝑡𝑓 −𝑖𝑑𝑓 algorithms explained
in Algorithm 1 are applied to represent bug reports in this section.
Before that, we adopt the following steps to preprocess our data.
Firstly, we filter out the noise information by matching it with a set
of regular expression rules (e.g., removing URLs, Stack Trace, and hex
code). Then, we tokenize the textual information and remove the stop
words. In addition, all terms are changed into lowercase, and they are
stemmed.

Text representation. In Algorithm 1, CASMS calculates the 𝑡𝑓−𝑖𝑑𝑓
weight of each term in the training set (Lines 1–4) and the vector
of each term in the open-sourced corpus of collected bug reports [6]
based on 𝑤𝑜𝑟𝑑2𝑣𝑒𝑐 (Lines 5–8). Then, CASMS traverses all the terms in
the training set (Line 9). If a term exists in the corpus (Line 10), the
algorithm assigns the calculated word vector to this term (Line 11);
otherwise, it will be represented by a zero vector of the same length
(Line 12–13). Finally, through dot product by weights and vectors, each
bug report in the generated matrix can be expressed as a same-length
weighted vector (Line 16–17).

3.2. Data filtering

Rough estimation on 𝑘 values. As explained in Section 2.3, we
choose the widely-used partition-based method 𝑘-means as the main
algorithm for data filtering. To ensure the efficiency of our approach,
before clustering and filtering NSBRs, we first estimate the range 𝐾 of
the number of clusters 𝑘 and compute the recommended 𝑘∗ based on
the Elbow method (Algorithm 2). For each chosen 𝑘, Algorithm 2 calcu-
lates the distance between each sample and its corresponding initialized
cluster centroid. By summing and normalizing these distances, the
average distortion for each 𝑘 (Line 2) is worked out (Lines 3–5). When
the degree of distortion has been greatly improved at a specific point,
followed by a gentle improvement, the 𝑘 value at this point is suggested
5

Algorithm 1 Calculate the vectors to represent bug reports.
𝐶𝑎𝑙𝑉 𝑒𝑐(𝑆, 𝐶, 𝑙)

Input: Training set 𝑆, bug report corpus 𝐶, the set length of each term 𝑙
Output: The vectors of bug reports 𝑀𝑠2𝑣

1: for each term 𝑤 in 𝑆 do
2: 𝑀𝑤𝑒𝑖𝑔ℎ𝑡 ← 𝑇 𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚(𝑡𝑓 𝑖𝑑𝑓 (𝑤))
3: // Generate the weight matrix of terms in 𝑆;
4: end for
5: for each term 𝑡 in 𝐶 do
6: 𝑀𝑤2𝑐 ← 𝑊 𝑜𝑟𝑑2𝑉 𝑒𝑐𝑡𝑜𝑟(𝑡)
7: // Return the matrix consisting of the vectors of each term in the corpus 𝐶;
8: end for
9: for each term 𝑤 in 𝑆 do
10: if 𝑤 exists in 𝐶 then
11: 𝑀 ′

𝑤2𝑐 (𝑤) ← 𝑀𝑤2𝑐 (𝑤)
12: else
13: 𝑀 ′

𝑤2𝑐 (𝑤) ← 𝑀([0,] ∗l)
14: end if
15: end for
16: 𝑀𝑠2𝑣 ← 𝑑𝑜𝑡(𝑀𝑤𝑒𝑖𝑔ℎ𝑡,𝑀 ′

𝑤2𝑐)
17: return 𝑀𝑠2𝑣
18: // Return the matrix of bug reports, each row is a vector to represent a bug report.

to be used for next clustering. To make the result more visualized, take
the Derby project as an example, a line graph is drawn in terms of 𝑘
values (Line 7–8) and the corresponding distortion illustrated in Fig. 7,
the turning point that can be regarded as 𝑘∗, which is marked with a
dark blue arrow. For each project, we execute Algorithm 2 ten times,
and the experimental results are shown in Table 5.
Algorithm 2 Compute the recommended cluster numbers 𝑘 for NSBRs.
CalClusterNum(𝐾, 𝑆, 𝐶, 𝑙)

Input: The selected range 𝐾, training set 𝑆, corpus 𝐶, the set length of each term 𝑙
Output: The recommended 𝑘 value

1: 𝑠𝑒𝑛𝑉 𝑒𝑐 ← 𝐶𝑎𝑙𝑉 𝑒𝑐(𝑆, 𝐶, 𝑙)
2: for 𝑘 in 𝐾 do
3: classifier 𝑐𝑙𝑓𝑘 ← 𝐾𝑀𝑒𝑎𝑛𝑠(𝑘)
4: 𝑐𝑙𝑓𝑘 ← 𝑓𝑖𝑡(𝑠𝑒𝑛𝑉 𝑒𝑐𝑛𝑠𝑏𝑟)
5: 𝑚𝑒𝑎𝑛𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛𝑘 ←

∑𝑆
𝑛=1(

min (𝑐𝐷𝑖𝑠𝑡(𝑠𝑒𝑛𝑉 𝑒𝑐𝑛𝑠𝑏𝑟,𝑐𝑙𝑓𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑))
𝑆𝑛𝑠𝑏𝑟

)

6: end for
7: line graph ← 𝐷𝑟𝑎𝑤(𝑚𝑒𝑎𝑛𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛𝑘)
8: // Draw a line graph based on the 𝑘 and its mean distortion value;
9: return 𝑘∗

10: // Return the 𝑘 value at the turning point.

Clustering. The clustering here is clustering within one class (NS-
BRs). Because our datasets no longer distinguish and label the NSBRs,

Information and Software Technology 147 (2022) 106906X. Ma et al.
we apply the clustering method within the single class to find the
potential relationship between features. Algorithm 3 is designed to find
the appropriate number of clusters and the suitable total number of
selected NSBRs via automatic clustering. Given the range 𝐾, for each 𝑘
in 𝐾, the algorithm initializes the centroid for each cluster (Line 3–4)
and the zero matrices that include the index of the cluster to which
each sample belongs and the distance from each sample to this cluster
(Line 5–6). For each sample, the algorithm iteratively calculates and
saves the index of its nearest cluster and the distance between it and
the centroid of this cluster (Lines 11–21). During this process, if the
saved index is the index of the nearest cluster for all samples, the
centroids will no longer change (Line 10). Otherwise, the centroids will
be changed gradually according to the average distance between the
cluster centroid and all samples in this cluster (Lines 22–25). At last,
each sample has its cluster index and the distance from the centroid.
The NSBR set for succeeding training can be gathered according to
different 𝑘 values and different numbers 𝑛 of samples in each cluster
(Line 27). In this way, this clustering algorithm finds diverse samples
from each cluster. The number of clusters and the nearest NSBRs to
each cluster centroid guarantee the feature diversity and variety.
Algorithm 3 Find diverse NSBRs from each cluster.
SelRepreNSBR(𝐾, 𝑆, 𝐶, 𝑙, 𝑛)

Input: The selected range 𝐾, the training set 𝑆, corpus 𝐶, the set length of each term 𝑙,
the number 𝑛 of SNBRs in each cluster
Output: The chosen NSBRs for training

1: senVec ← CalVec(𝑆, 𝐶, 𝑙)
2: for 𝑘 in 𝐾 do
3: 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑠𝑘 ← 𝑟𝑎𝑛𝑆𝑒𝑙𝑒𝑐𝑡(𝑘)
4: // Randomly chose the number of centroids 𝑘 in 𝑆𝑛𝑠𝑏𝑟;
5: 𝑑𝑖𝑠𝑡𝑀𝑎𝑡𝑟𝑖𝑥[∗, 2]𝑘 ← 𝑀𝑖𝑛𝑖𝑡
6: // each term includes the cluster’s index and the distance from its centroid;
7: 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝐶ℎ𝑎𝑛𝑔𝑒𝑑 ← 𝑡𝑟𝑢𝑒
8: // set the initial state whether the centroids change;
9: while 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝐶ℎ𝑎𝑛𝑔𝑒𝑑 == 𝑡𝑟𝑢𝑒 do
10: 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝐶ℎ𝑎𝑛𝑔𝑒𝑑 ← 𝑓𝑎𝑙𝑠𝑒
11: for 𝑖 ∈ 𝑆𝑛𝑠𝑏𝑟 do
12: // Calculate the cluster index to which each NSBR 𝑖 should belongs,
13: and the distance between the NSBR 𝑖 and the cluster;
14: 𝐼𝑛𝑑𝑒𝑥𝑖 ← 𝑐𝑎𝑙𝐼𝑛𝑑𝑒𝑥(𝑠𝑒𝑛𝑉 𝑒𝑐𝑛𝑠𝑏𝑟 , 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑠𝑘)
15: 𝐷𝑖𝑠𝑡𝑖 ← 𝑐𝑎𝑙𝐷𝑖𝑠𝑡(𝑠𝑒𝑛𝑉 𝑒𝑐𝑛𝑠𝑏𝑟 , 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑠𝑘)
16: if 𝑑𝑖𝑠𝑡𝑀𝑎𝑡𝑟𝑖𝑥𝑘(𝑖, 0)! = 𝐼𝑛𝑑𝑒𝑥𝑖 then
17: 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝐶ℎ𝑎𝑛𝑔𝑒𝑑 ← 𝑡𝑟𝑢𝑒
18: end if
19: 𝑑𝑖𝑠𝑡𝑀𝑎𝑡𝑟𝑖𝑥𝑘(𝑖, 0) ← 𝐼𝑛𝑑𝑒𝑥𝑖
20: 𝑑𝑖𝑠𝑡𝑀𝑎𝑡𝑟𝑖𝑥𝑘(𝑖, 1) ← 𝐷𝑖𝑠𝑡𝑖
21: end for
22: if 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝐶ℎ𝑎𝑛𝑔𝑒𝑑 == 𝑡𝑟𝑢𝑒 then
23: 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑠𝑘 ← 𝑢𝑝𝑑𝑎𝑡𝑒𝐶𝑡𝑑(𝑑𝑖𝑠𝑀𝑎𝑡𝑟𝑖𝑥𝑘)
24: // Update the centroids in each cluster;
25: end if
26: end while
27: 𝑓𝑙𝑡𝑁𝑆𝐵𝑅𝑘 ← 𝑡𝑜𝑝𝑁(𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑠𝑘 , 𝑑𝑖𝑠𝑀𝑎𝑡𝑟𝑖𝑥𝑘 , 𝑛𝑘)
28: end for
29: return 𝑓𝑙𝑡𝑁𝑆𝐵𝑅𝑘
30: // Return the retained NSBRs for different 𝑘 and 𝑛.

3.3. Model training and prediction

Model Training. The CNN–BLSTM mechanism can excellently cap-
ture long-term dependencies, and the Attention mechanism can com-
pensate for the former’s neglect of different levels of attention to terms.
In the clustering stage, each SBR is expressed as a tf–idf-weighted word
embedding vector for clustering and filtering. However, in the model
training stage, to capture the sequential and semantic information, the
relationship between terms in bug reports (SBR and NSBR) should be
explored as we mentioned in Section 2.4.2. Thus, for model training,
we no longer regard a report as a whole but consider each term in each
retained text as a unit for further analysis. These terms are represented
as word embeddings via 𝑤𝑜𝑟𝑑2𝑣𝑒𝑐 technique (as same as that is used
in the clustering stage) to form our embedding layer, which requires
that the vectors of terms should have the same length for further
convolution calculation.
6

Fig. 3. The structure of the LSTM cell.

Due to the small size of our preprocessed datasets, in the front
part of the whole model, we choose the shallow CNN-1D architecture
to capture the contextual information to avoid high complexity or
insufficient training of model parameters. Each term in the training set
is calculated and padded into a 𝑑-dimensional sequence in Algorithm
1, and the variable-length sequence composed of 𝑑-dimensional vectors
(𝑁𝑜𝑛𝑒, 𝑣𝑒𝑐𝑡𝑜𝑟_𝑑𝑖𝑚) is sent to the embedding layer as the input. The
trained weights are also used to generate a 3D tensor (𝑁𝑜𝑛𝑒, 𝑣𝑒𝑐𝑡𝑜𝑟_𝑑𝑖𝑚,
𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔_𝑠𝑖𝑧𝑒), which is incorporated into the convolution layer with
fixed-size kernels to capture features from temporal contextual infor-
mation. This layer outputs a tensor with (𝑁𝑜𝑛𝑒, 𝑛𝑒𝑤_𝑠𝑡𝑒𝑝𝑠, 𝑓𝑖𝑙𝑡𝑒𝑟𝑠)
shape. Followed by a max pooling layer with output shape (𝑁𝑜𝑛𝑒,
𝑑𝑜𝑤𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑑_𝑠𝑡𝑒𝑝𝑠, 𝑓𝑖𝑙𝑡𝑒𝑟𝑠), the role of this pooling layer is to filter
the features extracted by the model, which can not only remove some
redundant information but also reduce the number of nodes in the
network, thereby reducing the number of training parameters.

Afterward, a Bidirectional LSTM layer is added, taking the feature
sequence calculated by the CNN architecture as input. In NLP, a sig-
nificant feature of the text is serialization, and the order in which
terms appear is often closely related to the semantics of the sentence.
To make full use of the information of the sentence structure, we
adopt a BLSTM model to extract the semantic information better, which
applies memory cells to store the important information of long-range
context. An LSTM unit illustrated in Fig. 3 consists of an input gate 𝑖𝑡,
a forget gate 𝑓𝑡, an output gate 𝑜𝑡, and a memory cell 𝑐𝑡 that acts as an
accumulator of the state information. This memory cell can be accessed,
written and cleared by those controlling gates. When a new input
comes, if 𝑖𝑡 is activated, the information will be accumulated to the cell.
Similarly, if the 𝑓𝑡 is turned on, the information of the last state 𝑐𝑡−1
should be forgotten. The 𝑜𝑡 controls whether the latest memory cell 𝑐𝑡
will be propagated to the final state ℎ𝑡. 𝜎 represents the logistic sigmoid
activation function and 𝑊 indicates the corresponding weight matrix
from the cell to gate vectors. At each specific time node, the network
can choose to remember or forget some information and send it to the
next moment, and the steps are demonstrated by Eqs. (2)–(7) [73,82].

𝑖𝑡 = 𝜎(𝑊𝑥𝑖𝑥𝑡 +𝑊ℎ𝑖ℎ𝑡−1 +𝑊𝑐𝑖𝑐𝑡−1 + 𝑏𝑖) (2)

𝑓𝑡 = 𝜎(𝑊𝑥𝑓𝑥𝑡 +𝑊ℎ𝑓ℎ𝑡−1 +𝑊𝑐𝑓 𝑐𝑡−1 + 𝑏𝑓) (3)

𝑜𝑡 = 𝜎(𝑊𝑥𝑜𝑥𝑡 +𝑊ℎ𝑜ℎ𝑡−1 +𝑊𝑐𝑜𝑐𝑡 + 𝑏𝑜) (4)

𝑔𝑡 = tanh (𝑊𝑥𝑐𝑥𝑡 +𝑊ℎ𝑐ℎ𝑡−1 + 𝑏𝑐) (5)

𝑐𝑡 = 𝑓𝑡𝑐𝑡−1 + 𝑖𝑡𝑔𝑡 (6)

ℎ𝑡 = 𝑜𝑡 tanh (𝑐𝑡) (7)

Since the network contains two sub-networks, which are forward
and backward pass respectively, the output of the 𝑖th term is repre-
sented in Eq. (8), and the shape of the output is (𝑁𝑜𝑛𝑒, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠,
𝑢𝑛𝑖𝑡𝑠 × 2).

ℎ = ⃖⃖⃖⃗ℎ ⊕ ⃖⃖⃖⃖ℎ (8)
𝑖 𝑙 𝑙

Information and Software Technology 147 (2022) 106906X. Ma et al.

i
w
t

s
f
v
s
m
n
c

𝐴

i
p
t
e
a
e
i

4

I
G

4

a
m

s

f
m
c
o
d
n
d
o
o
b

4

b
b
w
f
d
B
w
s
s
i
T
i
s
w
1
t

4

a
d
p
i
u
t
l
g
p

p
t
i
i
e
o
a
v
a
a

o
h
l
t
(

4

l

m
o
t
N
a
p
c
a

Table 1
Details of the collected datasets.

Project Time period BRs SBRs SBRs(%)

Chromium 08/30/2008-06/11/2010 41,940 192 0.5
Camel 07/08/2007-09/18/2013 1000 32 3.0
Ambari 09/26/2011-08/08/2014 1000 29 3.0
Derby 09/28/2004-09/17/2014 1000 88 9.0
Wicket 10/20/2006-11/09/2014 1000 10 1.0

Because we adopt the self-attention model, the attention mechanism
s able to dynamically generate the weights of different connections,
hich can handle variable-length information sequences. In our model,

he input of our Attention layer can be expressed by three same fixed-
length vectors query (𝑄), key (𝐾), and value (𝑉). By calculating the
imilarity score between two matrices (𝑄 and 𝐾), applying softmax
unction to activate it, and getting the weighted score of each input
ector through dot product, we can finally gain the result keeping the
ame shape. This process is actually a manifestation of the Attention
echanism that eases the complexity of the prediction model. It is
ot necessary to input all input information into the next layer for
alculation, only need to select some task-related information.

𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄 ⋅𝐾𝑇) ⋅ 𝑉 (9)

Prediction. In the end, the output of this stage is sequentially put
nto the flatten and dense layer with 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 function. The output is the
redicted labels of the training data. Besides, the prediction model with
he trained parameters is also saved for the next step. Through word
mbedding and padding, each term in the test data is represented by
fixed-length vector. These vectors are sent to the trained model and

valuated. The overall training and prediction processes can be found
n Fig. 2.

. Empirical evaluation

We implemented our experiment on Windows 10, running on an
ntel® CoreTM i7-9700 CPU @3.00 GHz with 8 cores, and an NVIDIA
eForce RTX 2080-Ti GPU with VRAM size of 12 GB.

.1. Research questions

We employ three state-of-the-art methods FARSEC, SMOTUEND,
nd LTRWES as our baselines. All of them applied the commonly used
achine learning algorithms (listed in Section 2.4.1) to build models.

Our experiments are performed by addressing the following re-
earch questions (RQs):

• 𝐑𝐐𝟏: How effective is CASMS in classifying bug reports compared
with the three baselines?

• 𝐑𝐐𝟐: How does CASMS find the best results effectively and how
robust is it based on the number of clusters and the total number
of selected NSBRs?

• 𝐑𝐐𝟑: Does selecting diverse samples through clustering improve
the results?

For the RQ1, we calculate the average of top five best results
or each project since these baselines extract the best results from
ultiple combinations between filters and classifiers. To make the

omparison fair enough, we list the average of the top five best results
f FARSEC, SMOTUEND, LTRWES, and CASMS. To answer the RQ2, we
raw figures to illustrate (1) how the Elbow method finds the optimal
umber of clusters 𝑘∗ and (2) the laws of the ratio of the two-class
ata corresponding to the best 𝑔-measure. To verify the effectiveness
f retaining diverse data (answer the RQ3), we implement the idea
f choosing NSBRs that are the most dissimilar to SBRs (held by our
7

aselines) on the same 𝑘-means clustering algorithm.
.2. Datasets

In the experiments, we use the same five datasets as the three
aselines [3,5,6] for a fair comparison. The datasets were collected
y Ohira et al. [83] with a Comma Separated Value (CSV) format,
here each row represents a bug report, and the columns describe the

eatures of these reports including the metadata information and textual
escription (e.g., issue id, priority, security, description, and summary).
ug reports are classified according to the label of the security field,
here 1 is for SBR and 0 is for NSBR. The details of datasets are

hown in Table 1. We aggregate the information of description and
ummary for training, and an example is described in Fig. 1. The text
n the orange font is summary, and the text in gray font is description.
o calculate the 𝑡𝑓 − 𝑖𝑑𝑓 vectors, for each project, the vocabulary

s its training set. It aims to find the importance of words in the
pecific dataset. The large domain corpus used for implementing the
ord embedding technique in Algorithm 1 has been extracted from
,490,066 bug reports and open-sourced in [6]. The five datasets and
he corpus can be found in our GitHub.1

.3. Experiment setup

Our prediction model is implemented by using TensorFlow [84],
n open-sourced deep learning library using Python. In the process of
esigning our model, parameter setting has a significant effect on its
erformance. We use binary Cross-Entropy for labeling the bug reports
nto two categories. In addition, different optimizers for iteratively
pdating the network weights and minimizing the loss are applied
o enhance the performance, and regularizers are implemented to al-
eviate overfitting problems. To make the model more adaptive and
eneral, the model check point technique is used to keep tracking the
erformance of the model on the validation dataset at each epoch.

The bug reports are equally divided into training/validation and test
arts. For each project, the 50% of the whole dataset is used for model
raining, and the remaining 50% is for model testing (prediction). Dur-
ng the model training stage, the K-fold cross-validation methodology
s applied. Because our datasets are small, we choose K=3 for our
xperiments. The training/validation set is divided into three parts,
ne part is kept as the data for validation, and the other two parts
re used for training. The cross-validation is repeated three times, each
alidation is performed once, the results of three times are averaged,
nd a single estimate is finally obtained. The model with the highest
verage 𝑔-measure on the validation dataset is saved for prediction.

For hyperparameter tuning, to reduce the high computational cost
f grid search by generating possible combinations among different
yperparameters, we first refer to the machine learning tool scikit-
earn [85] in Python to estimate the configurations that are expected
o contribute to better results. Then, we determine the search scope
shown in Table 2) and tune the hyperparameters successively.

.4. Evaluation metrics

We employ the same three evaluation metrics as the three base-
ines [3,5,6].

Table 3 lists the definitions of the metrics to evaluate the perfor-
ance of prediction models, where TP (True Positive) is the number

f SBRs that are correctly predicted as SBRs, FP (False Positive) is
he number of NSBRs that are wrongly predicted as SBRs, FN (False
egative) is the number of SBRs that are wrongly predicted as NSBRs,
nd TN (True Negative) is the number of NSBRs that are correctly
redicted as NSBRs. The probability of detection (𝑝𝑑) is the ratio of the
orrectly predicted SBRs to the actual SBRs; The probability of false
larm (𝑝𝑓) is the ratio of the NSBRs that are mislabeled as SBRs to all

1 https://github.com/mkkmaomao/bug-report-prediction

https://github.com/mkkmaomao/bug-report-prediction

Information and Software Technology 147 (2022) 106906X. Ma et al.
Table 2
Hyperparameter tuning range for the prediction model.

Explanation Architecture Hyperparameter Search scope

Embedding embedding_size [50, 100, 200] The indexes representing terms are turned into vectors with
the same length.

Convolution

filters [64, 128] The number of output filters in the convolution layer.
kernel_size [3, 5, 8] A convolution kernel is used for producing a tensor of outputs,

its size determines the length of convolution window.
activation [‘tanh’, ‘relu’, ‘sigmoid’, ‘leak relu’] The activation function for the hidden layer.

B-LSTM

units [32, 64, 128] The dimension of the output of one LSTM layer (the BLSTM
layer should have the units ×2-dimension).

dropout [0.1, 0.2, 0.5] The fraction of the dropped units aiming to enhance the
generalization ability.

regularizer kernel: [‘𝑙1 ’, ‘𝑙2 ’], bias: [‘𝑙2 ’] The regularizer functions applied to avoid overfitting.

Model Compiling
optimizer [‘adam’, ‘rmsprop’, ‘adadelta’, ‘nadam’] The optimizers invoked for training.
batch_size [32, 64, 128] The number of samples selected for one training, which affects

the optimization degree and speed of the model.
Fig. 4. The Boxplot of the g-measure values with CASMS and the three compared methods.
Table 3
The evaluation metrics used in our study.

Prediction Actual

SBRs NSBRs

SBRs TP FP

NSBRs FN TN

𝑝𝑑 TP/(TP+FN)
𝑝𝑓 FP/(FP+TN)
𝑔-measure (2×pd×(100-pf))/(pd+(100-pf))

NSBRs; The 𝑔-measure [86] is the harmonic mean of 𝑝𝑑 and (100-𝑝𝑓),
where 100-𝑝𝑓 represents the specificity (i.e., not predicting NSBRs as
SBRs). The 𝑔-measure is a comprehensive metric, and more suitable for
evaluating the prediction models trained on the unbalanced data [6].
Therefore, the 𝑔-measure is also considered as the optimization target
for training our prediction model. To evaluate the robustness of our
approach CASMS, we introduce the standard deviation (𝑆𝐷) indicator.
In statistics, the standard deviation is a measure of the amount of
variation or dispersion of a set of values [87]. A low standard deviation
indicates that the values tend to be close to the mean (also called the
expected value) of the set, while a high standard deviation indicates
that the values are spread out over a wider range. The calculation of
𝑆𝐷 is shown below.

𝑆𝐷 =

√

√

√

√

1
𝑁

𝑛
∑

𝑖=1
(𝑥𝑖 − 𝜇)2, (10)

where 𝑁 is the number of experiments, 𝑥𝑖 represents the value of
𝑔-measure in the 𝑖th experiment, and 𝜇 indicates the corresponding
average value of all experiments.
8

Table 4
Comparison of the average g-measure, recall, and false alarm of FARSEC, SMOTUNED,
LTRWES, and CASMS.

Project Metric FARSEC SMOTUNED LTRWES CASMS

Chromium
g-measure 34.79 79.38 81.20 74.00
pd 22.48 78.42 77.40 73.05
pf 0.96 18.84 14.59 24.41

Wicket
g-measure 57.69 66.02 43.18 64.60
pd 50.00 63.36 36.74 73.33
pf 23.49 26.98 25.29 40.85

Ambari
g-measure 53.73 70.92 74.79 83.12
pd 40.00 57.1 66.70 82.85
pf 5.93 6.41 14.87 16.10

Camel
g-measure 33.34 54.53 56.00 62.99
pd 23.36 52.22 53.32 64.45
pf 15.47 39.74 38.09 37.05

Derby
g-measure 58.59 68.15 71.02 74.72
pd 46.68 60.94 57.10 70.00
pf 17.07 21.74 5.93 19.44

Overall
g-measure 47.63 67.80 65.24 71.89
pd 36.50 62.41 58.25 72.74
pf 12.58 22.74 19.75 27.57

5. Experimental results

5.1. RQ1: How effective is CASMS in classifying bug reports compared with
the three baselines?

Methods: There are the six filters and five classifiers used in FAR-
SEC and SMOTUNED, which generates the 30 (=6 × 5) combination
results. In each combination, there are different resampling ratios of
NSBRs to SBRs based on their set threshold for each project. Similarly,
LTRWES applies two kinds of selectors and six classifiers. For each

Information and Software Technology 147 (2022) 106906X. Ma et al.
Fig. 5. The Boxplot of the recall values with CASMS and the three compared methods.
Fig. 6. The Boxplot of the false alarm values with CASMS and the three compared methods.
project, in each of the 12 (=2 × 6) combinations, the resampling ratio
of NSBRs to SBRs is from 1:1 to 10:1. For these three approaches and
CASMS, we illustrate the performance of the top five best results via
Boxplots shown in Fig. 4, 5, and 6, and we also detail the average of
three metrics of the top five best results in Table 4.

Results: CASMS achieves the highest average 𝑔-measure value
(71.89%) on the five projects, and outperforms FARSEC, SMOTUNED,
and LTRWES by 24.26%, 4.09%, and 6.65%, respectively.

As shown in Fig. 4, SMOTUNED and LTRWES perform better than
CASMS in 𝑔-measure, and far surpass FARSEC on the Chromium project.
Compared with FARSEC and LTRWES, SMOTUNED and CASMS per-
form well on the Wicket project with a smaller variance. On the
remaining projects Ambari, Camel, and Derby, CASMS has outstanding
performance, which outperforms three baselines in both the mean
and median values of 𝑔-measure. Since the primary purpose of SBRs
detection is to predict the actual SBRs more correctly, SBRs usually
have the priority to be detected than NSBRs. Therefore, the 𝑝𝑑 is a more
useful metric than 𝑝𝑓 , as it describes the ability of the prediction model
to identify the actual SBRs from all bug reports. Fig. 5 displays the recall
values (𝑝𝑑) of three methods and CASMS. Except for the Chromium
project where SMOTUNED performs slightly better than CASMS, on
the remaining four projects, CASMS significantly outperforms other
methods with an ideal small variance. Similarly, Fig. 6 illustrates the
performance of three baselines and our approach in false alarm values
(𝑝𝑓). On the Chromium and Wicket projects, CASMS has a relatively
high average 𝑝𝑓 compared with other methods, but on the Ambari,
Camel, and Derby projects, CASMS has a similar or even lower 𝑝𝑓 .
It implies that CASMS achieves good performance on the 𝑔-measure
and 𝑝𝑑 evaluation metrics at the expense of the performance of the 𝑝𝑓
metric to some extent, and the relatively high 𝑝𝑓 is still an issue in
identifying security bug reports, which needs to be improved in our
future work.

Intuitively, Table 4 lists the average 𝑔-measure, 𝑝𝑑, and 𝑝𝑓 values
of the five best combination results of FARSEC, SMOTUNED, LTR-
WES, and CASMS. Although the compared methods outperform CASMS
(27.57%) by 4.83%–14.99% in terms of 𝑝𝑓 , CASMS is able to identify
9

Fig. 7. Selection of an optimal 𝑘∗ in the Derby project.

SBRs more accurately with high 𝑝𝑑 (72.74% on average), which out-
performs FARSEC, SMOTUNED, and LTRWES by 36.24%, 10.33%, and
14.49%, respectively. In terms of 𝑔-measure, CASMS performs better
than the three baselines on the three projects Ambari, Camel, and Derby
by 8.33%–29.39%, 6.99%–29.65%, and 4.09%–16.13%, respectively.
On the Wicket project, the 𝑔-measure value of CASMS is 6.91% and
21.42% higher than that of FARSEC and LTRWES, separately, and only
1.42% lower than that of SMOTUNED. On the Chromium project, the
performance of CASMS is 39.21% better than FARSEC, but worse than
SMOTUNED and LTRWES by 5.38% and 7.2%, respectively.

Answer to RQ1: CASMS is superior to FARSEC, SMOTUNED,
and LTRWES in average 𝑔-measure and recall.

Information and Software Technology 147 (2022) 106906X. Ma et al.

a

a
e

i

N
t

Table 5
Comparison of the recommended 𝑘∗ values and the experimental 𝑘
values of each project.

Project Recommended 𝑘∗ Calculated 𝑘 with
best performance

Chromium 18, 20 15, 18
Wicket 4 4, 5
Ambari 4, 8 4, 8
Camel 4 3, 4
Derby 18, 19 18, 19

Table 6
The ratio of two-class data used for training corresponding to the best
𝑔-measure of each project.

Project NSBRs SBRs Ratio

180 77 2:1-3:1Chromium 150 77 1:1-2:1

10 4 2:1-3:1Wicket 12 4 3:1

36 22 1:1-2:1Ambari 38 22 1:1-2:1

21 14 1:1-2:1Camel 24 14 1:1-2:1

52 47 1:1-2:1Derby 47 47 1:1

5.2. RQ2: How does CASMS find the best results effectively and how robust
is it based on the number of clusters and the total number of selected NSBRs?

Methods (1): To avoid repeated experiments, CASMS roughly es-
timates the optimal number of clusters 𝑘∗ using the Elbow algorithm
(shown in Algorithm 2). To show the validity of the coarse estimate, the
recommended 𝑘∗ values are calculated and listed in the 2nd column of
Table 5. The 3rd column list the 𝑘 values when the 𝑔-measure reaches
the optimal value, which is obtained through multiple experiments.
Fig. 7 takes Derby dataset as an example, showing one of the recom-
mended 𝑘∗ that is equal to 18 (is circled and marked with a dark blue
arrow).

Results (1): In Table 5, the 𝑘∗ calculated ten times is 4 or 8 for the
datasets with a few SBRs (Camel, Ambari,Wicket), and for other datasets
with more SBRs (Chromium and Derby), the range of 𝑘∗ is between 18
nd 20.

As shown in the 3rd column of Table 5, it can be seen that the model
chieves the best performance within a certain range of 𝑘 value for
ach dataset. The three projects (Camel, Ambari, Wicket) containing less

SBRs for training have 𝑘 values ranging from 3 to 8, and the other two
projects (Derby and Chromium) with more SBRs have 𝑘 values ranging
from 15 to 19. We can find that when the prediction results for each
project are optimal, the values of 𝑘 almost completely cover the value
of 𝑘∗ we estimated in advance (marked in bold). For example, in the
best cases, the 𝑘 values of Ambari (4 and 8) and Derby (18 and 19)
totally coincide with the pre-calculated 𝑘∗.

Methods (2): To explore whether there is a certain rule of choos-
ing the resampling ratio of two classes and whether it is robust, we
calculate the best 𝑔-measure of different ratios and the corresponding
indicator for evaluating the stability of CASMS. Table 6 shows the
number of NSBRs and SBRs in the training set when the two best results
reach, and the ratio of these two classes. Fig. 8 displays how does the 𝑔-
measure change as the percentage of retained training NSBRs increases
for each project while the range of 𝑘 is from 2 to 20. Furthermore, we
compare the three indicators (average, standard deviation, and median)
between LTRWES and CASMS, and the standard deviation of 𝑔-measure
s used to evaluate the robustness of these two approaches.
Results (2): The relationship between the percentage of retained

SBRs and the 𝑔-measure metric is illustrated in Fig. 8. It is evident
hat the four lines of Wicket, Camel, Ambari, and Derby have a general
10
Table 7
Comparison of the average (%), standard deviation (%), and median (%) of 𝑔-measure
of LTRWES and CASMS.

Project Indicator LTRWES CASMS

rs-filter ms-filter

Chromium
avg 79.23 53.20 71.22
sd 2.17 16.95 4.52
md 79.17 58.83 70.00

Wicket
avg 13.25 32.20 62.83
sd 11.74 15.49 7.44
md 8.35 27.91 62.42

Ambari
avg 69.28 67.05 77.69
sd 3.50 9.56 5.39
md 69.60 69.38 77.37

Camel
avg 47.57 44.69 60.51
sd 7.19 11.49 3.31
md 47.00 48.25 60.70

Derby
avg 61.20 66.16 72.99
sd 5.78 6.58 2.41
md 61.00 67.40 73.36

Overall
avg 54.11 52.66 69.05
sd 6.08 12.01 4.61
md 53.02 54.35 68.77

trend that it increases rapidly before reaching the highest 𝑔-measure
value, followed by a monotonic decline. Table 6 lists the number of
selected NSBRs where the peak values of 𝑔-measure reach, and the
corresponding percentage of retained NSBRs are 2.02%, 4.32%, 7.53%,
and 11.48%, respectively. Since the remaining project Chromium has
more SBRs for training, this may make the choice of the number of
NSBRs fall into a local optimal solution. There is not much differ-
ence between the local optimal 𝑔-measure and the globally optimal
𝑔-measure, with a difference of 3.85%. The percentage corresponding
to the optimal number of NSBRs is 0.86%.

Overall, in all the optimal cases, the ratio of NSBRs to SBRs for
training is between 1:1 and 3:1. Chromium has the ratio range from
1:1 to 3:1, Wicket has the ratio range from 2:1 to 3:1, and the others
have the ratio range from 1:1 to 2:1.

Method (3): In order to evaluate the robustness of CASMS, for each
project, we calculate the standard deviation of 𝑔-measure in LTRWES
and CASMS. The average and median indicators are also introduced for
comparison. Since LTRWES conducted experiments under the ratio of
two classes from 1:1 to 10:1, we calculate the 𝑔-measure under the ratio
span and choose the best-performing SVM as the classifier in LTRWES.
For CASMS, we use the results under the ratio span between 1:1 and
3:1 for comparison. In Table 7, to avoid too many decimals, the ‘‘%’’ of
the three indicators (average, standard deviation, and median) shown
here is omitted.

Result (3): The best results are marked in bold, and we have two
main findings. The first finding is that the maximum standard deviation
of CASMS is 7.44%, and that of LTRWES is 16.95%. For the three
projects (Wicket, Camel, and Derby), the standard deviation of CASMS is
much lower than that of LTRWES. For the other projects (Chromium and
Ambari), when LTRWES uses 𝑟𝑠-filter, the standard deviation of CASMS
is 2.1 and 1.5 times that of LTRWES, respectively; When ms-filter is
used, the standard deviation of LTRWES is 3.8 and 1.8 times that of
CASMS, respectively.

The second finding is that the average and the median of CASMS on
the four projects (except Chromium) are higher than LTRWES, and the
gap between CASMS and LTRWES is large. On the Wicket project, the
median and the average 𝑔-measure of CASMS exceed those of LTRWES
by 49.58% and 54.07%, respectively. On the Chromium project that
CASMS does not perform as well as LTRWES, but the difference of
performance between CASMS and LTRWES is small, i.e., the median
and average of CASMS are 8.01% and 9.17% lower than those of

LTRWES.

Information and Software Technology 147 (2022) 106906X. Ma et al.
Fig. 8. Changes in the best 𝑔-measure with the number of NSBRs retained.
On the whole, the standard deviation of 𝑔-measure of CASMS is
1.47% and 7.4% lower than that of LTRWES with 𝑟𝑠-filter and ms-
filter, respectively. The average and median of 𝑔-measure of CASMS are
higher than those of LTRWES by 14.94%–16.39% and 14.42%–16.75%.

Answer to RQ2: CASMS can narrow the range of cluster num-
bers based on the Elbow method and quickly find the optimal
number of NSBRs (should be one to three times the num-
ber of SBRs for projects), which indicates the effectiveness.
In addition, the robustness of CASMS is better than that of
LTRWES.

5.3. RQ3: Does selecting diverse samples through clustering improve the
results?

Methods: To be more rigorous, we also test the idea of choosing
the NSBRs with the most dissimilar to SBRs held by our baselines
through 𝑘-means clustering algorithm. Both NSBRs and SBRs are used
for clustering. When the value range of 𝑘 is 2 to 20, there are 19 groups
of NSBRs. For each value of 𝑘, we take the union of the NSBRs in the
selected clusters that contain fewer SBRs but more NSBRs. For example,
if the ratio of NSBRs to SBRs in a cluster is greater than 10, the NSBRs
in the cluster will be gathered. In other words, if there are many NSBRs
but a few SBRs in a cluster, these NSBRs in this cluster will be regarded
as the most dissimilar to SBRs. In order to keep the ratio of NSBRs
to SBRs between 1:1–3:1, we then take the intersection of the NSBRs
obtained when 𝑘 is a different value. After that, the intersecting NSBRs
in these clusters are integrated with all SBRs for training.
11
In detail, after each clustering with different 𝑘, two dictionaries
(pairs of key and value) are generated for NSBRs and SBRs. In each
dictionary, the pairs are arranged in reverse order according to the
number of samples in each cluster. key refers to the cluster index
assigned to the samples, and the value is the ranking of the number of
samples corresponding to the cluster. The algorithm then traverses the
same cluster index in each pair of two dictionaries to see if the cluster
meets a certain condition. For example, if the difference between the
ranking of the same cluster in the dictionary of SBRs and in that of
NSBRs is greater than a certain value, the cluster indexes will be stored.
Finally, the NSBRs in the selected clusters with different 𝑘 value are
intersected and the final filtered NSBR data is obtained. If the number
of screened samples is insufficient, more samples can be filtered out
by adjusting the threshold. Finally, for each dataset, the number of
selected NSBRs that are the most dissimilar to SBRs and the number
of diverse NSBRs are kept in the same range, e.g., the ratio of selected
NSBRs to SBRs is between 1:1 and 3:1.

In Fig. 9, the best 𝑔-measure values based on two types of filtering
methods are illustrated by a bar graph. The orange bars represent the
results of retaining the diverse NSBRs, and the blue bars indicate the
results of retaining the NSBRs that are the furthest to SBRs.

Results: When adopting the prediction model with the same param-
eters (Section 3.2), the best results in terms of 𝑝𝑑, 𝑝𝑓 and 𝑔-measure
for each project are not as good as the method of retaining diverse
NSBRs. In Fig. 9, the best 𝑝𝑑, 𝑝𝑓 , and 𝑔-measure of the two types of
date filters are compared, and the data filter of retaining the diverse
NSBRs performs better in each of these metrics. Based on the data filter
of retaining the dissimilar NSBRs, the overall 𝑔-measure and 𝑝𝑑 values
are nearly 16.2% and 17.8% lower than those of CASMS, and the 𝑝𝑓
is nearly 12.2% higher than that of CASMS. This indicates that owing

Information and Software Technology 147 (2022) 106906X. Ma et al.
Fig. 9. The best 𝑝𝑑, 𝑝𝑓 , and 𝑔-measure of each project based on two ideas of data
selection.

to the high feature overlapping, even if the NSBRs in the clusters that
are farther from most of the SBRs are retained, it is still challenging to
achieve the desired effect we expect.

Answer to RQ3: The performance of extracting the furthest
NSBRs from SBRs is not a patch on that of selecting diverse
NSBRs.

6. Threats to validity

Construct Threats. One of the threats is the choice of evaluation
metrics, which is very important for statistical analysis. Since detecting
SBRs has the priority in bug report classification, the 𝑔-measure and
recall are designed to be the widely used evaluation metrics. However,
there are different number of combinations between filters and classi-
fiers for our baselines (30 combinations of FARSEC and SMOTUNED,
12 combinations of LTRWES). If we only choose the best one result for
comparison, it is not reasonable, e.g., compare a model that has spent
a lot of effort on multiple parameter optimizations with a model with
default parameters. To counter this threat, we calculate the average of
the best five experiment results for comparison. And the Boxplots are
drawn to comprehensively compare the performance between methods,
12
which includes a number of indicators, such as the four quantiles
and outliers on different metrics. In addition, data scarcity is another
construct threat, such as lack of cybersecurity related description in the
bug reports. In the four projects, the dataset is relatively small and even
some of the samples have a short description related cybersecurity. To
the best of our knowledge, there is no related work to effectively solve
this threat. Therefore, it is considered to be included in our further
work.

Internal Threats. The first threat comes from the uncertainty of
clustering. The centroids of clusters may be changed due to the random
initialization setting. To eliminate the possible bias, we execute the
clustering algorithm five times for each project and extract different
numbers of NSBRs. The selected samples for each time have a high
repetitive rate of more than 80%, and the predicted results based on
these samples have shown similar trends. Thus, the centroids formed by
each clustering will not have a visible impact on the selected training
data and the prediction results. The second one is that the performance
of CASMS is sensitive to the selection of the cluster and NSBR numbers.
To mitigate the threat, we conduct numerous experiments with a
comprehensive combination of two quantities (Fig. 8) and calculate the
recommended cluster numbers ten times for each project (Table 5) to
ensure that the results shown in Table 4 are scientific and well-tried.

Conclusion Threats. Normally in experiments in similar fields, the
ratio of training to test sets is set to 7:3 or 8:2 because abundant
data is needed for training. In our datasets, there are limited samples
(i.e., there are only a thousand samples in each of the four projects),
especially there are a few SBRs in each project. Thus, not only do we
need a certain number of SBRs for training, but we also need enough
SBRs in the test set to evaluate the prediction results. We have tried
creating more SBR samples to alleviate this threat via synthesizing new
SBR samples or copying existed SBRs, but the results were not ideal and
required continuously-tuning. Finally, we divide the ratio of training
and test sets into 1:1 that is the same as our three baselines.

External Threats. The external threat relates to the generalizability
of the findings to other datasets. The facts that (1) the dataset used
in this study is constructed by five projects containing 45,940 bug
reports and (2) the projects were collected over multiple years, allow
for a degree of external validation. Despite the dataset reflects the class
imbalance problem in bug reports, and similar conclusions are drawn
across all five projects, the model generated may not be applicable in
a more complex scenario. Hence, this work is showing the proposed
technique is valid and outperforming other approaches under certain
conditions, and its generalization for different datasets will be subject
to scrutinization in the future study.

7. Conclusion

In this paper, we have proposed CASMS, a novel approach for
detecting SBRs. The key challenges for classifying bug reports are that
data with different labels have a high degree of feature overlap, and the
contextual and sequential information cannot be captured. We designed
a 𝑘-means clustering algorithm combined with the Elbow algorithm to
collect the closest NSBRs to the cluster centroids as the retained diverse
samples for training. The Elbow algorithm was used successfully to
identify the optimal 𝑘 for clustering. We also adopted a CNN–BLSTM
attention model extracting the semantic and sequential information to
enhance the prediction results. The experimental results have shown
that CASMS outperforms the baselines by 4.09%–24.26% and 10.33%–
36.24% in terms of the average 𝑔-measure and recall, respectively. In
addition, CASMS only needs a small number of experiments to reach
the results, and at the same time it has superior robustness.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Information and Software Technology 147 (2022) 106906X. Ma et al.
Acknowledgments

This work is supported in part by the General Research Fund
of the Research Grants Council of Hong Kong (No. 11208017) and
the research funds of City University of Hong Kong (7005028 and
7005217), and the Research Fund by Intel (9220097), the Natural
Science Foundation of Chongqing City (cstc2021jcyj-msxmX1115), the
project supported by Sanya Science and Education Innovation Park
of Wuhan University of Technology (2020KF0059), and the funding
supports from other industry partners of City University of Hong Kong
(9678149, 9440227, 9440180, 9220103, 9229029 and 9229098).

References

[1] M. Bozorgi, L.K. Saul, S. Savage, G.M. Voelker, Beyond heuristics: learning to
classify vulnerabilities and predict exploits, in: Proceedings of the 16th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
2010, pp. 105–114.

[2] M. Gegick, P. Rotella, T. Xie, Identifying security bug reports via text mining: An
industrial case study, in: 2010 7th IEEE Working Conference on Mining Software
Repositories, MSR 2010, IEEE, 2010, pp. 11–20.

[3] F. Peters, T.T. Tun, Y. Yu, B. Nuseibeh, Text filtering and ranking for security
bug report prediction, IEEE Trans. Softw. Eng. 45 (6) (2017) 615–631.

[4] K. Goseva-Popstojanova, J. Tyo, Identification of security related bug reports
via text mining using supervised and unsupervised classification, in: 2018 IEEE
International Conference on Software Quality, Reliability and Security, QRS,
IEEE, 2018, pp. 344–355.

[5] R. Shu, T. Xia, L. Williams, T. Menzies, Better security bug report classification
via hyperparameter optimization, 2019, arXiv preprint arXiv:1905.06872.

[6] Y. Jiang, P. Lu, X. Su, T. Wang, LTRWES: A new framework for security bug
report detection, Inf. Softw. Technol. 124 (2020) 106314.

[7] N. Jalbert, W. Weimer, Automated duplicate detection for bug tracking systems,
in: 2008 IEEE International Conference on Dependable Systems and Networks
with FTCS and DCC, DSN, IEEE, 2008, pp. 52–61.

[8] C. Sun, D. Lo, X. Wang, J. Jiang, S.-C. Khoo, A discriminative model approach for
accurate duplicate bug report retrieval, in: Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering-Volume 1, 2010, pp. 45–54.

[9] J. Deshmukh, K. Annervaz, S. Podder, S. Sengupta, N. Dubash, Towards accurate
duplicate bug retrieval using deep learning techniques, in: 2017 IEEE Interna-
tional Conference on Software Maintenance and Evolution (ICSME), IEEE, 2017,
pp. 115–124.

[10] N. Ebrahimi, A. Trabelsi, M.S. Islam, A. Hamou-Lhadj, K. Khanmohammadi, An
HMM-based approach for automatic detection and classification of duplicate bug
reports, Inf. Softw. Technol. 113 (2019) 98–109.

[11] B.S. Neysiani, S.M. Babamir, M. Aritsugi, Efficient feature extraction model
for validation performance improvement of duplicate bug report detection in
software bug triage systems, Inf. Softw. Technol. 126 (2020) 106344.

[12] Y. Tian, D. Lo, X. Xia, C. Sun, Automated prediction of bug report priority using
multi-factor analysis, Empir. Softw. Eng. 20 (5) (2015) 1354–1383.

[13] T. Zhang, G. Yang, B. Lee, A. Chan, Predicting severity of bug report by mining
bug repository with concept profile, in: Proceedings of the 30th Annual ACM
Symposium on Applied Computing, 2015.

[14] Y. Tong, X. Zhang, Crowdsourced test report prioritization considering bug
severity, Inf. Softw. Technol. (2021) 106668.

[15] X. Ye, R. Bunescu, C. Liu, Mapping bug reports to relevant files: A ranking model,
a fine-grained benchmark, and feature evaluation, IEEE Trans. Softw. Eng. 42 (4)
(2015) 379–402.

[16] A.N. Lam, A.T. Nguyen, H.A. Nguyen, T.N. Nguyen, Combining deep learning
with information retrieval to localize buggy files for bug reports (n), in: 2015
30th IEEE/ACM International Conference on Automated Software Engineering,
ASE, IEEE, 2015, pp. 476–481.

[17] Z. Li, Z. Jiang, X. Chen, K. Cao, Q. Gu, Laprob: A label propagation-based
software bug localization method, Inf. Softw. Technol. 130 (2021) 106410.

[18] R. Almhana, M. Kessentini, W. Mkaouer, Method-level bug localization using
hybrid multi-objective search, Inf. Softw. Technol. 131 (2021) 106474.

[19] M. Kim, E. Lee, ManQ: Many-objective optimization-based automatic query
reduction for IR-based bug localization, Inf. Softw. Technol. 125 (2020) 106334.

[20] M. Hamill, K. Goseva-Popstojanova, Analyzing and predicting effort associated
with finding and fixing software faults, Inf. Softw. Technol. 87 (2017) 1–18.

[21] K. Goseva-Popstojanova, J. Tyo, Experience report: security vulnerability profiles
of mission critical software: empirical analysis of security related bug reports,
in: 2017 IEEE 28th International Symposium on Software Reliability Engineering,
ISSRE, IEEE, 2017, pp. 152–163.

[22] S. Panichella, G. Canfora, A. Di Sorbo, ‘‘Won’t we fix this issue?’’ qualitative
characterization and automated identification of wontfix issues on GitHub, Inf.
Softw. Technol. (2021) 106665.

[23] K. Goseva-Popstojanova, A. Perhinschi, On the capability of static code analysis
to detect security vulnerabilities, Inf. Softw. Technol. 68 (2015) 18–33.
13
[24] S. Kim, H. Zhang, R. Wu, L. Gong, Dealing with noise in defect prediction, in:
2011 33rd International Conference on Software Engineering, ICSE, IEEE, 2011,
pp. 481–490.

[25] N.V. Chawla, K.W. Bowyer, L.O. Hall, W.P. Kegelmeyer, SMOTE: synthetic
minority over-sampling technique, J. Artificial Intelligence Res. 16 (2002)
321–357.

[26] R. Storn, K. Price, Differential evolution–a simple and efficient heuristic for
global optimization over continuous spaces, J. Global Optim. 11 (4) (1997)
341–359.

[27] W. Fu, T. Menzies, X. Shen, Tuning for software analytics: Is it really
necessary? Inf. Softw. Technol. 76 (2016) 135–146.

[28] C. Sun, D. Lo, S.-C. Khoo, J. Jiang, Towards more accurate retrieval of duplicate
bug reports, in: 2011 26th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2011, IEEE, 2011, pp. 253–262.

[29] J. Lilleberg, Y. Zhu, Y. Zhang, Support vector machines and word2vec for text
classification with semantic features, in: 2015 IEEE 14th International Conference
on Cognitive Informatics & Cognitive Computing, ICCI* CC, IEEE, 2015, pp.
136–140.

[30] J. Ramos, et al., Using tf-idf to determine word relevance in document queries,
in: Proceedings of the First Instructional Conference on Machine Learning, vol.
242, (1) Citeseer, 2003, pp. 29–48.

[31] A. Aizawa, An information-theoretic perspective of tf–idf measures, Inf. Process.
Manage. 39 (1) (2003) 45–65.

[32] D. Wijayasekara, M. Manic, J.L. Wright, M. McQueen, Mining bug databases for
unidentified software vulnerabilities, in: 2012 5th International Conference on
Human System Interactions, IEEE, 2012, pp. 89–96.

[33] M. Esposito, E. Damiano, A. Minutolo, G. De Pietro, H. Fujita, Hybrid query
expansion using lexical resources and word embeddings for sentence retrieval in
question answering, Inform. Sci. 514 (2020) 88–105.

[34] R.A. Stein, P.A. Jaques, J.F. Valiati, An analysis of hierarchical text classification
using word embeddings, Inform. Sci. 471 (2019) 216–232.

[35] V. Di Carlo, F. Bianchi, M. Palmonari, Training temporal word embeddings with
a compass, in: Proceedings of the AAAI Conference on Artificial Intelligence, vol.
33, (01) 2019, pp. 6326–6334.

[36] N. Garg, L. Schiebinger, D. Jurafsky, J. Zou, Word embeddings quantify 100
years of gender and ethnic stereotypes, Proc. Natl. Acad. Sci. 115 (16) (2018)
E3635–E3644.

[37] V. Tshitoyan, J. Dagdelen, L. Weston, A. Dunn, Z. Rong, O. Kononova, K.A.
Persson, G. Ceder, A. Jain, Unsupervised word embeddings capture latent
knowledge from materials science literature, Nature 571 (7763) (2019) 95–98.

[38] X. Dai, M. Bikdash, B. Meyer, From social media to public health surveil-
lance: Word embedding based clustering method for twitter classification, in:
SoutheastCon 2017, IEEE, 2017, pp. 1–7.

[39] L. Xiao, G. Wang, Y. Zuo, Research on patent text classification based on
word2vec and LSTM, in: 2018 11th International Symposium on Computational
Intelligence and Design, vol. 1, ISCID, IEEE, 2018, pp. 71–74.

[40] J. Gao, Y. He, X. Zhang, Y. Xia, Duplicate short text detection based on word2vec,
in: 2017 8th IEEE International Conference on Software Engineering and Service
Science, ICSESS, IEEE, 2017, pp. 33–37.

[41] T. Mikolov, K. Chen, G. Corrado, J. Dean, Efficient estimation of word
representations in vector space, 2013, arXiv preprint arXiv:1301.3781.

[42] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, J. Dean, Distributed represen-
tations of words and phrases and their compositionality, 2013, arXiv preprint
arXiv:1310.4546.

[43] X. Rong, Word2vec parameter learning explained, 2014, arXiv preprint arXiv:
1411.2738.

[44] C. Boutsidis, P. Drineas, M.W. Mahoney, Unsupervised feature selection for
the 𝑘-means clustering problem, in: Advances in Neural Information Processing
Systems, 2009, pp. 153–161.

[45] S. Alelyani, J. Tang, H. Liu, Feature selection for clustering: A review, Data Clust.
(2018) 29–60.

[46] S. Xiang, F. Nie, C. Zhang, Learning a mahalanobis distance metric for data
clustering and classification, Pattern Recognit. 41 (12) (2008) 3600–3612.

[47] T. Li, S. Ma, M. Ogihara, Entropy-based criterion in categorical clustering, in:
Proceedings of the Twenty-First International Conference on Machine Learning,
2004, p. 68.

[48] F. Murtagh, P. Contreras, Methods of hierarchical clustering, 2011, arXiv preprint
arXiv:1105.0121.

[49] P.-N. Tan, M. Steinbach, V. Kumar, Introduction to Data Mining, Pearson
Education India, 2016.

[50] G. Seif, The 5 clustering algorithms data scientists need to know, Towards Data
Sci. (2018).

[51] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al., A density-based algorithm for
discovering clusters in large spatial databases with noise, in: Kdd, vol. 96, (34)
1996, pp. 226–231.

[52] K. Khan, S.U. Rehman, K. Aziz, S. Fong, S. Sarasvady, DBSCAN: Past, present
and future, in: The Fifth International Conference on the Applications of Digital
Information and Web Technologies, ICADIWT 2014, IEEE, 2014, pp. 232–238.

[53] X. Xu, M. Ester, H.-P. Kriegel, J. Sander, A distribution-based clustering algo-
rithm for mining in large spatial databases, in: Proceedings 14th International
Conference on Data Engineering, IEEE, 1998, pp. 324–331.

http://refhub.elsevier.com/S0950-5849(22)00064-7/sb1
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb1
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb1
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb1
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb1
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb1
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb1
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb2
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb2
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb2
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb2
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb2
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb3
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb3
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb3
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb4
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb4
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb4
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb4
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb4
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb4
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb4
http://arxiv.org/abs/1905.06872
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb6
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb6
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb6
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb7
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb7
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb7
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb7
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb7
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb8
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb8
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb8
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb8
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb8
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb9
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb9
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb9
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb9
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb9
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb9
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb9
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb10
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb10
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb10
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb10
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb10
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb11
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb11
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb11
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb11
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb11
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb12
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb12
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb12
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb13
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb13
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb13
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb13
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb13
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb14
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb14
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb14
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb15
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb15
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb15
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb15
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb15
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb16
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb16
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb16
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb16
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb16
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb16
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb16
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb17
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb17
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb17
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb18
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb18
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb18
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb19
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb19
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb19
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb20
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb20
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb20
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb21
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb21
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb21
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb21
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb21
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb21
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb21
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb22
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb22
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb22
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb22
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb22
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb23
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb23
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb23
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb24
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb24
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb24
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb24
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb24
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb25
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb25
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb25
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb25
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb25
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb26
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb26
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb26
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb26
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb26
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb27
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb27
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb27
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb28
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb28
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb28
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb28
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb28
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb29
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb29
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb29
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb29
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb29
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb29
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb29
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb30
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb30
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb30
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb30
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb30
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb31
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb31
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb31
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb32
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb32
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb32
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb32
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb32
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb33
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb33
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb33
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb33
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb33
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb34
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb34
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb34
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb35
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb35
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb35
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb35
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb35
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb36
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb36
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb36
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb36
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb36
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb37
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb37
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb37
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb37
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb37
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb38
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb38
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb38
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb38
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb38
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb39
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb39
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb39
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb39
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb39
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb40
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb40
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb40
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb40
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb40
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1310.4546
http://arxiv.org/abs/1411.2738
http://arxiv.org/abs/1411.2738
http://arxiv.org/abs/1411.2738
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb44
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb44
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb44
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb44
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb44
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb45
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb45
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb45
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb46
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb46
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb46
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb47
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb47
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb47
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb47
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb47
http://arxiv.org/abs/1105.0121
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb49
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb49
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb49
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb50
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb50
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb50
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb51
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb51
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb51
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb51
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb51
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb52
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb52
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb52
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb52
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb52
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb53
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb53
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb53
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb53
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb53

Information and Software Technology 147 (2022) 106906X. Ma et al.
[54] M. Huang, F. Bian, A grid and density based fast spatial clustering algorithm,
in: 2009 International Conference on Artificial Intelligence and Computational
Intelligence, vol. 4, IEEE, 2009, pp. 260–263.

[55] J.P. Gleeson, S. Melnik, A. Hackett, How clustering affects the bond percolation
threshold in complex networks, Phys. Rev. E 81 (6) (2010) 066114.

[56] A. Dharmarajan, T. Velmurugan, Applications of partition based clustering
algorithms: A survey, in: 2013 IEEE International Conference on Computational
Intelligence and Computing Research, IEEE, 2013, pp. 1–5.

[57] D. Xu, Y. Tian, A comprehensive survey of clustering algorithms, Ann. Data Sci.
2 (2) (2015) 165–193.

[58] F. Liu, Y. Deng, Determine the number of unknown targets in open world based
on elbow method, IEEE Trans. Fuzzy Syst. (2020).

[59] T.M. Kodinariya, P.R. Makwana, Review on determining number of cluster in
K-means clustering, Int. J. 1 (6) (2013) 90–95.

[60] T. Kanungo, D.M. Mount, N.S. Netanyahu, C.D. Piatko, R. Silverman, A.Y. Wu,
An efficient k-means clustering algorithm: Analysis and implementation, IEEE
Trans. Pattern Anal. Mach. Intell. 24 (7) (2002) 881–892.

[61] S. Lessmann, B. Baesens, C. Mues, S. Pietsch, Benchmarking classification models
for software defect prediction: A proposed framework and novel findings, IEEE
Trans. Softw. Eng. 34 (4) (2008) 485–496.

[62] Z. Harry, The optimality of naive bayes, in: FLAIRS2004 Conference, 2004.
[63] W. Afzal, Using faults-slip-through metric as a predictor of fault-proneness, in:

2010 Asia Pacific Software Engineering Conference, IEEE, 2010, pp. 414–422.
[64] E.J. Weyuker, T.J. Ostrand, R.M. Bell, Do too many cooks spoil the broth? using

the number of developers to enhance defect prediction models, Empir. Softw.
Eng. 13 (5) (2008) 539–559.

[65] J.G. Shanahan, N. Roma, Improving SVM text classification performance through
threshold adjustment, in: European Conference on Machine Learning, Springer,
2003, pp. 361–372.

[66] L. Breiman, Random forests, Mach. Learn. 45 (1) (2001) 5–32.
[67] C.M. Bishop, et al., Neural Networks for Pattern Recognition, Oxford University

Press, 1995.
[68] T. Cover, P. Hart, Nearest neighbor pattern classification, IEEE Trans. Inform.

Theory 13 (1) (1967) 21–27.
[69] C. Zhou, C. Sun, Z. Liu, F. Lau, A C-LSTM neural network for text classification,

2015, arXiv preprint arXiv:1511.08630.
[70] J.L. Elman, Finding structure in time, Cogn. Sci. 14 (2) (1990) 179–211.
[71] J. Gao, J.-Y. Nie, G. Wu, G. Cao, Dependence language model for information

retrieval, in: Proceedings of the 27th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, 2004, pp. 170–177.
14
[72] A. Graves, S. Fernández, J. Schmidhuber, Bidirectional LSTM networks for
improved phoneme classification and recognition, in: International Conference
on Artificial Neural Networks, Springer, 2005, pp. 799–804.

[73] A. Graves, N. Jaitly, A.-r. Mohamed, Hybrid speech recognition with deep
bidirectional LSTM, in: 2013 IEEE Workshop on Automatic Speech Recognition
and Understanding, IEEE, 2013, pp. 273–278.

[74] N.S. Madiraju, S.M. Sadat, D. Fisher, H. Karimabadi, Deep temporal clustering:
Fully unsupervised learning of time-domain features, 2018, arXiv preprint arXiv:
1802.01059.

[75] Y. Wu, W. Li, Automatic audio chord recognition with MIDI-trained deep feature
and BLSTM-CRF sequence decoding model, IEEE/ACM Trans. Audio Speech Lang.
Proc. 27 (2) (2018) 355–366.

[76] B. Liu, S. Li, ProtDet-CCH: protein remote homology detection by combining
long short-term memory and ranking methods, IEEE/ACM Trans. Comput. Biol.
Bioinform. 16 (4) (2018) 1203–1210.

[77] D. Quang, X. Xie, DanQ: a hybrid convolutional and recurrent deep neural
network for quantifying the function of DNA sequences, Nucleic Acids Res. 44
(11) (2016) e107.

[78] D. Bahdanau, K. Cho, Y. Bengio, Neural machine translation by jointly learning
to align and translate, 2014, arXiv preprint arXiv:1409.0473.

[79] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel, Y. Bengio,
Show, attend and tell: Neural image caption generation with visual attention, in:
International Conference on Machine Learning, PMLR, 2015, pp. 2048–2057.

[80] J. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, Y. Bengio, Attention-based
models for speech recognition, 2015, arXiv preprint arXiv:1506.07503.

[81] U. Khandelwal, H. He, P. Qi, D. Jurafsky, Sharp nearby, fuzzy far away: How
neural language models use context, 2018, arXiv preprint arXiv:1805.04623.

[82] S. Xingjian, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, W.-c. Woo, Convolu-
tional LSTM network: A machine learning approach for precipitation nowcasting,
in: Advances in Neural Information Processing Systems, 2015, pp. 802–810.

[83] M. Ohira, Y. Kashiwa, Y. Yamatani, H. Yoshiyuki, Y. Maeda, N. Limsettho,
K. Fujino, H. Hata, A. Ihara, K. Matsumoto, A dataset of high impact bugs:
Manually-classified issue reports, in: 2015 IEEE/ACM 12th Working Conference
on Mining Software Repositories, IEEE, 2015, pp. 518–521.

[84] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S.
Ghemawat, G. Irving, M. Isard, et al., Tensorflow: A system for large-scale
machine learning, in: 12th {USENIX} Symposium on Operating Systems Design
and Implementation ({OSDI} 16), 2016, pp. 265–283.

[85] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al., Scikit-learn: Machine
learning in python, J. Mach. Learn. Res. 12 (2011) 2825–2830.

[86] Y. Jiang, B. Cukic, Y. Ma, Techniques for evaluating fault prediction models,
Empir. Softw. Eng. 13 (5) (2008) 561–595.

[87] J.M. Bland, D.G. Altman, Statistics notes: measurement error, Bmj 312 (7047)
(1996) 1654.

http://refhub.elsevier.com/S0950-5849(22)00064-7/sb54
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb54
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb54
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb54
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb54
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb55
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb55
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb55
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb56
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb56
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb56
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb56
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb56
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb57
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb57
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb57
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb58
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb58
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb58
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb59
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb59
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb59
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb60
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb60
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb60
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb60
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb60
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb61
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb61
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb61
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb61
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb61
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb62
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb63
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb63
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb63
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb64
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb64
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb64
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb64
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb64
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb65
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb65
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb65
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb65
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb65
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb66
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb67
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb67
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb67
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb68
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb68
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb68
http://arxiv.org/abs/1511.08630
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb70
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb71
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb71
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb71
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb71
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb71
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb72
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb72
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb72
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb72
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb72
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb73
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb73
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb73
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb73
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb73
http://arxiv.org/abs/1802.01059
http://arxiv.org/abs/1802.01059
http://arxiv.org/abs/1802.01059
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb75
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb75
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb75
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb75
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb75
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb76
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb76
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb76
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb76
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb76
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb77
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb77
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb77
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb77
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb77
http://arxiv.org/abs/1409.0473
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb79
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb79
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb79
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb79
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb79
http://arxiv.org/abs/1506.07503
http://arxiv.org/abs/1805.04623
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb82
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb82
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb82
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb82
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb82
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb83
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb83
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb83
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb83
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb83
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb83
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb83
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb84
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb84
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb84
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb84
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb84
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb84
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb84
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb85
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb85
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb85
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb85
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb85
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb86
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb86
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb86
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb87
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb87
http://refhub.elsevier.com/S0950-5849(22)00064-7/sb87

	CASMS: Combining clustering with attention semantic model for identifying security bug reports
	Introduction
	Related work and background
	SBR detection
	Textual representation
	tf-idf
	Word embedding

	Clustering for dealing with data imbalance
	Prediction models
	Machine learning algorithms
	Time series models

	CASMS framework
	Data preparation
	Data filtering
	Model training and prediction

	Empirical evaluation
	Research questions
	Datasets
	Experiment setup
	Evaluation metrics

	Experimental results
	RQ1: How effective is CASMS in classifying bug reports compared with the three baselines?
	RQ2: How does CASMS find the best results effectively and how robust is it based on the number of clusters and the total number of selected NSBRs?
	RQ3: Does selecting diverse samples through clustering improve the results?

	Threats to validity
	Conclusion
	Declaration of competing interest
	Acknowledgments
	References

