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Abstract
Cross-company defect prediction (CCDP) is a practical way that trains a prediction model by exploiting one or multiple
projects of a source company and then applies the model to a target company. Unfortunately, larger irrelevant cross-company
(CC) data usuallymake it difficult to build a predictionmodel with high performance. On the other hand, brute force leveraging
of CC data poorly related to within-company data may decrease the prediction model performance. To address such issues,
we aim to provide an effective solution for CCDP. First, we propose a novel semi-supervised clustering-based data filtering
method (i.e., SSDBSCAN filter) to filter out irrelevant CC data. Second, based on the filtered CC data, we for the first
time introduce multi-source TrAdaBoost algorithm, an effective transfer learning method, into CCDP to import knowledge
not from one but from multiple sources to avoid negative transfer. Experiments on 15 public datasets indicate that: (1) our
proposed SSDBSCAN filter achieves better overall performance than compared data filtering methods; (2) our proposed
CCDP approach achieves the best overall performance among all tested CCDP approaches; and (3) our proposed CCDP
approach performs significantly better than with-company defect prediction models.

Keywords Cross-company defect prediction · Transfer learning · SSDBSCAN · Multi-source TrAdaBoost

1 Introduction

Software defect prediction is one of the most important soft-
ware quality assurance techniques. It aims to detect the defect
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proneness of new software modules via learning from defect
data. Therefore, defect prediction is often used to help to
reasonably allocate limited development and maintenance
resources (Shepperd et al. 2014; Song et al. 2011; Malhotra
2015).

Support vector machine (Elish and Elish 2008; Gray et al.
2009; Yan et al. 2010), neural network (Arar and Ayan 2015;
Vashisht et al. 2015; Erturk and Sezer 2016), extreme learn-
ingmachine (Mesquita et al. 2016), decision tree (Wang et al.
2012; Seliya and Khoshgoftaar 2011), Naïve Bayes (Dhana-
jayan and Pillai 2016), dictionary learning (Jing et al. 2014)
and ensemble learning (Laradji et al. 2015; Siers and Islam
2015; Sun et al. 2012) paved the way for classification-based
methods in the field of defect prediction. These methods use
software metrics to properly predict whether a module is
defect-prone or not, but they are usually confined to within-
company defect prediction (WCDP). WCDP works well if
sufficient data are available to train a defect predictionmodel.
However, it is difficult for a new company to performWCDP
if there are limited historical data. Cross-company defect pre-
diction (CCDP) is a practical approach to solve the problem.
It trains a prediction model by exploiting one or multiple
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projects of a source company and then applies the model to
a target company project (Jing et al. 2015).

1.1 Motivation

Most existing CCDP approaches (Jing et al. 2015; Briand
et al. 2002; Zimmermann et al. 2009; Turhan et al. 2009;
Peters et al. 2013; Ryu et al. 2015; Kawata et al. 2016; Ma
et al. 2012; Nam et al. 2013; Shukla et al. 2016) focus on
using only cross-company (CC) data to build a proper predic-
tion model. Unfortunately, larger irrelevant CC data usually
make it difficult to build a prediction model with high perfor-
mance (Chen et al. 2015). In fact, if there are limited amount
of labeled WC data, the data are not enough to perform
WCDP, but it may help a lot to improve the performance of
CCDP. Another scenario is that companies may already have
their defect predictionmodels in place, andmaking use ofCC
data may improve the performance of these models (Turhan
et al. 2013).

The challenges of performing CCDP with limited amount
of labeled WC data usually include:

(1) How to weaken the impact of irrelevant CC data to
improve the performance of CCDP.

The ability to transfer knowledge from a source company
to a target company depends on how they are related. The
stronger the relationship, the more usable will be the CC
data. The performance of CCDP is generally poor because of
larger irrelevant CC data. The irrelevant data have bad effects
on the prediction outcome (Yao and Doretto 2010). To solve
the problem, one of the most efficient methods is filter tech-
nology. For example, Turhan et al. (2009) and Peters et al.
(2013) proposed the NN filter and the Peters filter to select
the CC instances which are mostly similar to WC data as the
training dataset. However, since CC data are collected from
different development environments or application fields, the
labels of CC data may be in conflict with WC data even if
they are close in distance, which tends to generate false pre-
diction results (Chen et al. 2015). More specifically, if the
defect-prone WC instance selects the negative defect-free
CC instances, it may result in a low rate of recall. On the
other hand, if the defect-free WC instance selects the nega-
tive defect-prone CC instances, it could lead to a high false
alarm rate.

(2) How to avoid negative transfer when leveragingmultiple
CC data.

The effectiveness of the transfer is affected by the relation-
ship between CC data and WC data. Rather than improving
the performance, brute force leveraging of CC data poorly
related to WC data may decrease the prediction model per-
formance. Chen et al. (2015) developed the double transfer

boosting (DTB) approach for CCDP. DTB approach merges
all CC data as a source, relies on only the source, and there-
fore is intrinsically vulnerable to negative transfer.

1.2 Contribution

Considering the above challenges, in this paper, we aim to
provide an effective solution for CCDP, and the contributions
of our paper are summarized as follows.

(1) Before applying transfer learningmethods for CCDP,we
propose a novel data filtering method (i.e., SSDBSCAN
filter) to filter out irrelevant CC data. The process of
SSDBSCAN filter is based on semi-supervised density-
based clustering (SSDBSCAN) algorithm (Lelis and
Sander 2009). The SSDBSCAN filter combines limited
amount of labeled WC data, unlabeled WC data and CC
data, finds clusters by using SSDBSCAN algorithm and
selects the CC instances that have the same class label as
theWC instances in the same cluster. In this case, we use
the class information (i.e., an instance is defect-prone or
defect-free) of the limited amount of labeled WC data
and CC data, which avoids WC instance to select some
CC instances with different class label.

(2) Based on the filtered CC data, we for the first time
introduce the multi-source TrAdaBoost (MSTrA) algo-
rithm (Yao and Doretto 2010), an effective transfer
learning method to perform CCDP. MSTrA trains and
combines a set of weak prediction models to build a
stronger ensemble defect prediction model by using not
onlyCCdata but also limited amount of labeledWCdata.
In each training round, MSTrA transfers knowledge not
from one but from multiple CC data to avoid negative
transfer and reduces the weights of irrelevant instances
in CC data to weaken the impact of irrelevant CC data
continuously.

We call the entire approach for CCDP as MSTrA+. We
evaluate MSTrA+ on 15 public datasets selected from the
PROMISE data repository (Boetticher et al. 2007) with three
performance metrics. The experimental results demonstrate
that the proposed approach outperforms several representa-
tive CCDP approaches.

1.3 Organization

The remainder of this paper is organized as follows. Sec-
tion 2 presents the related work. Section 3 describes the
proposed MSTrA+ approach for CCDP. Sections 4 and 5
show the experiment setup and experiment results, respec-
tively. Section 6 discusses the potential threats to validity.
Finally, Sect. 7 addresses the conclusion and points out the
future work.
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2 Related work

In this section, we briefly review the existing cross-company
and cross-project defect prediction approaches. These
approaches can be categorized into two main types: defect
prediction only using CC data (Arar andAyan 2015; Vashisht
et al. 2015; Erturk and Sezer 2016; Mesquita et al. 2016;
Wang et al. 2012; Seliya and Khoshgoftaar 2011; Dhana-
jayan and Pillai 2016; Jing et al. 2014), defect prediction
using not only CC data but also limited amount of labeled
WC data (Laradji et al. 2015; Siers and Islam 2015).

2.1 Defect prediction using only CC data

In order to solve the problem of new companies that have
too limited historical data for better WCDP performance,
cross-project (CP) and cross-company defect predictionwere
proposed.

Briand et al. (2002) used logistic regression and MARS
(multivariate adaptive regression splines) models to learn
a defect predictor, which is also the earliest work on
CCDP. Zimmermann et al. (2009) studied CCDP models on
12 real-world applications datasets. Their results indicate that
CCDP is still a serious challenge because of the different dis-
tribution between WC data and CC data. In order to narrow
the distribution gap, there are two mainstream ways.

The first one is to apply filter technology to find out the
best suitable training data (e.g., Turhan et al. 2009; Peters
et al. 2013; Ryu et al. 2015; Kawata et al. 2016). For exam-
ple, Turhan et al. (2009) proposed a nearest neighbor (NN)
filter to select the most similar k CC instances for every WC
instance as the filtered CC data. Peters et al. (2013) intro-
duced the Peters filter. The Peters filter lets the CC instances
find their nearest WC instances, and the ones nearest to their
WC instances are selected for the final filtered CC data. It is
worthy of note that different from our proposed SSDBSCAN
filter, all the data filtering methods of the above literatures do
not use the class information. Since the labels of CC datamay
be in conflict withWC data even if they are close in distance,
the performance of these data filtering methods has still been
challenged. Our SSDBSCAN filter considers using the class
information of limited amount of labeled WC data and CC
data, so that theseWC instances tend to avoid selecting some
CC instances with different class label.

The second mainstream way is to design effective defect
predictor based on transfer learning techniques (e.g., Ma
et al. 2012; Nam et al. 2013; Shukla et al. 2016). For
instance, Ma et al. (2012) proposed Transfer Naïve Bayes
(TNB) approach, Nam et al. (2013) proposed a novel transfer
defect learning approach, TCA+, by extending TCA (transfer
component analysis). Another challenge in CCDP is that the
set of metrics between the source company data and target
companydata is usually heterogeneous. Jing et al. (2015) pro-

posed a unified metric representation (UMR) for the data of
source and target companies and introduced canonical corre-
lation analysis (CCA), an effective transfer learning method,
into CCDP to make the data distributions of source and tar-
get companies similar. The approaches above focus on using
only CC data to build predictors. Considering there are lim-
ited amount of labeled WC data, the data are not enough to
perform WCDP, but it may help a lot to improve the perfor-
mance of CCDP.

2.2 Defect prediction with limited amount of
labeledWC data

Turhan et al. (2013) introduced a mixed model of within and
cross-data for CCDP to investigate the merits of using mixed
project data for binary defect prediction. Results show that
when there is limited project history, mixed model for CCDP
can achieve good performance which can be comparable to
WCDP. It provided a new idea to CCDP that the use of a
small amount of labeled WC data would be very valuable to
improve the performance of CCDP.

Chen et al. (2015) introduced a novel approach named
double transfer boosting (DTB) to narrow the gap of different
distributions between CC data and WC data and to improve
the performance of CCDP by reducing negative samples in
CC data. However, it merges all CC data as one source and
the result only relies on the single source so that it is prone
to negative transfer, which is exactly what we will solve in
this paper.

3 Methodology

In this section, we present our MSTrA+ approach for CCDP.
MSTrA+ is built based on mixed training data consisting of
CC data and limited amount of labeled WC data. Its main
steps are as follows: (1) in order to narrow the distribution
gap between CC data and WC data, MSTrA+ firstly uses
the proposed SSDBSCAN filter to filter out irrelevant CC
data and then uses data gravitation (Peng et al. 2009) for
reweighting the whole distribution of the filtered CC data to
fit WC data; (2) MSTrA+ mixes limited amount of labeled
WC data with reweighted CC data to build the prediction
model by using Multi-Source TrAdaBoost algorithm. The
framework of the proposed MSTrA+ approach is shown in
Fig. 1.

3.1 Data Preprocessing

3.1.1 SSDBSCAN filter

Previous work (Turhan et al. 2009) found that using raw CC
data directly would increase false alarm rate due to larger
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Fig. 1 The framework of the proposed MSTrA+ approach

irrelevant instances in CC data; thus, data preprocessing is
necessary before building the prediction model. Therefore,
the SSDBSCAN filter is proposed to filter out irrelevant CC
data.

The process of SSDBSCAN filter is based on the SSDB-
SCAN algorithm which is proposed by Lelis and Sander
(2009). SSDBSCAN uses the class information of the lim-
ited amount of labeled WC data to find clusters, so that
each instance in the limited amount of labeled WC data
is contained in a density-based cluster and all pairs of the
instances with different labels belong to different clusters.
Since instances in a cluster are similar to one another, yet dis-
similar to instances in other clusters, those CC instances with
the same class label as the WC instances in the same clus-
ter have the similar defect distribution characteristics to these
WC instances. Therefore, the SSDBSCANfilter assumes that
the CC instances which have the same class label as the WC
instances in the same cluster are the most valuable instances
in CC data.

The details of SSDBSCAN filter are as follows.

(1) Combine limited amount of labeled WC data, unlabeled
WC data, and CC data,

(2) Find clusters by using SSDBSCAN algorithm,
(3) Collect the CC instances that have the same class label

as the WC instances in the same cluster.

Since each cluster consists of at least one labeled WC
instance, we can filter out the CC instances that have the
different class label from theWC instance in the same cluster
even if they are close in distance, which tends to avoid false
prediction results.

Figure 2 shows an illustrative example of the SSD-
BCAN filter. There are 22 instances generated by hand,
where “ ” represents the defect-prone CC instance, “©”
represents the defect-free CC instance, “�” represents
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Fig. 2 Resulting clusters of a set of instances using the SSDBSCAN
algorithm

the defect-prone CC instance, “�” represents the defect-
free CC instance, and “ ” represents the unlabeled WC
instance. These instances are partitioned into three clus-
ters by using the SSDBSCAN algorithm, namely, C1 =
{x1, x4, x5, x6, x17, x21}, C2 = {x2, x3, x9, x15, x22}, and
C3 = {x7, x8, x12, x13, x14, x16, x18, x20}. Take the clus-
ter C1 for example, since the CC instances x1, x4 and x6
have the same class label as the labeled WC instance x17,
these CC instances are selected to form the final CC train-
ing data. Since the CC instance x5 has the different class
label from the labeled WC instance x17, the CC instance is
discarded. The CC instances in the clusters C2 and C3 are
selected in the same manner. Therefore, the final CC train-
ing instances consist of x1, x2, x3, x4, x6, x7, x8, x9, x12 and
x13.

3.1.2 Data gravitation

Then, the entire distribution of filtered CC data is changed
by applying the data gravitation method (Peng et al. 2009).
Suppose that an instance xi can be described by xi =
(ai1, ai2, . . ., aik), where ai j is the j th attribute value of the
i th instance and k is the number of the attributes.

(1) We compute two vectors, Max = {max1,max2,. . .,
maxk} and Min = {min1,min2, . . .,mink} to represent
the attribute value distribution of WC data, where maxi
is the maximum value of the i th attribute, mini is the
minimal value of the i th attribute.
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(2) For each instance xi inCCdata, the degree si of similarity
to WC data is computed according to Eq. (1)

si =
k∑

i=1

h
(
ai j

)
(1)

where ai j is the j th attribute value of the instance xi ,
h(ai j ) = 1, if min j � ai j � max j ; otherwise, h(ai j ) =
0.

(3) The weight wi of instance xi in CC data can be cal-
culated by Eq. (2) according to the formulation of data
gravitation (Peng et al. 2009).

wi = si/(k − si + 1)2 (2)

where k is the number of the attributes.

According to this formula, the weight wi of instance xi
shows the similarity of xi toWCdata, and the greatestwi will
be assigned when si = k. Therefore, the entire distribution
of the filtered CC data is reweighted to be close to WC data.

3.2 Multi-source TrAdaBoost learning

Let DSK = {(xS11 , cS11 ), . . ., (xSKn , cSKn )} be the kth CC data,
where n is the number of instances in the kth CC data, cSKi ∈
{true, false} is the class label of instance xSKi . Let DT =
{(xT1 , cT1 ), . . ., (xTm, cTm)} be limited amount of labeled WC
data, where m is the number of instances in labeled WC
data, cTi is the class label of instance xTi .

During SSDBSCAN filter and data gravitation, filtered
CC data DS1, . . .DSN and labeled WC data DT are assigned
different weight according to Eq. (2).

In each training round, combine the kth CC data and
the limited amount of labeled WC data to train a candi-
date weak prediction model. In our paper, we choose Naïve
Bayes (Lewis 1998) as the base prediction model due to its
effectiveness in defect prediction (Hall et al. 2012). The final
weak prediction model f t(x) in t th iteration is one of the
candidate weak prediction models which has the minimal
prediction error on labeled WC data. In other words, every
weak prediction model is selected from CC data that appear
to be the most closely related to WC data. The prediction
error function is defined according to Eq. (3).

εt =
m∑

j=1

wt
i | ft (xi ) − ci |∑m

i=1 wt
i

(3)

Set β t = 1

2
ln

1 − εt

εt
(4)

In this way, we import knowledge not from one but from
multiple sources, thus decreasing the risk for negative trans-

fer. In each training round, the instances inWCdata are given
more importance if the instances are misclassified. They are
believed to be the “most informative” for the next round, so
the weight of the misclassified instances is increased accord-
ing to Eq. (5).

wT
i = wT

i eβt
∣∣ ft

(
xTi

)−cTi
∣∣

(5)

The instances in CC data are given less importance if
the instances are misclassified. They are believed to be the
most dissimilar to WC data, so the weight of the misclassi-
fied instances are decreased according to Eq. (6) in order to
weaken their impacts in the next round through multiplying
the Hedge (β) defined in Eq. (7).

wSK
i = wSK

i e−βs
∣∣ ft

(
xSKi −cSKi

)∣∣
(6)

βs = 1

2
ln

(
1 +

√
2 ln

ns
M

)
(7)

Once the weights of all misclassified instances are
updated, the weights of all instances are normalized so that
their sum remains 1.

After several iterations, the instances in CC data that
fit WC data will have larger training weights, while the
instances in CC data that are dissimilar to WC data will have
lower weights. The instances in CC data with larger training
weights intend to build a better prediction model. The final
prediction model F(x) can be expressed as follows:

F(x) = sign

(
∑

t

βt f t (x)

)
(8)

Algorithm 1 presents the pseudo-code of the MSTrA+
approach to perform CCDP.

Algorithm 1. MSTrA+ approach

Input: filtered CC data DS1, . . .,DSN, limited amount of labeled
WC data DT, and the maximum number of iterations M

Output: a prediction model F(x)
1. Initialize a weight vector (wS1, . . .,wSN,wT) using Eq. (2)
2. for t = 1, . . .,M do
3. Empty the set of candidate weak prediction models
4. Normalize to 1 the weight vector (wS1, . . .,wSN,wT)

5. for k = 1, . . .,N do
6. Train the candidate weak prediction model fKt (x) over the
combined data DSK ∪ DT, using weight ( wSK

i ,wT)
7. Compute the error of fKt (x) on DT using Eq. (3)
8. end for
9. Find the weak prediction model f t(x) which has the
minimal error

10. Update weights vector (wS1, . . .,wSN,wT) for the
next round using Eq. (5) and Eq. (6)

11. end for
12. return F(x) = sign(

∑
t βt f t (x))
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Table 1 Details of experiment datasets

No. Name #Instance #Defects %Defect Description

1 ant 125 20 16 Open-source

2 arc 234 27 11.5 Academic

3 camel 339 13 3.8 Open-source

4 elearn 64 5 7.8 Academic

5 jedit 272 90 33.1 Open-source

6 log4j 135 34 25.2 Open-source

7 lucene 195 91 46.7 Open-source

8 poi 237 141 59.5 Open-source

9 prop 660 66 10 Proprietary

10 redaktor 176 27 15.3 Academic

11 synapse 157 16 10.2 Open-source

12 system 65 9 13.8 Open-source

13 tomcat 858 77 9 Open-source

14 xalan 723 110 15.2 Open-source

15 xerces 162 77 47.5 Open-source

4 Experiments setup

In this section, we describe the experimental setup in detail,
including the experiment datasets, performance measures
and research questions.

4.1 Dataset

In this experiment, we employ 15 available and commonly
used datasets which can be obtained from PROMISE repos-
itory (Boetticher et al. 2007). The details about the datasets
are shown in Table 1, where #Instance represents the number
of instances, #Defects represents the total number of faults in
the release, and%Defect represents the percentage of defect-
prone instances. Each instance in the 15 datasets has the same
20 independent code attributes, including the lines of code,
weightedmethods per class, depth of inheritance tree.Amore
detailed description of the 20 independent code attributes is
listed in Table 2.

4.2 Performancemeasures

In the experiment, we employ three commonly used perfor-
mance measures including PD, PF and G-measure. They are
defined in Table 3 and summarized as follows.

(1) Possibility of detection (PD) is defined as the ratio
of the number of defect-prone modules that are cor-
rectly predicted to the total number of defect-prone
modules.

Table 2 Code attributes of the datasets

No. Attribute Description

1 wmc Weighted methods per class

2 dit Depth of inheritance tree

3 noc Number of children

4 cbo Coupling between object classes

5 rfc Response for a class

6 lcom Lack of cohesion in methods

7 ca Afferent couplings

8 ce Efferent couplings

9 npm Number of public methods

10 lcom3 Lack of cohesion in methods

11 loc Lines of code

12 dam Data access metric

13 moa Measure of aggregation

14 mfa Measure of functional abstraction

15 cam Cohesion among methods of class

16 ic Inheritance coupling

17 cbm Coupling between methods

18 amc Average method complexity

19 max_cc Maximum McCabe’s cyclomatic complexity

20 avg_cc Average McCabe’s cyclomatic complexity

Table 3 Performance measures Actual

Yes No
Predicted Yes TP FP

No FN TN

PD TP
TP+FN

PF FP
FP+TN

G-measure 2×PD×(1−PF)
PD+(1−PF)

(2) Possibility of false alarm (PF) is defined as the ratio of
the number of defect-prone modules that are incorrectly
predicted to the total number of defect-free modules.

(3) G-measure is a trade-off measure that balances the per-
formance between PD and PF. A good prediction model
should have high PD and low PF, thus leading to a high
G-measure.

4.3 Research questions

To assess our proposed MSTrA+ approach, this paper
explores the following questions.

RQ1: Is the SSDBSCANfilter inMSTrA+ effective, com-
pared with other data filtering methods for CCDP?

MSTrA+mainly consists of two stages, data filtering stage
and transfer learning stage. Data filtering stage selects the
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most valuable CC data while transfer learning stage is added
to build the prediction model. To investigate the effective-
ness of our proposed SSDBSCAN filter, we compare the
SSDBSCAN filter against two state-of-the-art data filtering
methods (NN filter Turhan et al. 2009 and Peters filter Peters
et al. 2013). Methods in comparison are provided below.

(1) NN filter is based on the widely used K -nearest neigh-
bors (KNN) algorithm (Fukunaga and Narendra 1975)
to filter out irrelevant CC data. It can find out the most
similar K × N instances from CC data while N is the
number of instances in WC data and K is the parameter
of the KNN algorithm. In our experiment, we follow the
original work (Turhan et al. 2009) to set K as 10.

(2) Peters filter first clusters the CC instances with the WC
instances using the k-means algorithm (Jain 2010).Next,
clusters containing at least oneWC instance are kept and
others are rejected. For each CC instance, we find its
nearestWC instance. Finally, eachWC instance chooses
its closest CC instance as a candidate for the filtered CC
data while rejecting all the others. With approximately
4400 instances in CC data and WC data, we follow the
original work (Peters et al. 2013) to set k as 440 for k-
means, i.e., one cluster per r = 10 WC+CC instances.
We use this value for r since the NN filter chooses 10-
nearest neighbors for each WC instance (Turhan et al.
2009).

SSDBSCAN filter requires only one parameter, a mini-
mum number of points MinPts, which defines the density
level of clusters. In this paper, we use MinPts = 10, i.e.,
the neighborhood of a WC instance contains at least 10 CC
instances (Lelis and Sander 2009). We use this value for
MinPts since the NN filter chooses 10-nearest neighbors for
each WC instance (Turhan et al. 2009). In the future work,
we will explore other values of MinPts.

In order to compare the performance of these data filter-
ing methods, we choose three representative classifiers as
the basic prediction model, Naive Bayes (NB) (Lewis 1998),
Random Forest (RF) (Breiman 2001), and Logistic Regres-
sion (LR) (Hosmer and Lemeshow 2000). The reason we
choose these classifiers is that these classifiers fall into three
different families of learning methods. NB is a probabilistic
classifier; RF is a decision tree classifier; and LR is a linear
model for classification.

In every experiment, one dataset is selected as WC data
and the rest are regarded as CC data to conduct the exper-
iment. The CC data are considered as basic training data
which will be adjusted in every experiment. WC data will
be randomly divided into two parts: 10% labeled WC data
and 90% unlabeled WC data. The SSDBSCAN filter uses
the class information of 10% labeledWC data, while the NN
filter and the Peters filter do not use the class information. In

order to be fair, the 90% unlabeled WC data are taken as test
data for all data filtering methods. All the methods will be
repeated 30 times in every experiment to avoid sample bias.
Then, the mean values of performance for all the methods
are calculated.

RQ2:Does our proposedMSTrA+ approach perform bet-
ter than other approaches in CCDP experiments?

This question validates the important criterion of defect
prediction: the performance improvement in terms of PD,
PF and G-measure (as defined in Sect. 4.2). To answer this
question, we compare our approach against four state-of-
the-art approaches used in CCDP (NB Lewis 1998, TNBMa
et al. 2012, NN + WC Turhan et al. 2013 and DTB Chen
et al. 2015). More details are provided below:

(1) Naïve Bayes (NB) is a probabilistic classifier based on
Bayes theorem. It has been widely applied in prior work
as a basic prediction model to investigate the perfor-
mance of CCDP.

(2) TNB firstly reweights CC data by the data gravitation
method, then builds a transfer Naïve Bayes classifier on
reweighted CC data.

(3) NN+WC (nearest neighbor filter with WC data) mixes
p%WCdata with CC data which were processed by NN
filter as training data. In our experiment, we choose p as
10. Then, Naïve Bayes classifier is chosen as the basic
prediction model on the training data.

(4) DTB firstly uses the NN filter, SMOTE (Hosmer and
Lemeshow 2000) and data gravitation to process CC
data. Then, limited amount of labeled WC data and
reweighted CC data are mixed to build prediction model
using the transfer boosting algorithm (Dai et al. 2007).

In every experiment, one dataset is selected as WC data
and the rest are regarded as CC data to conduct the exper-
iment. The CC data are considered as basic training data
which will be adjusted in every experiment. WC data will be
randomly divided into two parts: 10% labeled WC data as
training data mixed with CC data in our MSTrA+ approach,
the DTB approach and the NN + WC approach, and the
remainder is taken as test data for all approaches in order to
be fair. All the approaches will be repeated 30 times in every
experiment to avoid sample bias. Then, the mean values of
performance for all approaches are calculated.

RQ3:How does the proposedMSTrA+ approach perform
compared to WCDP?

Previous studies (Turhan et al. 2009, 2013) have suggested
that it is difficult for the performance of CCDP to reach that
of WCDP. We want to clarify how well WCDP models per-
form with limited amount of labeled WC data. In addition,
since our MSTrA+ approach also employs limited amount
of labeled WC data, a comparison between MSTrA+ and
WCDPmodels can validate the effectiveness of ourMSTrA+
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Table 4 Comparison with NN filter and Peters filter in terms of PD, PF
and G-measure

Model Metric SSDBSCAN filter NN filter Peters filter

NB PD 0.777 0.775 0.767

PF 0.482 0.505 0.438

G-measure 0.603 0.580 0.594

W/D/L 8/2/5 11/0/4

RF PD 0.853 0.822 0.823

PF 0.596 0.652 0.643

G-measure 0.494 0.439 0.440

W/D/L 14/0/1 12/1/2

LR PD 0.816 0.809 0.826

PF 0.547 0.585 0.569

G-measure 0.551 0.509 0.520

W/D/L 11/1/3 8/2/5

Bold indicates the better values

approach. If theMSTrA+ approach can outperformWCDP, a
new company can exploit our proposedMSTrA+ approach to
perform CCDP at the early stages of development activities.

To address this question, we employ three representative
classifiers, Naïve Bayes (NB), Random Forests (RF) and
Logistic Regression (LR) as the WCDP models. In every
experiment, one dataset is selected as WC data and the rest
are regarded as CC data to conduct the experiment. WC data
will be randomly divided into training set and test set (10%
and 90%, respectively). The WCDP models are trained by
the training set, while our MSTrA+ model is trained by the
training setmixedwith CC data. In order to be fair, all models
are tested on the WC test set. The process will be repeated
30 times in every experiment to avoid sample bias. Then, the
mean values of performance for all models are calculated.

5 Experiment results

In this section, we present detailed experimental results to
answer our three research questions mentioned above.

5.1 Results for RQ1

In this subsection, we compare our proposed SSDBSCAN
filter with two state-of-the-art data filtering methods (NN
filter Turhan et al. 2009 and Peters filter Peters et al. 2013).
Table 4 records the average PD, PF and G-measure of all 15
datasets with three different data filtering methods on three
classifiers, NB, RF and LR. The column W/D/L, short for
Win/Draw/Loss, presents the number of datasets, on which
SSDBSCANfilter performs better than, the same as, orworse
than another method, in terms of G-measure.
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Fig. 3 Box plots for G-measure on 15 datasets with three classifiers

Table 4 shows that on all three classifiers, SSDBSCANfil-
ter performs better G-measure values (total average is 0.603,
0.494 and 0.551, respectively) than all the other methods.
For NB classifier, SSDBSCAN filter achieves the best aver-
age PD and G-measure values, but fails in the best PF value.
For RF classifier, SSDBSCAN filter can achieve the best val-
ues in terms of all the three metrics, comparing with all other
methods. For LR classifier, SSDBSCAN filter can achieve
the best PF and G-measure values, but fails in the best PD
value.

The Win/Draw/Loss values shows that, on three classi-
fiers, SSDBSCAN filter outperforms others on over half of
projects in terms of G-measure. Figure 3 shows the box plots
of G-measure values, with three data filtering methods for
three classifiers on the 15 datasets. For NB classifier, the
median value by SSDBSCAN filter is higher than that by
NN filter and Peters filter, while the maximum value is a
litter lower than that by Peters filter. For RF classifier, the
median value by SSDBSCAN filter is much higher than that
by all other methods. In addition, the maximum value by
SSDBSCAN filter is much higher than that by other meth-
ods. For LR classifier, the median value by SSDBSCAN
filter is much higher than that by NN filter and Peters filter,
while the maximum value is a litter lower than that by Peters
filter.

According to the experiment results in Table 4 and Fig. 3,
we conclude that the proposed SSDBSCAN filter can yield
better prediction results than the compared data filtering
methods. Therefore, we employ the SSDBSCAN filter to
select the most suitable CC data in our MSTrA+ approach.
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Table 5 Comparison with NB,
TNB, NN + WC and DTB in
terms of PD and PF

No. Dataset MSTrA+ NB TNB NN + WC DTB

PD PF PD PF PD PF PD PF PD PF

1 ant 0.842 0.313 1.000 0.807 0.819 0.524 0.399 0.275 0.811 0.370

2 arc 0.502 0.113 0.681 0.580 0.745 0.413 0.807 0.648 0.605 0.272

3 camel 0.437 0.073 0.578 0.642 0.564 0.290 0.784 0.710 0.487 0.300

4 elearn 0.804 0.226 1.000 0.657 1.000 0.393 0.900 0.383 0.675 0.243

5 jedit 0.707 0.181 0.881 0.732 0.475 0.168 0.932 0.628 0.568 0.237

6 log4j 0.694 0.247 0.907 0.598 0.635 0.134 0.936 0.709 0.611 0.234

7 lucene 0.743 0.353 0.769 0.711 0.580 0.221 0.750 0.548 0.581 0.382

8 poi 0.551 0.241 0.893 0.750 0.416 0.228 0.910 0.684 0.632 0.415

9 prop-6 0.694 0.236 0.868 0.789 0.529 0.336 0.860 0.628 0.670 0.331

10 redactor 0.683 0.323 1.000 0.853 0.634 0.513 1.000 0.891 0.616 0.679

11 synapse 0.804 0.394 0.958 0.839 0.775 0.422 0.935 0.781 0.871 0.490

12 system 0.793 0.370 0.816 0.617 0.563 0.260 0.817 0.341 0.717 0.340

13 tomcat 0.543 0.197 0.918 0.637 0.914 0.592 0.690 0.359 0.712 0.396

14 xalan 0.732 0.187 0.938 0.693 0.604 0.356 0.961 0.685 0.654 0.400

15 xerces 0.563 0.384 0.437 0.684 0.319 0.268 0.437 0.631 0.370 0.274

Average 0.673 0.256 0.843 0.706 0.638 0.341 0.808 0.593 0.639 0.358

Bold indicates the better values

5.2 Results for RQ2

In this subsection, we compare our proposed MSTrA+
approach with four state-of-the-art CCDP approaches
[NB (Lewis 1998), TNB (Ma et al. 2012), NN+WC (Turhan
et al. 2013) and DTB (Chen et al. 2015)]. Table 5 records the
experimental results on 15 datasets regarding the PD and PF
values, and Fig. 4 illustrates these results with scatter plots.
Note that a CCDP approach has more points distributed at
bottom right if it has higher PD value and lower PF value.

The figure shows that the NB approach often achieves
the best PD (total average is 0.843) but the worst PF (total
average is 0.706) therefore occupying the top right positions
in Fig. 4. After filtering some irrelevant CC instances in
CC data and mixing with 10% of WC data, the NN + WC
approach achieved a 16% reduction over the NB approach
in terms of PF on average. It is very obvious that the trans-
fer learning approaches including TNB, DTB and MSTrA+
have lower PF value (total average is 0.341, 0.358 and 0.256,
respectively) than the other two approaches, which leads to
most points being distributed in the bottom right corner in
Fig. 4. ComparedwithTNBandDTB, theMSTrA+ approach
improves the average PD value at least by 0.035 (= 0.673–
0.638). In addition, the MSTrA+ approach achieves the best
PF value (total average is 0.256) among all tested CCDP
approaches and yields more bottom right scatter points.

Table 6 shows the G-measure values of all tested appro-
aches on 15 datasets. It is very clear that MSTrA+ improves
the average G-measure value at least by 0.044 (= 0.669–
0.625).TheWin/Draw/Loss records also indicate thatMSTrA+
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Fig. 4 Scatter plots of average PD and PF for five CCDP approaches
on 15 datasets

wins over other approaches onmost projects. Comparedwith
NB, TNB, NN+WC and DTB, MSTrA+ wins on 15, 11, 13
and 12 datasets, respectively.

We also perform theWilcoxon signed-rank test (Wilcoxon
1945) to analyzewhether the performance values ofMSTrA+
are statistically significant different with those of the com-
pared approaches. The Wilcoxon signed-rank test is a non-
parametic method of statistically testing the significance
performance of multiple approaches. For the performance
values of two approaches compared, the null hypothesis
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Table 6 Comparison with NB, TNB, NN + WC and DTB in terms of
G-measure

Dataset MSTrA+ NB TNB NN + WC DTB

ant 0.752 0.323 0.602 0.099 0.709

arc 0.567 0.519 0.655 0.488 0.661

camel 0.584 0.442 0.629 0.423 0.574

elearn 0.801 0.508 0.756 0.724 0.713

jedit 0.725 0.411 0.605 0.532 0.651

log4j 0.697 0.557 0.733 0.444 0.679

lucene 0.694 0.420 0.665 0.564 0.598

poi 0.661 0.391 0.540 0.469 0.607

prop 0.684 0.339 0.589 0.519 0.669

redaktor 0.634 0.256 0.550 0.196 0.422

synapse 0.753 0.275 0.662 0.355 0.643

system 0.632 0.466 0.640 0.730 0.687

tomcat 0.569 0.520 0.564 0.660 0.653

xalan 0.675 0.462 0.623 0.474 0.625

xerces 0.613 0.360 0.444 0.400 0.490

Average 0.669 0.416 0.617 0.472 0.625

W/D/L 15/0/0 11/0/4 13/0/2 12/0/3

p value 0.001 0.025 0.003 0.061

Hedges’g 3.083 0.703 1.494 0.583

Bold indicates the better values

states that there exists no significant difference between the
two approaches. A p value less than 0.05 indicates that the
null hypothesis is rejected. That is, the difference between
the two approaches is identified as statistically significant.
The significant test is implemented in IBM SPSS Statis-
tics (Field 2001). In addition, we compute the effect size,
Hedges’g (Kampenes et al. 2007), to quantify the amount of
difference between two approaches. If the value of Hedges’g
is greater than 1, this indicates that the performance of the
prevision approach has a greater effect than that of the latter
approach.

The Wilcoxon test shows that MSTrA+ performs statisti-
cally better than NB, TNB and NN+WC (p value = 0.001,
0.025 and 0.003, respectively) and is comparable to DTB
(p value = 0.061). Moreover, the effect size of Hedges’g
values for NB and NN+WC is greater than 1.0 (Hedges’g=
3.083 and 1.494). As for TNB and DTB, Hedges’g= 0.703
and 0.583,which also can be considered amedium-size effect
(i.e., greater than 0.5, but less than 1.0).

According to the experiment results in Tables 5, 6 and
Fig. 4, we can conclude that MSTrA+ has acceptable PD
value and can obtain better PF value in most experiments,
and it almost always achieves the higher G-measure. In other
words, MSTrA+ has better overall performance than other
approaches in CCDP experiments.

5.3 Results for Q3

In this subsection, we compare the performance results of
MSTrA+ with three WCDP models, including Naïve Bayes
(NB), Random Forests (RF) and Logistic Regression (LR).
Table 7 shows the comparison results on 15 datasets in terms
of G-measure.

Although these selected classifiers have been proved
effective in WCDP, the experimental results seem to unsat-
isfactory. (The average G-measure values of these WCDP
models are less than 0.444.) It is probably because 10% of
WC data is not enough to perform WCDP. The MSTrA+
approach significantly outperforms NB, RF and LR, as it
wins 14, 15 and 15 datasets, respectively. Furthermore, the
results of Wilcoxon test show that MSTrA+ performs statis-
tically better than these WCDP models (p values are all less
than 0.05). Moreover, the effect size of Hedges’g values for
NB and NN + WC is greater than 1.0 (Hedges’g = 1.736,
2.235 and 2.533, respectively).

According to the experiment results in Table 7, we con-
clude that our MSTrA+ approach performs significantly
better than WCDP based on limited amount of labeled WC
data. Therefore, a new company can exploit our proposed
MSTrA+ approach to perform CCDP at the early stages
of development activities when there is limited amount of
labeled WC data.

6 Validity threats

In this section, we discuss several validity threats that may
have an impact on the results of our studies.

External validity Threats to external validity occur when
the results of our experiments cannot be generalized. As
a preliminary result, we performed our experiments on 15
public datasets to explore the generality of our approach.
Although these datasets have been widely used in many soft-
ware defect prediction studies, we still cannot claim that
our approach can be generalized to other datasets. Neverthe-
less, this work provides a detailed experimental description,
including parameter settings. Therefore, other researchers
can easily replicate our approach on new datasets.

Internal validity In our study, we repeat 30 times to avoid
sample bias and calculate average results to verify the perfor-
mance of all test approaches. We compared our SSDBSCAN
filter with two state-of-the-art data filtering methods. To
avoid the comparison bias, those methods were implemented
in strict accordance with the authors instructions in related
paper. In addition, we compared our MSTrA+ approach with
four state-of-the-art CCDP approaches. Since the authors of
the paper (Chen et al. 2015) give us the original implemen-
tation of DTB and their own implementation version of NB,
NN + WC and TNB, we avoid the comparison bias.
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Table 7 Comparison with WCDP models in terms of G-measure

Dataset MSTrA+ NB RF LR

ant 0.752 0.332 0.328 0.393

arc 0.567 0.336 0.237 0.329

camel 0.584 0.239 0.052 0.191

elearn 0.801 0.177 0.187 0.167

jedit 0.725 0.646 0.635 0.579

log4j 0.697 0.551 0.496 0.463

lucene 0.694 0.603 0.597 0.506

poi 0.661 0.552 0.598 0.525

prop 0.684 0.507 0.176 0.396

redaktor 0.634 0.517 0.415 0.443

synapse 0.753 0.243 0.144 0.218

system 0.632 0.216 0.113 0.185

tomcat 0.569 0.667 0.268 0.443

xalan 0.675 0.586 0.279 0.455

xerces 0.613 0.491 0.560 0.549

Average 0.669 0.444 0.339 0.389

W/D/L 14/0/1 15/0/0 15/0/0

p value 0.001 0.001 0.001

Hedges’g 1.736 2.235 2.533

Bold indicates the better values

Construct validity In experiments, we mainly use PD, PF
and G-measure to measure the effectiveness of the proposed
approach. Nonetheless, other evaluation measures such as
F-measure and AUC measure can also be considered.

7 Conclusion and future work

In this paper, we address the issues of how to weaken the
impact of irrelevant CC data and how to avoid negative
transfer when leveraging multiple CC data. We propose an
effective solution forCCDPwhen there are limited amount of
labeledWCdata. Firstly,we propose a novel semi-supervised
clustering-based data filtering method (i.e., SSDBSCAN fil-
ter) to filter out irrelevant CC data. Then, we for the first time
introduce multi-source TrAdaBoost algorithm into CCDP,
such that the risk of negative transfer is decreased by adopt-
ing knowledge from multiple CC data.

We conduct experiments on 15 publicly available datasets
to evaluate the performance of the proposed approach. The
experimental results indicate that the proposed approach can
effectively weaken the impact of irrelevant data and avoid
negative transfer to improve the performance of CCDP. The
proposed MSTrA+ approach is an effective approach for
CCDP.

In the future, we would like to validate the generalization
ability of our approach onmore software datasets, real-world

datasets in particular. In addition, class imbalance is a natu-
ral characteristic of defect datasets and it will be interesting
to apply some well-known data sampling approaches (Ben-
nin et al. 2017a, b) to resolve the negative impact of class
imbalance after filtering the data.
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