
The Journal of Systems and Software 216 (2024) 112131

A
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Data preparation for Deep Learning based Code Smell Detection: A
systematic literature review✩

Fengji Zhang a, Zexian Zhang b,c, Jacky Wai Keung a, Xiangru Tang d, Zhen Yang e, Xiao Yu b,f,∗,
Wenhua Hu b

a Department of Computer Science, City University of Hong Kong, Hong Kong, China
b School of Computer Science and Artificial Intelligence, Wuhan University of Technology, Wuhan, China
c Sanya Science and Education Innovation Park of Wuhan University of Technology, Sanya, China
d School of Engineering & Applied Science, Yale University, New Haven, United States
e School of Computer Science and Technology, Shandong University, Tsingtao, China
f Wuhan University of Technology Chongqing Research Institute, Chongqing, China

A R T I C L E I N F O

Keywords:
Code smell detection
Deep learning
Data preparation
Systematic literature review

A B S T R A C T

Code Smell Detection (CSD) plays a crucial role in improving software quality and maintainability. And
Deep Learning (DL) techniques have emerged as a promising approach for CSD due to their superior
performance. However, the effectiveness of DL-based CSD methods heavily relies on the quality of the training
data. Despite its importance, little attention has been paid to analyzing the data preparation process. This
systematic literature review analyzes the data preparation techniques used in DL-based CSD methods. We
identify 36 relevant papers published by December 2023 and provide a thorough analysis of the critical
considerations in constructing CSD datasets, including data requirements, collection, labeling, and cleaning.
We also summarize seven primary challenges and corresponding solutions in the literature. Finally, we offer
actionable recommendations for preparing and accessing high-quality CSD data, emphasizing the importance
of data diversity, standardization, and accessibility. This survey provides valuable insights for researchers and
practitioners to harness the full potential of DL techniques in CSD.
1. Introduction

Code smell refers to certain symptoms or indications in the source
code that suggest there may be underlying problems or potential design
flaws (Danphitsanuphan and Suwantada, 2012; Santos et al., 2018;
Zakeri-Nasrabadi et al., 2023; Li et al., 2023b). It does not necessarily
indicate a functional error or bug in the code but rather highlights
programming practices that can impair the maintainability, readability,
and extensibility of the software (Di Nucci et al., 2018; Alazba et al.,
2023; Hu et al., 2023; Liu et al., 2024). Code Smell Detection (CSD)
aims to automatically identify code smells in software source code to
ensure code quality, improve software maintainability, and promote
good programming practices. Recently, Deep Learning (DL) techniques
are gaining popularity in the CSD task (Guo et al., 2019; Kim, 2020;
Hamdy and Tazy, 2020). The main advantage of DL models is their abil-
ity to automatically encode and learn from raw data, eliminating the
need for handcrafted rules and feature engineering presented in previ-
ous heuristic-based and machine learning-based CSD methods (Sharma

✩ Editor: Dr. Hongyu Zhang.
∗ Corresponding author at: School of Computer Science and Artificial Intelligence, Wuhan University of Technology, Wuhan, China.
E-mail addresses: fengji.zhang@my.cityu.edu.hk (F. Zhang), zexianzhang@whut.edu.cn (Z. Zhang), jacky.keung@cityu.edu.hk (J.W. Keung),

xiangru.tang@yale.edu (X. Tang), zhenyang@sdu.edu.cn (Z. Yang), xiaoyu@whut.edu.cn (X. Yu), whu10@whut.edu.cn (W. Hu).

and Spinellis, 2018; Alkharabsheh et al., 2019; Jain and Saha, 2021).
Despite the outstanding performance of the DL-based CSD methods,
they require a substantial amount of training data to model the com-
plexity of code smells (Di Nucci et al., 2018). High-quality training data
plays a key role in the validity of model results. Noisy datasets can
hinder effective model training and affect result reliability (Fakhoury
et al., 2018; Ardimento et al., 2021a). Data quality could also impact
the scalability of models (Allal et al., 2023). Early decisions when
constructing CSD datasets, such as the choice of language (Virmajoki
et al., 2022; Siddiq et al., 2022) and application scenarios (Zhang et al.,
2022; Kaur and Singh, 2023), can affect the scaling and generalization
ability of models. Consequently, the availability of high-quality code
smell datasets is crucial for building effective DL-based CSD models.

Despite the critical importance of data to CSD models, little atten-
tion has been paid to systematically analyzing the CSD data prepa-
ration process. Recent literature surveys (Alazba et al., 2023; Naik
et al., 2023; Malhotra et al., 2023) comprehensively analyzed DL-based
vailable online 12 June 2024
164-1212/© 2024 Elsevier Inc. All rights are reserved, including those for text and

https://doi.org/10.1016/j.jss.2024.112131
Received 28 December 2023; Received in revised form 27 May 2024; Accepted 8 J
data mining, AI training, and similar technologies.

une 2024

https://www.elsevier.com/locate/jss
https://www.elsevier.com/locate/jss
mailto:fengji.zhang@my.cityu.edu.hk
mailto:zexianzhang@whut.edu.cn
mailto:jacky.keung@cityu.edu.hk
mailto:xiangru.tang@yale.edu
mailto:zhenyang@sdu.edu.cn
mailto:xiaoyu@whut.edu.cn
mailto:whu10@whut.edu.cn
https://doi.org/10.1016/j.jss.2024.112131
https://doi.org/10.1016/j.jss.2024.112131
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2024.112131&domain=pdf


The Journal of Systems & Software 216 (2024) 112131F. Zhang et al.

w
t
p
g
d
A
t
p
d
m
a
a

CSD methods. They covered many facets, including code smell types,
deep learning techniques, model features, evaluation methods, and the
datasets used. They indicated insights on programming language pref-
erences, model effectiveness, and dataset characteristics. However, they
overlooked crucial aspects of data preparation, such as requirements,
collection, cleaning, and labeling techniques. Consequently, they lack a
comprehensive view of data preparation challenges and strategies, lim-
iting researchers and practitioners in harnessing the complete potential
of DL techniques in CSD.

To address these gaps, this survey systematically analyzes the exist-
ing data preparation processes for DL-based CSD. We identify relevant
papers through a Systematic Literature Review (SLR) process, collecting
36 papers on DL-based CSD studies published until December 2023.
We then carefully analyze the collected papers concerning data prepa-
ration considerations, encountered challenges, and proposed solutions.
Additionally, we provide recommendations for preparing and accessing
high-quality CSD data. This survey is organized around three main
Research Questions (RQs):

RQ1 What are the critical considerations in constructing CSD datasets?
This research question aims to understand the critical factors re-
searchers consider when building DL-based code smell detection
datasets. We analyze papers regarding the four main phases of
the established machine learning workflow (Amershi et al., 2019):
data requirements, collection, labeling, and cleaning. For data
requirements, we examine the programming language, code smell
types, and detection scenarios addressed. For data collection,
we analyze the data sources and types. For data labeling, we
summarize the costs and efficiency of automatic, manual, and
semi-automatic approaches. Finally, for data cleaning, we identify
issues of code noise and redundancy.

RQ2 What are the challenges in existing CSD datasets? This research
question identifies challenges that may hinder the performance
and reliability of DL-based CSD methods due to data issues. We
analyze seven primary challenges: data scarcity, limited gener-
alization, inaccessibility, heavy expert dependency, difficulty in
labeling, data imbalance, and redundancy.

RQ3 What are the solutions presented in the literature? Given the chal-
lenges identified in RQ2, this research question summarizes solu-
tions proposed in the literature. To the challenges addressed, we
map five approaches - cross-project datasets, two-phase data uti-
lization, resampling, semi-automatic labeling, and data cleaning
methods.

Finally, we provide recommendations based on this survey. Future
ork should focus on creating more diverse, publicly available datasets

hat address current limitations. Researchers could leverage multi-
le programming languages, data sources, and domains to improve
eneralizability. Semi-automatic labeling and automated real-world
ata collection may help scale datasets while maintaining quality.
dopting best practices for data governance, including documenting

he data collection and pre-processing details, would enhance trans-
arency and reproducibility. Establishing standard criteria to evaluate
atasets could help standardize their construction and quality assess-
ent. These efforts aim to generate larger, higher-quality datasets

llowing DL-based models to better learn complex code smell patterns
cross different application scenarios.

The main contributions of this research are:

• Introduce the first systematic review of data preparation processes
for DL-based CSD methods (RQ1 in Section 4).

• Provide thorough solutions mapped to identified data challenges
to guide future dataset preparation (RQ2 in Section 5 and RQ3 in
Section 6).

• Propose recommendations on diversifying and standardizing
datasets through multi-language modeling, semi-automatic
labeling, and best practices for data governance and accessibility
2

(Section 7).
Fig. 1. An example of Feature Envy code smell.

The rest of the paper is organized as follows. Section 2 describes
background and related work. Section 3 details our SLR methodology.
Sections 4 to 6 presents results addressing each RQ. Section 7 provides
recommendations based on findings. Section 8 discusses threats to
validity. Section 9 concludes the paper.

2. Related work

This section provides context on code smells, code smell detection
techniques, and related CSD SLRs. The background informs the goals
and context of our study.

2.1. Code smell detection

Code smells represent undesirable design or implementation con-
structs that can degrade code maintainability and quality, indicating
structural patterns correlated with increased defect risk (Al-Shaaby
et al., 2020; Fowler, 2018; Kim, 2017). One example is the Feature
Envy shown in Fig. 1. In this case, the crop method belongs to the
ImageArguments class but is coupled to the CropRegion class. The Cro-
pRegion class has a toString() method that converts the CropRegion
object to a string. While the crop method calls value.toString(), which
focuses too much on the internal details of the CropRegion class about
its string conversion logic. Since crop is defined in ImageArguments, it
should not read and manipulate attributes of CropRegion rather than its
owning class. The crop method would be better defined as a method in
CropRegion since it primarily operates on that class’s data rather than
ImageArguments. This excessive dependency on another class’s imple-
mentation indicates the presence of Feature Envy, which can negatively
impact code understandability, modification, and testing.

Early code smell detection approaches are generally heuristic-based
or machine learning-based models (Sharma and Spinellis, 2018;
Alkharabsheh et al., 2019). However, heuristic-based methods are criti-
cized for their subjectivity due to manually adjusted heuristic rules (Di
Nucci et al., 2018). Machine learning-based methods require careful
construction and selection of code smell features (Fontana and Zanoni,
2017), which also heavily relies on human expertise.

With advancements in deep learning technology in the field of both
artificial intelligence and software engineering (Chen et al., 2023; Yang
et al., 2023; Gao et al., 2023; Chen et al., 2020; Ma et al., 2023; Qiao
et al., 2023), recent researchers have introduced various deep learn-
ing techniques for automatically extracting code smell features from
code (Tarwani and Chug, 2022). Model architectures like convolutional
neural networks (Fakhoury et al., 2018; Das et al., 2019; Hamdy and
Tazy, 2020; Yin et al., 2021), long short-term memory networks (Guo
et al., 2019; Wang et al., 2020; Yu et al., 2021; Ardimento et al., 2021a;
Li and Zhang, 2022; Siddiq et al., 2022; Ho et al., 2023), and recurrent
neural networks (Das et al., 2019; Hamdy and Tazy, 2020; Siddiq et al.,

2022) have achieved state-of-the-art CSD accuracy (Zhang et al., 2022).



The Journal of Systems & Software 216 (2024) 112131F. Zhang et al.
Fig. 2. The overall process of our systematic literature review.
2.2. Related CSD SLRs

Despite data preparation playing a pivotal role in CSD, comprehen-
sive investigations have been lacking. Several surveys in CSD methods
explored machine learning and deep learning techniques. While these
surveys discussed CSD datasets to varying extents, most of them lacked
detailed examination of the data preparation process and systematic
identification of challenges or solutions. Specifically, Gupta et al.
(2017) delivered a comprehensive review of CSD studies from 1999 to
2016, stressing the pivotal role of code smells in software maintenance.
Azeem et al. (2019) and Al-Shaaby et al. (2020) explored machine
learning-based CSD studies until 2018, focusing on the types and
performance of machine learning techniques. They both found that the
random forest emerged as the most effective technique for detecting
various code smells and emphasized the significance of manually
validating datasets, noting a scarcity of available datasets. Kaur et al.
(2021) reviewed CSD studies up to 2020, concentrating on simple
and hybrid machine learning techniques and their evaluation methods.
They revealed that support vector machine and decision tree algorithms
were frequently used by the researchers, and much of the research
focused on open-source software. Additionally, they noted that most
of the researchers used small and medium-sized datasets and lacked
valid industrial datasets. Lewowski and Madeyski (2022) assessed
the reproducibility of CSD research from 1999 to 2020, focusing on
machine learning-based studies.

Alazba et al. (2023), Naik et al. (2023), and Malhotra et al. (2023)
are all devoted to systematically reviewing the research progress in
the field of DL-based CSD. They provided a comprehensive survey and
summary of the developments in the field from various perspectives
such as code smell types, deep learning techniques, datasets, and model
performance evaluation. They highlighted supervised learning as the
most commonly used learning method and pointed out the importance
of models such as convolutional neural networks, recurrent neural
networks, and long and short-term memory networks in CSD. In addi-
tion, they generally observed the prevalence of Java datasets and that
method-level code smell is most often detected. Although these reviews
discussed the datasets, there is a certain lack of detailed exploration
and systematic analysis of the data preparation stages. They focused
more on what type of code smell dataset was used, the programming
language of the dataset, and the size of the dataset, while the impact
of the dataset preparation process was not examined in depth.

Compared to general CSD surveys, we specifically target the un-
derstudied domain of data preparation to advance understanding and
inform future practices. There is one particular survey studying CSD
datasets (Zakeri-Nasrabadi et al., 2023). They meticulously compared
CSD datasets across properties like size, supported smells, program-
ming languages, and construction methods. Their findings highlighted
several limitations within existing datasets, notably imbalances in sam-
ples, absence of severity levels for smells, and constraints related to
Java-based datasets. However, their analysis predominantly focused on
machine learning datasets and did not explore the challenges identified
in our survey, i.e., Data Scarcity, Limited Generalization Ability, Limited
3

Data Accessibility, Heavy Expert Dependency, Difficulty of Data Labeling,
and Redundancy. In addition, they lacked a detailed exploration of solu-
tions or recommendations to address the challenges found, particularly
in the context of deep learning applications within CSD. Instead, we
address these challenges by proposing diverse solutions. Furthermore,
we provide a set of recommendations to advance the field. These rec-
ommendations aim to foster progress by addressing critical issues and
promoting standardized practices within the domain of DL-based CSD.

3. Research methodology

Our SLR process strictly adheres to established guidelines (Kitchen-
ham, 2004; Zhang et al., 2011) to ensure an objective review. We
also adopt a snowballing approach (Wohlin, 2014) to include additional
literature and enhance the completeness of our review. Fig. 2 outlines
our SLR process. The first two authors conduct the work closely with
review from the other authors. This process occurred in 2023 and
identified 36 relevant papers, as detailed in Table 1.

3.1. Search strategy

To design the search string for our SLR, we utilize the PICO (Popu-
lation, Intervention, Comparison, Outcomes) framework (Schardt et al.,
2007). This framework is widely adopted in systematic reviews to
formulate research questions and develop search strategies. PICO helps
in breaking down the research topic into four key components:

• Population (P): The population of interest in our study is repre-
sented by ‘‘Code Smell’’.

• Intervention (I): The intervention refers to the ‘‘DL Technique’’
(Deep Learning Technique).

• Comparison (C): Comparison is not applicable in our study, hence
it is omitted.

• Outcomes (O): The expected outcomes are related to ‘‘Code Smell
Detection’’.

Table 2 details the key terms and synonyms associated with each
PICO component used in our search strategy. We constructed the
query by combining these PICO components using the Boolean operator
‘‘AND’’. This approach ensures a comprehensive search by encompass-
ing a broad spectrum of research related to our topic. We include
variants of key terms facilitated through the use of wildcard matching.
For instance, the term ‘‘detect*’’ covers ‘‘detect’’, ‘‘detection’’, ‘‘detect-
ing’’, etc. We combine the key terms using the ‘‘OR’’ operator. The
detailed search string in the SCOPUS format is as follows:

TITLE-ABS-KEY((‘‘Code smell’’ OR ‘‘Bad smell*’’ OR ‘‘Design smell*’’
OR ‘‘Design flaw*’’ OR ‘‘Antipattern*’’ OR ‘‘Model smell*’’) AND (‘‘DL
Technique’’ OR ‘‘Deep learning’’ OR ‘‘Transfer learning’’ OR ‘‘CNN’’ OR
‘‘RNN’’ OR ‘‘Auto-encoder*’’ OR ‘‘Deep neural network*’’) AND (‘‘Code
Smell Detection’’ OR ‘‘Detect*’’ OR ‘‘Predict*’’ OR ‘‘Identif*’’)

We adapt the search string as necessary to match each database.
The databases queried include Google Scholar, SCOPUS, ACM Dig-
ital Library, IEEE Xplore, Springer, and Wiley. These databases are
chosen based on recommendations from previous SLRs (Yang et al.,
2022; Martínez-Fernández et al., 2022), which highlighted them as



The Journal of Systems & Software 216 (2024) 112131F. Zhang et al.
Table 1
The primary studies analyzed in our systematic literature review.

ID Reference Title

S1 Kim (2017) Finding bad code smells with neural network models
S2 Hadj-Kacem and Bouassida (2018) A hybrid approach to detect code smells using deep learning
S3 Fakhoury et al. (2018) Keep it simple: Is deep learning good for linguistic smell detection?
S4 Guo et al. (2019) Deep semantic-based feature envy identification
S5 Barbez et al. (2019) Deep learning anti-patterns from code metrics history
S6 Liu et al. (2019) Deep learning based code smell detection
S7 Hadj-Kacem and Bouassida (2019a) Deep representation learning for code smells detection using variational auto-encoder
S8 Das et al. (2019) Detecting code smells using deep learning
S9 Hadj-Kacem and Bouassida (2019b) Improving the identification of code smells by combining structural and semantic information
S10 Hamdy and Tazy (2020) Deep hybrid features for code smells detection
S11 Wang et al. (2020) Feature envy detection based on Bi-LSTM with self-attention mechanism
S12 Yu et al. (2021) A novel tree-based neural network for android code smells detection
S13 Gupta et al. (2021) An empirical study on predictability of software code smell using deep learning models
S14 Sharma et al. (2021) Code smell detection by deep direct-learning and transfer-learning
S15 Xu and Zhang (2021) Multi-granularity code smell detection using deep learning method based on abstract syntax tree
S16 Ren et al. (2021) Exploiting multi-aspect interactions for god class detection with dataset fine-tuning
S17 Yin et al. (2021) Local and global feature based explainable feature envy detection
S18 Ardimento et al. (2021a) Temporal convolutional networks for just-in-time design
S19 Sidhu et al. (2022) A machine learning approach to software model refactoring
S20 Tarwani and Chug (2022) Application of deep learning models for code smell prediction
S21 Khleel and Nehéz (2022) Deep convolutional neural network model for bad code smells detection based on oversampling method
S22 Zhang et al. (2022) Code smell detection based on deep learning and latent semantic analysis
S23 Yedida and Menzies (2022) How to improve deep learning for software analytics
S24 Li and Zhang (2022) Multi-label code smell detection with hybrid model based on deep learning
S25 Dewangan et al. (2022) Code smell detection using ensemble machine learning algorithms
S26 Zhang and Jia (2022) Feature envy detection with deep learning and snapshot ensemble
S27 Bhave and Sinha (2022) Deep multimodal architecture for detection of long parameter list and switch statements using DistilBERT
S28 Ardimento et al. (2021b) Transfer learning for just-in-time design smells prediction using temporal convolutional networks
S29 Jeevanantham and Jones (2022) Extension of deep learning based feature envy detection for misplaced fields and methods
S30 Virmajoki et al. (2022) Detecting code smells with AI: a prototype study
S31 Imam et al. (2022) The automation of the detection of large class bad smell by using genetic algorithm and deep learning
S32 Siddiq et al. (2022) An empirical study of code smells in transformer-based code generation techniques
S33 Afrin et al. (2022) A hybrid approach to investigate anti-pattern from source code
S34 Ho et al. (2023) Fusion of deep convolutional and LSTM recurrent neural networks for automated detection of code smells
S35 Kaur and Singh (2023) Improving the quality of open-source software
S36 Liu et al. (2023) Deep learning based feature envy detection boosted by real-world examples
Table 2
The key terms and synonyms for paper search.

Category Subject Search terms

Population Code Smell ‘‘Bad smella ’’ OR ‘‘Design smella ’’ OR
‘‘Design flawa ’’ OR ‘‘Antipatterna ’’ OR
‘‘Model smella ’’

Intervention DL Technique ‘‘Deep learning’’ OR ‘‘Transfer
learning’’ OR ‘‘CNN’’ OR ‘‘RNN’’ OR
‘‘Auto-encodera ’’ OR ‘‘Deep neural
networka ’’

Comparison – –
Outcomes Code Smell Detection ‘‘Detecta ’’ OR ‘‘Predicta ’’ OR

‘‘Identifa ’’

a Denotes the wildcard matching pattern.

sources containing high-quality, peer-reviewed research in software
engineering.

Furthermore, we apply additional filters to the retrieved papers,
including the language (i.e., English-only) and publication status (i.e.,
The paper should be a peer-reviewed full research paper published in a
conference proceeding or a journal). The initial search identifies 1270
papers. We then remove the duplicate records, resulting in 975 papers
for further screening.

3.2. Paper selection

We aim to identify high-quality studies that could provide valuable
insights into data preparation for DL-based CSD. Additional criteria and
quality assessment are applied to screen eligible papers.

3.2.1. Inclusion/exclusion criteria
We propose three inclusion and four exclusion criteria, as shown in
4

Table 3. A paper is only included if it meets all the inclusion criteria and
does not conform to any exclusion criteria. The inclusion criteria re-
quire that papers utilize deep learning techniques for CSD and propose
novel deep learning-based models or solutions for the task. Papers also
need to describe the datasets used clearly. For exclusion, papers that
use heuristic or machine learning-based detection techniques, review
existing models, or only perform statistical/correlational analyses are
removed. Papers with unclear descriptions of the datasets are also
excluded. To help validate the consistent application of the criteria,
the first two authors also conduct an initial screening of 50 randomly
selected papers. They independently assess whether each paper meets
or does not meet the inclusion and exclusion criteria. The absence
of discrepancies between the authors’ assessments lends additional
confidence in the reliability and validity of the criteria used in this
study.

The criteria are applied in two phases. First, the titles and abstracts
of retrieved papers are screened according to the criteria. This process
leaves 78 papers for potential inclusion. Then, the full texts of the
remaining 78 papers are thoroughly reviewed against the criteria.
After a full assessment, we have 35 papers that suit the inclusion and
exclusion criteria.

3.2.2. Quality assessment
We conduct a quality assessment on the remaining papers using

the checklist in Table 4. Quality criteria are essential for assessing the
reliability of extracted information, though there is no standardized
approach (Kitchenham et al., 2009). Following the Alazba et al. (2023),
Croft et al. (2022), and Zakeri-Nasrabadi et al. (2023), our checklist
mainly examines independent/dependent variables, validation meth-
ods, datasets, and experimental complexity.

One author initially performs the quality assessment, with two
additional authors conducting another round of results validation. This
process excludes four papers for failing to meet one or more quality



The Journal of Systems & Software 216 (2024) 112131F. Zhang et al.
Table 3
The inclusion and exclusion criteria for screening eligible papers.
Inclusion criteria Exclusion criteria

IC1: The paper proposes new deep learning techniques. EC1: The paper is not in English.
IC2: The paper reports on empirical results. EC2: The paper is a literature review only.
IC3: The paper has undergone peer review. EC3: The full text of the paper is unavailable.

EC4: The paper provides no dataset(s) details.
Table 4
The quality criteria checklist for screening eligible papers.

Quality criteria

QC1: Are the code smells being detected clearly defined?
QC2: Are the deep learning models sufficiently described?
QC3: Are the performance metrics specified?
QC4: Are the independent and dependent variables clearly defined?
QC5: Are the data sources and statistics fully described?
QC6: Is the data labeling method clearly explained?
QC7: Is the validation methodology specified?
QC8: Are potential threats to validity clearly outlined?

Table 5
The data extraction form for collecting information from reviewed papers.

Item Description

Metadata

Study ID Unique identifier for the paper
Title Title of the paper
Author Author(s) of the paper
Year Year of publication
References Number of references in the paper
Publication Journal or conference of publication

Datasets

Data source Real-world or synthetic data
Dataset name Name of dataset(s) used
Multiple datasets Number of datasets for experiments
Data integration How multiple datasets were used
Availability Reproducibility of datasets
Source type Open-source or exclusive license
Code smell types Types of code smells considered
Programming language Language of code in datasets
Size Number of samples in datasets
Ratio Ratio of smelly to non-smelly samples
Labeling method Approach to labeling smelly samples
Required expertise Expertise needed for labeling

Methods

Data cleaning Pre-processing approaches
Transformation Data representation techniques
Partitioning How data was split for training/evaluation
Resampling Methods to handle class imbalance
DL techniques Proposed deep learning approaches

Others Additional relevant findings

criteria. Specifically, Lin et al. (2021), Virmajoki (2020), Malathi and
Jabez (2023), and Grodniyomchai et al. (2019) lack sufficient descrip-
tions of independent/dependent variables, validation approaches, or
datasets used. The details of these papers that do not meet our quality
standards are omitted for brevity. This assessment aims to screen papers
with incomplete reporting that could limit the extraction of meaningful
insights.

3.3. Snowballing

To ensure comprehensive coverage of all relevant literature, we per-
form manual snowballing as per the guidelines by Wohlin (2014). This
involves both forward and backward snowballing techniques. Forward
snowballing involves examining the citation lists of all papers that meet
our inclusion criteria to locate additional relevant papers. Backward
snowballing reviews the reference lists to uncover any pertinent studies
not previously identified. During the initial round of snowballing,
we successfully identify five new relevant papers. Subsequent rounds
of snowballing are conducted following the same rigorous screening
process, adhering to our predefined inclusion and exclusion criteria and
maintaining our quality assessment standards. Despite the additional
5

Fig. 3. The number of primary studies by year.

rounds, no new papers are found that meet our criteria, leading us to
conclude that we have reached a saturation point. This is due to the
limited scope of current research on DL-based code smell detection,
which is a relatively nascent field.

In total, our search and snowballing processes yield 36 papers. Of
these, 31 papers are initially retrieved through keyword searches across
various databases. The remaining five papers are found through manual
snowballing of references and citations. This dual-phase approach helps
provide a more comprehensive examination of the literature.

3.4. Data extraction

We have designed a data extraction form to systematically analyze
the identified papers, shown in Table 5. The form design is adapted
from prior SLR guidelines (Garousi and Felderer, 2017; Kitchenham,
2004) and pilot-tested before finalizing.

The form captures qualitative and quantitative attributes across
four aspects: metadata, datasets, methods, and other information. One
author performs the initial data extraction to organize information
collected from each paper. Then, two additional authors verify the
extracted data through independent examination. Any disagreements
are resolved through group discussion to reach a consensus. Most data
extracted is qualitative, such as deep learning techniques applied, data
sources, pre-processing approaches, and code smells addressed. Some
quantitative data is also collected, like imbalance ratios within datasets.
This formal extraction process aims to investigate the research ques-
tions proposed in our study comprehensively. The publication details
of the 36 primary studies are listed in Table 6. The number of these 36
papers over the years is shown in Fig. 3.

4. RQ1 - Critical considerations in CSD data preparation

Through a comprehensive literature review, we extract and analyze
the various considerations taken to construct datasets for code smell de-
tection. Following the machine learning workflow introduced by Amer-
shi et al. (2019), our data preparation analysis centers around four
main phases in Fig. 4, including data requirements, collection, labeling,
and cleaning. By thoroughly reviewing these preparation aspects, we
clarify current practices and guide practitioners and researchers on
effectively addressing critical factors when building datasets. This will
help standardize the construction of high-quality datasets for code smell
detection.



The Journal of Systems & Software 216 (2024) 112131F. Zhang et al.
Table 6
The publication statistics of the primary studies in our SLR. J and C denote journal and conference publication, respectively. N. denotes the
number of publications.
Sources N. Study

J: IEEE transactions on software engineering 1 S[6]
J: Journal of systems and software 1 S[14]
J: Neurocomputing 1 S[18]
J: Knowledge-based systems 1 S[22]
J: International journal of electrical and computer engineering 1 S[1]
J: Journal of theoretical and applied information technology 1 S[10]
J: International journal of computers and applications 1 S[19]
J: Indonesian journal of electrical engineering and computer science 1 S[21]
J: Applied sciences 1 S[25]
J: International journal of intelligent engineering and systems 1 S[29]
J: Journal of King Saud University-computer and information sciences 1 S[31]
J: Agile software development: Trends, challenges and applications 1 S[35]
C: International conference on software engineering and knowledge engineering 2 S[15, 24]
C: International computer software and applications conference 2 S[16, 17]
C: IEEE international working conference on source code analysis and manipulation 2 S[27, 32]
C: ACM joint european software engineering conference and symposium on the foundations of software engineering 1 S[36]
C: International conference on software maintenance and evolution 1 S[5]
C: International conference on software quality, reliability and security 1 S[12]
C: International conference on neural information processing 1 S[9]
C: International conference on evaluation and assessment in software engineering 1 S[34]
C: IEEE international symposium on parallel and distributed processing with applications 1 S[11]
C: Asia-Pacific symposium on internetware 1 S[4]
C: International conference on evaluation of novel approaches to software engineering 1 S[2]
C: International conference on software analysis, evolution and reengineering 1 S[3]
C: International joint conference on neural networks 1 S[7]
C: IEEE region 10 conference 1 S[8]
C: International conference on advanced information networking and applications 1 S[13]
C: International conference on reliability, Infocom technologies and optimization (trends and future directions) 1 S[20]
C: International conference on mining software repositories 1 S[23]
C: International conference on dependable systems and their applications 1 S[26]
C: Jubilee international convention on information, communication and electronic technology 1 S[30]
C: International conference on computer and information technology 1 S[33]
C: International conference on software technologies 1 S[28]
Fig. 4. The critical considerations in CSD data preparation (RQ1). The number of papers for each category is indicated.
4.1. Data requirements

When constructing high-quality datasets to train and evaluate DL-
based code smell detection models, it is crucial to determine which
programming language code will undergo smell detection and the
specific types of code smells to be detected. Moreover, we should also
consider the code smell detection scenario, i.e., whether to use within-
project or cross-project data to build the datasets. Therefore, three key
factors should be considered when preparing datasets for code smell
detection research: programming language, code smell type, and code
smell detection scenario.

Programming language: The choice of programming language is an es-
sential early decision in dataset construction. Several aspects influence
this choice, including the availability of openly accessible code samples
and the types of code smells to be studied for that particular language.
As depicted in Fig. 5, our analysis shows that the vast majority of papers
[S1–12, S14–18, S20–31, S33–36] utilize Java datasets due to the
widespread use of the Qualitas Corpus — an open-source collection of
Java projects. The higher availability of Java datasets helps accelerate
6

research in this area. Besides, two papers [S14, S34] focus on C# to
investigate the feasibility of transfer learning across languages. There is
one paper [S32] studying Python datasets and one paper [S19] study-
ing UML datasets, where [S32] specifically examines Python security
smells, and [S19] studies the presence of functional decomposition in
UML models of object-oriented software. S13 does not provide details
on the programming language studied or the dataset used, which is not
categorized within this section.

Code smell type: Another critical consideration is the types of code
smells. In our study, we categorize the code smells into the Class level,
the Method level, and the code smells that are relevant to Both levels.
The Class level code smells typically pertain to the design and structure
of entire classes, which concerns class-level refactoring or redesign.
The Method level code smells are usually related to the internal imple-
mentation and behavior of the methods or functions, which concerns
refactoring or decomposition of the methods. The Both level represents
code smells that may result in both class- and function-level refactoring.
We list the details of the Method level code smells, the Class level, and
the Both level code smells in Table 7.

As can be seen, certain code smell types have garnered considerable

attention from researchers, with four prevalent types covered by ten or



The Journal of Systems & Software 216 (2024) 112131F. Zhang et al.
Fig. 5. The frequency of programming languages addressed in analyzed primary
studies.

Fig. 6. The distribution of code smell detection scenarios in analyzed primary studies.

more papers. Among them, Feature Envy is the most investigated code
smell, which denotes methods that access the data of another object
rather than its data. Another prevalent code smell God Class1 means
classes that have many members and implement different behaviors.
The Long Method code smell refers to the methods that are too long and
contain too much code logic. And Data Class means a class containing
only data fields and methods. The prevalence of these code smell types
can be attributed to their distinctiveness, ease of identification, and
relatively large number of samples in real-world codebases.

However, some code smell types have not received enough atten-
tion. One of them is Type checking, which means frequently using type
checking to determine the type of an object. Another example is Dummy
handler, an exception handler that only logs an error message without
taking any meaningful corrective actions. Notably, there has been a
recent effort (Tarwani and Chug, 2022) studying these code smells
to broaden the scope of experimental research and enhance empirical
investigations in these domains.

Code smell detection scenario: There are three main CSD scenarios. First
is within-project detection, splitting a project into the training and
testing data with no intersection. The second is cross-project detection.
Contrary to the previous, the training and testing data come from
different projects. This approach solves the problem of lacking enough
training data from a single project. The third is mixed-project detection,
which utilizes mixed data from multiple projects to get the training
and testing data partitions. In this way, it can create enough data for
training and evaluation. We categorize the reviewed papers based on
their CSD scenario and draw a pie chart in Fig. 6. We can find that
23 papers [S1–4, S7, S9, S12–13, S15, S17–23, S25–27, S29–30, S32–
33] belong to the within-project scenario; Ten papers [S5–6, S8, S11,
S14, S16, S28, S34–36] belong to the cross-project scenario; And three
papers [S10, S24, S31] belong to the mixed-project scenario. Within-
project detection is the most popular practice for training and testing
CSD models. There is a scarcity of papers using mixed-project datasets
because unifying the feature extraction from different projects is still
an open challenge.

1 Also known as the Blob Class, which is studied in [S7, S9, S13, S33].
7

4.2. Data collection

The primary considerations during data collection vary based on the
data source, which we categorize as real-world, synthetic, or mixed.

Real-world data: Most studies [S1–5, S7–9, S12–15, S18–22, S24–25,
S27–28, S30, S32–36] utilize real-world data by collecting open-source
projects/repositories or using existing datasets. Real-world data is the
best testbed for validating CSD techniques in practical applications. The
most commonly used dataset is Qualitas (Tempero et al., 2010), which
contains many Java open-source projects. It is used by five papers
[S2, S4, S21, S25, S27]. Other well-processed corpora are constructed
using multi-lingual source code from Github, Bitbucket, Apache, etc.
Examples include LandFill (Palomba et al., 2015) [S7, S9], MUSE (Yu
et al., 2021) [S12], MLCQ (Madeyski and Lewowski, 2020) [S30],
CodeXGlue (Lu et al., 2021) [S32], and the Benchmark (Sharma et al.,
2021) [S14, S34]. Furthermore, there is also a study [S19] investigating
alternative data type, using the Img2UML (Karasneh and Chaudron,
2013) corpus, which consists of XMI file of the UML class models
parsed from images. Utilizing these real-world datasets is crucial in CSD
research as they provide valuable insights into the complexities and
challenges faced in practical software development.

Synthetic data: In the context of CSD, researchers need to generate
synthetic data to tackle challenges like insufficient real-world code
smell samples or severe data imbalance. We identify six papers [S6,
S11, S17, S23, S26, S29] using synthetic methods to overcome these
challenges. They usually follow a unified process for synthesizing the
needed data. The first is to collect usable code snippets. The second
is to assess whether each code snippet can be transformed into a code
smell. The final step is to generate positive and negative samples using
the identified code snippets in the second step. Negative samples are
the unchanged code snippets. Positive samples are artificially altered
fragments of the original code to make it smelly. For example, to create
feature envy smells, they can perform unnecessary move refactoring,
moving methods from one class to another (Liu et al., 2019).

Mixed data: Another way to create datasets is to mix real-world and
synthetic data. This is typically employed to address the challenge
of having limited samples while preserving real-world data distribu-
tion (Di Nucci et al., 2018). Our survey identifies three papers [S10,
S16, S31] that use mixed data. Specifically, [S10] mixes the real-world
data from the Qualitas and synthetic data. [S16] mixes synthetic data
created by Liu et al. (2019) with real-world data from the LandFill (Ren
et al., 2021). [S31] mixes real-world (Arcelli Fontana et al., 2016;
Sousa et al., 2017) and synthetic datasets (Liu et al., 2019) from pre-
vious references used. These mixed datasets provide researchers with a
valuable resource for conducting experiments that balance real-world
complexity’s benefits with synthetic data’s controlled environment.

4.3. Data labeling

The scale and quality of data labeling significantly influence the
results and reliability of empirical studies. We summarize three label-
ing methods for constructing CSD datasets: automatic, manual, and
semi-automatic ways.

Automatic: A common practice of labeling CSD datasets is using au-
tomatic tools. Such practice can bring several benefits, including con-
venience and time efficiency (Liu et al., 2019). 17 papers [S4–6, S8,
S10–13, S15, S21–24, S26, S29–30] use automatic tools to label the
datasets. One of the frequently used tools is JDeodorant (Tsantalis
et al., 2008). It is an Eclipse plug-in that detects code smells in Java
software and recommends appropriate refactorings to resolve them.
For the moment, the tool supports five code smells, namely Feature
Envy, Type/State Checking, Long Method, God Class, and Duplicated Code.
Another example is Checkstyle (Checkstyle, 2013), which is a develop-
ment tool for Java, which checks many aspects of the source code. It



The Journal of Systems & Software 216 (2024) 112131F. Zhang et al.
Table 7
The code smell types addressed in analyzed studies.

Code smell type Description Study

Method level

Feature Envy Methods accessing another object’s data. S[1–2, 4, 6–7, 9, 11, 14–15, 17, 20–21, 23, 25–26, 29–30, 34–36]
Long Method Methods with excessive code logic. S[2, 6–7, 9, 13, 20–21, 23–25, 30]
Complex Method Methods with high cyclomatic complexity. S[14, 24, 34]
Empty Catch Block Empty exception catch blocks. S[15, 20, 24]
Brain Method Methods concentrating class intelligence excessively. S[8, 22, 35]
Complex Conditional Long or complex conditional expressions. S[14, 24, 34]
Member Ignoring Method Ordinary methods not accessing member attributes. S[12–13]
Internal Getter and Setter Methods accessing properties via get/setters. S[12–13]
Long Parameter Lists Methods with excessively long parameter lists. S[24, 27]
Magic Number Unexplained numeric literals in expressions. S[24]
Type checking Frequent object type checking. S[20]
Shotgun Surgery Similar changes in multiple places for requirements. S[22]
Over logging Excessive logging causing large log files. S[20]
No Low Memory Resolver Lack of proper low memory handling. S[13]
Nested try statement Multiple layers of nested try-catch blocks. S[20]
Linguistic Antipatterns Poor language in code, comments, or documentation. S[3]
Exception in finally block Throwing exceptions within a finally block. S[20]
Dummy handler Handling exceptions by just printing error messages. S[20]
Careles Cleanup Mishandling exceptions or resource leaks in cleanup. S[20]
SpaghettiCode Confusing and intricate code structure. S[33]
Intensive Coupling Methods calling too many other member methods. S[35]
Extensive Coupling Methods calling scattered member methods. S[35]
Switch Statements Heavy use of switch statements. S[27]
Long Identifier Excessively long identifiers. S[24]
Long Statement Individually lengthy statements. S[24]
Missing default Lack of a default case branch in switch statements. S[24]

Class level

God Class (Blob Class) Classes with numerous behaviors. S[1–2, 5, 7, 9, 10, 13, 16, 20–21, 25, 33, 35]
Data Class Classes containing only fields and access methods. S[1–2, 21–22, 25, 35]
Large Class Classes with many methods and data members. S[1, 6, 23, 31]
Multifaceted Abstraction Classes having multiple responsibilities. S[14, 34]
Misplaced Class Classes improperly distributed. S[6, 23]
Leaking Inner Class Inner classes referencing outer classes. S[12–13]
Brain Class Overly complex classes. S[8, 22]
Swiss Army Knife Classes using multiple interfaces for functionalities. S[13, 33]
Functional Decomposition Class functionality spread across multiple classes. S[19, 33]
Unprotected main Core logic in an unprotected main function. S[20]
Parallel Inheritance Hierarchies Inheritance tree dependencies. S[1]
Lazy Class Classes not performing enough. S[1]
Insufficient Modularization Incomplete class decomposition. S[15]
Deficient Encapsulation Over-permissive member accessibility. S[15]
Complex Class Classes with intricate logic. S[13]
Schizophrenic Class Classes with unrelated functions. S[35]
Refused Parent Bequest Subclasses resisting parent class methods. S[35]

Both level

Design Smell Poor design choices in software systems. S[18, 28]
Security Smells Potential security holes or vulnerabilities in the code. S[32]
Table 8
The summary of the automatic tool for code smell detection.

Tool Code smell Study

JDeodorant (Tsantalis et al., 2008) Feature Envy, Type/State Checking, Long Method, God Class,
Duplicated Code

S[5–6, 11–12, 16, 18, 22, 26, 28, 29, 36]

iPlasma (Marinescu et al., 2005) Duplicated Code, God Class, Feature Envy, Refused Bequest S[2, 4, 8, 10, 16, 21, 22, 25]
PMD (PMD, 2017) Large Class, Long Method, Long Parameter List, Duplicated Code S[2, 10, 12, 21, 25, 28]
AntiPattern (Wieman, 2011) Data Class, Feature Envy, Long Method S[2, 10, 21, 25]
Checkstyle (Checkstyle, 2013) Large Class, Long Method, Long Parameter List, Duplicated Code S[12]
UCDetector (Ucdetector, 2008) Data Class, Large Class, Long Method, Long Parameter List, Message

Chains, Refused Bequest, Speculative Generality, Tradition Breaker
S[12]
can find class and method design problems. It also has the ability to
check code layout and formatting issues. We provide a summary of all
identified automatic tools in Table 8.

Manual: Manual labeling is time-consuming and labor-intensive, de-
manding substantial human resources and specialized knowledge. How-
ever, manual effort is sometimes necessary because humans can easily
8

generalize to different domains and achieve higher reliability. We
identify six papers [S1, S7, S9, S17, S19–20] that manually label the
datasets. The manual labeling process first requires experts to manually
analyze the source code based on various code smells. Secondly, addi-
tional experts are required to validate the accuracy of the previously
identified smelly samples. Any disputed samples should be reviewed
again with respect to code smell definitions, source code, and change



The Journal of Systems & Software 216 (2024) 112131F. Zhang et al.

S
t
t
a
b
c
i
K
a
m
r
a

4

s
c

C
n
l
l
b
f
f
e
S
u
s

R

Table 9
The summary of data challenge in CSD.

Challenge Description Study

Data Scarcity ⋅ Lack of large, real-world datasets to train DL models. S[3, 5–6, 14, 16, 22, 36]
⋅ Synthetic data cannot represent real code smells. S[6, 11, 16–17]

Limited Generalization Ability ⋅ A single programming language during training hinders model generalization. S[1, 3, 7, 12, 15, 22, 24–25, 28, 30, 32, 36]
⋅ Including only a few code smell types in datasets restricts models from
detecting other smell types.

S[1, 5–6, 9, 12, 15-18, 22, 25, 30, 32, 35]

⋅ Using datasets solely from open-source projects limits generalizing to
proprietary codebases.

S[2, 7, 15, 18, 28, 35]

Limited Data Accessibility ⋅ Lack of clarity about dataset construction makes it difficult to reproduce. S[3, 8, 13–15, 22, 24, 28–30]
⋅ Using private datasets limits independent validation and extension of
approaches.

S[6]

Heavy Expert Dependency ⋅ Manual labeling by domain experts is crucial but demanding given the scale
of needed datasets.

S[3, 6, 14, 17–18, 26, 34, 36]

Difficulty of Data Labeling ⋅ Labeling is time-consuming and error-prone, with challenges in accuracy for
automated labeling and potential noise in human labels.

S[5–6, 18, 24, 36]

Data Imbalance ⋅ Uneven distribution of code smell samples hinders model training. S[4, 12–16, 21–23, 25, 27–28, 31, 33]
Redundancy ⋅ Duplicate samples inflate dataset sizes without adding value for learning. S[2, 14–15]

⋅ Redundant and uninformative features makes model training more difficult. S[2, 13, 21, 27]
history information to reach a conclusion. Such protocol enhances the
reliability and reduces the subjectivity of the labeling process (Palomba
et al., 2015).

Semi-automatic: There are 13 papers [S2–3, S14, S16, S18, S25, S27,
31–36] that explore a hybrid approach that combines both methods
o address the reliability issue associated with automatic labeling and
he labor-intensive nature of manual labeling. Generally, they use
utomatic tools to label all samples and verify the labeled results
y experts. Specifically, a subset of samples regarding code smells is
hosen for individual analysis by multiple experts. The experts perform
ndividual analyses without discussing them with others. Then, Cohen’s
appa is calculated to measure inter-expert agreement. Disagreements
re discussed to reach a consensus on a final labeled set. Finally, the
anually labeled results are compared to the automatic tools’ labeled

esults. If the differences are negligible, the dataset labeled by the
utomatic tools for all samples is ultimately adopted.

.4. Data cleaning

The final stage of data preparation is data cleaning. Though not all
tudies comprehensively address this stage, we identify two prevalent
leaning steps involving code noise and data redundancy.

ode noise: Six papers [S3, S18, S21, S27–28, S33] indicate that code
oise may introduce irrelevant or erroneous information that can mis-
ead models. [S21, S27–28] identifies several noise types, including out-
iers, missing data, and mismatching feature types. Textual noise like
lank lines and non-ASCII characters are also found in [S3]. [S18, S27]
ind that incomplete or erroneous data sessions and non-normalized
eatures can introduce additional noise. Object data types instead of
xpected numerical types are also identified in one dataset [S33].
uch noise can be removed through pre-processing to improve dataset
sability for CSD models, which will be detailed in the subsequent
ections of this survey.

edundancy: Data redundancy refers to identical or highly similar code
samples and redundancy features. This adversely impacts analysis and
model performance. To mitigate these effects, two papers [S14–15]
remove duplicate code samples from identical code files or fragments.
Nine papers [S6, S9–10, S13, S18–21, S25] use various feature selection
methods to remove redundant features, including:

• Convolutional Neural Networks (CNN): Applied in [S6, S10, S18,
S21], CNNs are leveraged for their ability to automatically iden-
tify and discard redundant features through generalizing from
9

relevant data.
• Gain Ratio: Utilized in [S9, S21], the gain ratio is an extension
of the information gain criterion, which normalizes the infor-
mation gain by the intrinsic information of a split, making it
effective in choosing features that provide the most significant
discrimination.

• Cross-Correlation Analysis: As described in Podobnik and Stanley
(2007) and used in [S13], this method involves analyzing the
cross-correlation function to identify and eliminate features that
exhibit high redundancy with other features.

• Chi-Square Test: Employed in [S19, S25], the chi-square test
evaluates the independence of features with respect to the target
variable, enabling the selection of features that have a statistically
significant association with the outcome, thus removing irrelevant
or redundant features.

• Information Gain: Applied in [S20], information gain measures
the reduction in entropy or uncertainty by partitioning the data
according to different features, helping to identify and retain the
most informative features.

5. RQ2 - Challenges in CSD data preparation

This section presents seven prominent challenges encountered by
researchers during the creation of CSD datasets, including Data Scarcity,
Limited Generalization Ability, Limited Data Accessibility, Heavy Expert
Dependency, Difficulty of Data Labeling, Data Imbalance, and Data Redun-
dancy. Each challenge presents a unique hurdle in the quest for effective
DL-based CSD. We briefly summarize these challenges in Table 9.

5.1. Data scarcity

Data scarcity in DL-based CSD refers to the inadequacy of available
real-world data for training and testing DL models. Seven papers [S3,
S5–6, S14, S16, S22, S36] point out this issue. In cases where the
datasets lack sufficient samples, the model may struggle to acquire
essential features and patterns, ultimately leading to a decline in perfor-
mance (Fakhoury et al., 2018; Sharma et al., 2021). For example, [S5]
states that their sample size may limit the generalizability of the results
and hope further to evaluate the approach on a larger set of systems. In
addition, several researchers have opted to use synthetic datasets due to
the scarcity of real-world data. These synthetically generated datasets
are large in size and low in labor effort. However, four papers [S6,
S11, S16–17] argue that these synthesized datasets can threaten the
validity of the proposed methods. It is underscored that the generated
data could be significantly different from real-world code smells (Yin
et al., 2021). The generated smelly samples are essentially different
from real-world ones that are often more challenging to identify (Liu

et al., 2019).



The Journal of Systems & Software 216 (2024) 112131F. Zhang et al.
5.2. Limited generalization ability

The limited generalization ability of CSD models is related to the
single programming language of the dataset, the limited number of
code smell types, and the choice of data source. Several papers [S1,
S3, S7, S12, S15, S22, S24–25, S28, S30, S32, S36] find that the pro-
gramming language of training data affects model effectiveness. Ramos
et al. (2022) also find that Python models have lower performance in
transfer learning. This performance degradation becomes even more
pronounced when evaluated on datasets containing switch statements.
In addition, several papers [S1, S5–6, S9, S12, S15–18, S22, S25, S30,
S32, S35] have focused on the different code smell types in the datasets.
For example, three papers [S12, S22, S35] recognize performance
degradation when applying their approach to other code smells. Six
papers [S2, S7, S15, S18, S28, S35] indicate that the choice of dataset
sources can also limit the generalization ability of models. [S2] points
out that using only datasets collected from open-source projects cannot
generalize to close-source industrial projects. The narrowed scope of
datasets and classification scenarios may lead to model performance
degradation in unseen contexts.

5.3. Limited data accessibility

The limited data accessibility refers to the unreproducible or un-
available datasets used in CSD. Many papers [S3, S8, S13–15, S22, S24,
S29–30] do not provide access to their source code or the constructed
datasets. Some even do not reveal the dataset construction details.
For example, [S6] uses private libraries to build datasets. While other
researchers cannot access the same datasets to validate or extend the
study. Lack of reproducibility in scientific research means reduced
impact of the results (Lewowski and Madeyski, 2022). For example, it
is difficult for the industry to trust, invest in, or apply ideas or findings
that cannot be replicated in practice. We suggest that future studies
should select publicly available and representative data sources when
constructing the datasets to ensure that the study is replicable, scalable,
and widely applicable.

5.4. Heavy expert dependency

Heavy Expert Dependency refers to the manual labeling of the code
smell datasets described in the previous subsection, which imposes
a substantial demand for expertise on the experts (Ho et al., 2023).
Many papers [S3, S6, S14, S17–18, S26, S34, S36] have mentioned that
data experts should deeply understand the distinct characteristics and
intricate concepts underpinning various code smell types. For example,
[S17] proposes to train inspectors and enhance their conceptual and
cognitive grasp of the code smell domain, evaluating their aptitude to
select excellent graduate students for the manual evaluation. Moreover,
it is worth noting that the identification of certain complex code smells
can pose formidable challenges to researchers. These intricacies can
make the task exceedingly difficult. Even experts can find it hard
to agree on the presence of a smell sample (Palomba et al., 2015).
For example, Bavota et al. (2013) invite 105 experts to evaluate all
refactoring suggestions generated by their models and identify whether
they agree with the smelly samples. Results show that 44% of the
experts disagree with each other.

5.5. Difficulty of data labeling

Data labeling poses unique challenges for code smell detection, in-
cluding time costs for manual labeling, accuracy issues with automatic
approaches, and potential label noise. Five papers [S5–6, S18, S24, S36]
emphasize difficulties with manual and automatic labeling. Manually
building labeled datasets is time-consuming due to the extensive effort
required [S5]. Though automatic labeling could help with scale, tools
10

have limitations related to predefined heuristics and lower accuracy
than human judgments [S6]. Label noise originating during dataset
construction also impacts quality. Manual labeling relies on subjective
developer perspectives and inconsistent interpretations of smell defini-
tions, which can lead to ambiguous or conflicting labels for the same
code [S7, S33, S35]. To experiment on manually validated datasets,
[S5] observes significant performance decreases compared to generated
data. This highlights the risk of models overfitting to potentially noisy
human-generated labels. In summary, both manual and automatic ap-
proaches present difficulties that hinder effective labeling at scale. The
subjective nature of code smells also makes datasets susceptible to label
noise. These challenges point to the need for labeling methods that
balance accuracy, efficiency, and consistency in dataset construction.

5.6. Data imbalance

Data imbalance refers to an uneven distribution of code smell
samples within datasets, where smelly samples are generally outnum-
bered by non-smelly code. Such imbalance poses challenges for model
training and performance (Gong et al., 2019; Yu et al., 2017; Feng et al.,
2021). For example, the widely-used dataset Qualitas [S2, S10, S21,
S25, S27] exhibits a significant imbalance, containing only 33% smelly
samples. Some datasets are even more skewed, with four studies [S5,
S11, S16–17] utilizing data comprising just 2% smelly samples. [S28]
indicates severe performance degradation caused by data imbalance.
And [S6] highlights imbalance slows down model convergence during
training due to the overabundance of non-smelly samples, prolonging
the training time. Moreover, models trained on such imbalanced data
tend to over-predict samples as non-smelly, which hinders the detection
of the underrepresented yet important smelly samples.

5.7. Data redundancy

Data redundancy refers to duplicate or overlapping samples and
features within datasets used for model training (Li et al., 2023a;
Jian et al., 2019). Sample redundancy means multiple identical code
samples exist in the dataset. Several papers [S2, S14–15] observe this
occurrence. Redundant samples unnecessarily consume storage and
computational resources during training, as they provide no additional
value (Xu and Zhang, 2021; Sharma et al., 2021). Redundant features
refer to excessive or overlapping code smell features within the dataset.
Overlapping features can complicate models and hurt performance, as
highlighted by [S2]. Such redundancy can arise when feature extraction
tools derive similar code smell features from source code. We identify
four papers [S2, S13, S21, S27] that initially use such tools to charac-
terize code smells and construct deep learning models based on these
extracted features.

5.8. The interplay of challenges

In previous discussion, we have addressed each identified challenge
in isolation to explain their specific impacts and solutions. However,
it is crucial to recognize that these challenges often do not occur
independently but interplay in ways that can compound their effects.
For example, data scarcity often leads to a disproportionately smaller
number of smelly instances than non-smelly instances within datasets,
thereby exacerbating data imbalance (referenced in [S14, S16]). Sim-
ilarly, heavy reliance on expert knowledge not only hinders the effi-
ciency of data labeling but also contributes to overall data scarcity,
further complicating the challenges (as noted in [S6, S18, S36]). Fur-
thermore, issues such as limited data accessibility combined with high
data redundancy can severely limit the generalization ability of the
solutions (discussed in [S3, S6, S15, S22, S24, S28, S30]).

To effectively tackle these multifaceted problems, it is apparent
that solutions need to be designed with an understanding of these
dynamics. Therefore, we propose that a more systematic approach,
possibly incorporating integrated solutions, is essential to address the
interrelated challenges comprehensively. This holistic perspective is
crucial for developing robust and effective strategies to address the
complexities.



The Journal of Systems & Software 216 (2024) 112131F. Zhang et al.
Fig. 7. The mappings between three research questions.
6. RQ3 - Solutions presented in the literature

The previous sections have outlined several key challenges in con-
structing datasets for DL-based CSD. This section summarizes solutions
presented in the literature for mitigating these issues. Fig. 7 summarizes
the solutions we have identified and marks the challenges in RQ2
that they address. The following analysis examines these proposed
approaches, assessing their potential, as well as their limitations.

6.1. Utilizing cross-project data

(Target Challenges in RQ2: Data Scarcity, Limited Generalization Ability,
and Heavy Expert Dependency)

Leveraging data from multiple software projects is an approach for
constructing more high-quality datasets (Yu et al., 2018; Xu et al., 2019;
Gong et al., 2019). We identify 13 papers [S5–6, S8, S10–11, S14, S16,
S24, S28, S31, S34–36] that apply this approach to address challenges
related to manual dataset creation efforts. Key benefits of cross-project
datasets include improved efficiency, diversity, and generalizability.

Specifically, drawing from various codebases significantly reduces
time and resources spent on manual labeling compared to single-
project datasets (Barbez et al., 2019). This approach also seamlessly
accommodates differing languages and smell types to address dataset
homogeneity issues (Sharma et al., 2021). Moreover, validating models
across projects further enhances their assessed generalizability. Rather
than overfitting to narrow contexts, cross-project datasets support iden-
tifying smells in new codebases. This confirms a model’s versatility
versus the limitations of project-specific evaluations.

In summary, utilizing multi-project sources presents an effective
strategy for constructing more high-quality, diverse, and representa-
tive datasets. The enhanced scale, heterogeneity, and generalizability
provided by cross-project data help advance research by enabling the
development of detection models applicable to broad codebase popu-
lations. This solution directly addresses key challenges around dataset
construction efforts.

6.2. Two-phase data utilization

(Target Challenges in RQ2: Data Scarcity, Heavy Expert Dependency, and
Difficulty of Data Labeling)

Aiming to enhance model performance, there are ten papers [S2–3,
S14, S18, S25, S27, S32, S33–35] employing a two-phase pre-training
and fine-tuning approach.

During pre-training, models learn patterns from synthetically gen-
erated data. This provides a foundation of code smell characteristics
despite potential differences from real data distributions. The primary
goal is exposure rather than perfect replication. Subsequently, fine-
11

tuning involves further refining the model using real-world datasets.
Adjusting the learnable parameters of deep learning models helps
specialize them to real-world code smells.

Research has shown deep learning can cope with noise in train-
ing data (Liu et al., 2019). Thus, synthetic data facilitates dataset
expansion while fine-tuning addresses challenges of low reliability
and scarce real-world examples. Pre-training establishes a general un-
derstanding before fine-tuning customizes performance for real-world
accuracy (Ren et al., 2021). Overall, this staged process maximizes the
value of generated data. The two-phase approach cultivates models ca-
pable of detecting smells across diverse codebases addressing practical
scenarios. By integrating synthetic and real data synergistically, this
strategy helps advance the field.

6.3. Resampling imbalanced data

(Target Challenges in RQ2: Data Imbalance)
Data resampling aims to address the imbalance by rebalancing class

distributions. The appropriate technique depends on the imbalance
severity and requirements.

We identify 14 papers [S4, S12–16, S21–23, S25, S27, S31, S33,
S36] exploring resampling. The approach used by most studies [S4,
S13, S21, S25, S27, S33] is Synthetic Minority Over-sampling
TechniquE (SMOTE) (Chawla et al., 2002). This oversampling tech-
nique generates synthetic smelly samples to help balance the datasets.
Apart from SMOTE, one study [S23] uses fuzzy sampling, and [S22]
develops an automatic refactoring tool to transform non-smelly samples
into smelly ones. Five papers [S12, S14–16, S36] apply undersampling
to reduce the non-smelly samples.

6.4. Semi-automatic labeling

(Target Challenges in RQ2: Difficulty of Data Labeling)
To address labeling challenges, 14 papers [S2–3, S14, S16, S18,

S25, S27–28, S31–36] apply a semi-automatic methodology combining
automatic tools with manual validation for high-quality labeled data.

Generally, this approach uses automatic tools to label all samples
and verifies the results that are labeled by experts. Specifically, multiple
experts chose a subset of samples for individual analysis regarding
code smells. The experts perform individual analyses without discussing
them with others. Then, Cohen’s Kappa is calculated to measure inter-
expert agreement. Disagreements are discussed to reach a consensus on
a final labeled set. Finally, the manually labeled results are compared
to the automatic tools’ labeled results. If the differences are negligible,
the dataset labeled by the automatic tools for all samples is ultimately
adopted.

This approach not only facilitates large-scale labeling but also
ensures quality through expert verification. For instance, study S[2]
achieves balanced datasets by integrating tool-based advice with expert
validation, demonstrating improved robustness in model performance.



The Journal of Systems & Software 216 (2024) 112131F. Zhang et al.

p
M
t
c
r
b
l
d
p
t
h

7

e
r
a

D

Similarly, S[16] and S[36] underscore the method’s efficacy in refin-
ing datasets for enhanced model learning outcomes. Such empirical
evidence highlights the semi-automatic approach as both effective and
efficient.

6.5. Data cleaning

(Target Challenges in RQ2: Data Redundancy)
The goal of cleaning is to derive datasets optimized for accurate de-

tection. Data cleaning involves removing redundancy, inconsistencies,
and irrelevant content. Our survey identifies several common cleaning
methods, including:

• Comment/blank line removal to filter non-code contextual data
[S3, S21, S27].

• Missing value imputation or sample removal to handle gaps [S21,
S27–28].

• Outlier detection/replacement to manage abnormal distributions
[S21, S27].

• Data type conversion to fix incorrect format [S33].
• Feature scaling/normalization to standardize attribute ranges

[S18, S27–28].
• Feature selection techniques to remove redundancy features [S6,

S9–10, S13, S18–21, S25].
• De-duplication to remove replicate samples [S27].

These techniques facilitate downstream smell feature capture by
runing problematic samples and preparing clean, consistent data.
odels can then better learn from focused, high-quality inputs. No-

ably, S[9] and S[13] have shown that careful feature selection is
rucial for model accuracy. Further, S[20] and S[25] demonstrate that
educing feature redundancy not only improves model performance
ut also reduces computational demands. Additionally, S[33] high-
ights the significant performance enhancements achievable through
ata standardization, affirming the critical role of these techniques in
reparing high-quality datasets for deep learning. Further refinement of
hese cleaning practices remains an active area of research to develop
igh-quality CSD datasets.

. Recommendation

Fig. 7 summarizes our findings on key data preparation consid-
rations, challenges, and potential solutions based on the literature
eview. This section aims to provide recommendations for researchers
nd practitioners guided by these results.

evelop datasets across languages and sources. Most papers [S1–12,
S15–33, S35] focus on a single programming language, limiting exter-
nal generalizability and cross-language applicability. Only two papers
[S14, S34] examined transfer learning across languages. Manual dataset
creation also poses expertise and labor challenges. Automated gen-
eration relies on subjective tools restricting new smell detection. To
address these, we recommend utilizing cross-project datasets leveraging
multiple codebases. This reduces manual effort while enhancing the
diversity of languages and smells represented. Researchers should also
focus on expanding language support beyond the dominant Java studies
to enable transfer learning assessments. We further suggest applying
a two-phase pre-training and fine-tuning strategy. This marries the
benefits of plentiful synthetic data for pre-training with refinement on
real-world examples, improving generalizability.

Standardize cross-study dataset. Lack of consistency hinders
reproducibility and progress. Researchers should consider standardiz-
ing aspects like identifier naming, feature representations, and meta-
data tracking across publically available datasets. This will facili-
tate continued research efforts on cross-dataset challenges. Integrating
dataset construction into end-to-end pipelines also helps. Many stud-
12

ies optimized individual preparation phases in isolation. Developing
consolidated pipelines covering data sourcing, labeling, cleaning, and
modeling could promote co-optimization of these interrelated tasks.
Automating pipelines would further decrease manual overhead. In
addition, we also recommend setting up centralized data reposito-
ries. Finding, preparing, and reusing existing datasets requires signif-
icant effort. Researchers should consider developing open centralized
repositories and standardized metadata to overcome these barriers.

Adopt semi-automated labeling approaches. Dataset labeling plays a crit-
ical role in the preparation process. While manual labeling guarantees
high accuracy, it requires significant time and expertise that risks
scalability issues (i.e., expertise requirements, labor intensity). Mean-
while, fully automated labeling raises accuracy concerns, especially
for complex smells. To address these challenges, we recommend in-
creased utilization of semi-automated labeling approaches. Combining
automated prior generation with expert validation, these hybrid meth-
ods capture the benefits of both worlds. They considerably reduce
manual effort compared to pure manual labeling while maintaining
relatively high-quality labels superior to fully automated techniques
alone. This makes semi-automated labeling particularly suitable for
training deep-learning models targeting complicated smell types. Ad-
ditionally, datasets constructed from publicly available sources may
not precisely represent industrial contexts due to project-specific dif-
ferences (i.e., external generalizability challenge). We thus suggest
practitioners leverage semi-automated strategies to build customized,
organization-focused datasets, improving application scenario reflec-
tion. Standardizing such hybrid workflows could advance research
reproducibility and industrial adoption of detection solutions.

Enhance data transparency and sharing. Current studies face data pri-
vacy and replicability challenges. Some datasets solely rely on open-
source repositories, introducing subjectivity issues. The inability to
fully access or reproduce original private databases also limits vali-
dation. We recommend researchers clearly document their full data
preparation process. This transparency allows others to comprehen-
sively understand and replicate methodologies. Researchers should also
utilize open data platforms to publicly share datasets while preserving
privacy. Key metadata around sources and quality assurances enhances
usability and trust for the research community. Establishing centralized
repositories incentivizing data contributions could help amass more
comprehensive benchmark resources. Engaging the industry collabo-
ratively in curating realistic problem snapshots likewise benefits the
field. Standardizing metadata schemas and licensing models promotes
long-term data maintenance. Proper governance balances privacy, re-
producibility, and continued community-driven progress in solving
critical problems. Overall, data availability remains paramount for
advancing this impactful research domain.

Establish data quality evaluation standards. Dataset quality impacts the
credibility and reproducibility of findings. As our review shows, some
papers exhibit class imbalance, limited generalizability, noise, and
redundancy. We recommend the research community develop a stan-
dardized set of data quality criteria. Metrics should assess the key
attributes mentioned above and more. For example, balance crite-
ria could specify acceptable sample size ratios between smells/non-
smells. Diversity standards may require code drawn from different
projects/domains to ensure representativeness. Noise and redundancy
checks aim to flag and remove problematic samples. Researchers should
systematically apply the proposed criteria when curating and publish-
ing datasets. Studies could also quantitatively benchmark resources
pre/post quality improvements to validate enhancement approaches.
Establishing clear quality baselines empowers comparative assessment
and continued refinement. It promotes replication by formalizing im-
portant methodological aspects. Overall, endorsed evaluation practices
can help judiciously manage preparation trade-offs and advance the

field through high-confidence shared resources.



The Journal of Systems & Software 216 (2024) 112131F. Zhang et al.
Potentials of large language models. Large Language Models (LLMs)
exhibit excellent zero-shot and in-context learning capabilities, can au-
tomatically leverage large-scale data, and are applicable across multiple
domains (Gutierrez et al., 2022). In software engineering, LLMs are
increasingly recognized for their utility in various applications. For
instance, in vulnerability detection, LLMs assist in identifying poten-
tial security risks (Akuthota et al., 2023), while in code completion,
they facilitate the automatic completion of code fragments based on
contextual cues (Roziere et al., 2023).

Specifically, in the realm of code smell detection, LLMs have the
potential to identify common code smell patterns by learning from
extensive code samples. This capability can aid programmers in de-
tecting and rectifying issues more efficiently. LLMs offer adaptability
across different programming languages and project scales compared
to existing techniques. Despite the current absence of research directly
combining LLMs with CSD, the potential for LLMs to reduce data
labeling workloads and tackle data scarcity challenges significantly is
compelling. This makes them a promising technology for addressing
the needs of high-quality CSD datasets.

Advancing CSD with proven data techniques. Various studies within the
software engineering field highlight the importance of robust data
preparation. Croft et al. (2022) discuss the challenges of data imbal-
ance and labeling noise, common to our own findings in Code Smell
Detection (CSD). They advocate for using class rebalancing and specific
data cleaning techniques, such as removing blank lines, non-ASCII char-
acters, comments from code, and duplicate code instances. A unique
approach they propose, which differs from our current methodology,
is the replacement of user-defined variables and function names with
generic tags to reduce code noise further. This strategy could poten-
tially enhance the generalizability of our CSD models by minimizing
overfitting to specific code styles or developer idiosyncrasies. According
to Yang et al. (2022), a classification of the dataset based on data types
— such as code data and metric data — is essential for maintaining
relevance and accuracy in data analysis. For code data, it is necessary to
filter out irrelevant elements while preserving valuable source code and
to remove duplicated instances that can skew the analysis. For metric
data, normalization is crucial when values span different orders of mag-
nitude, to ensure that no single metric disproportionately influences the
model. As explored by Shi et al. (2022), the development of automatic
data cleaning tools represents a significant advancement in handling
noisy data within software engineering projects. These tools utilize
heuristic rules to automatically identify and remove common issues
such as empty functions and duplicated code. Incorporating such tools
into our data preparation process could streamline our workflows and
improve the quality of our datasets, ultimately leading to more reliable
CSD detection models. We believe that integrating cross-disciplinary
techniques could improve the overall effectiveness and robustness of
CSD models.

8. Threats to validity

As with any systematic literature review, this study faces potential
threats to validity that could influence results and conclusions. We
classify threats based on construct, internal, external, and conclusion
validity (Zhou et al., 2016). While not exhaustive, reporting these
threats promotes transparency. The study’s context is DL-based code
smell detection techniques to establish a foundation for methodological
discussions over the specified period — general conclusions require
corroborating evidence. We aim to contextualize results by openly
reporting on these threats and mitigation efforts.

Construct validity. This is about the connection between the research
hypothesis and the findings associated with the RQs. Threats about
this category are usually related to the RQs, search strategy, and paper
13

selection process. To mitigate this threat, we create a comprehensive
paper selection strategy. Specifically, first, we use the search strings
and their alternative spellings and synonyms to ensure that most of the
key papers are retrieved. For example, some papers do not necessarily
include the term deep learning in the title, abstract, or keywords. We
may choose to use the name of the techniques (e.g., RNN or CNN) to
ensure that the search string is comprehensive. Second, we create a
paper quality assessment strategy to ensure retrieved papers satisfy the
RQs. Finally, we employ the snowballing (Wohlin, 2014) approach to
obtain further any relevant research that may have been missed.

Internal validity. This is related to the consistency of research findings.
In this survey, it mainly affects the results of the paper quality assess-
ment and data extraction. To mitigate this threat, we collaborate with
multiple authors to reduce subjectivity in the quality assessment and
data extraction processes. Specifically, during the quality assessment
phase, one author assesses the quality of all papers, and two other
authors validate the results. We will talk about any disagreements and
resolve them. Also, one author extracts the data during data extraction,
and the other authors validate the extracted data for all the papers. The
data are compared, and any conflicts are discussed and resolved.

External validity. This is related to the generalizability of the reported
results. This survey focuses on only one area of software engineering —
the data preparation process for DL-based CSD. Therefore, the results
cannot be generalized to other areas. Furthermore, deep learning is
a rapidly evolving field with new techniques being introduced every
day (Alazba et al., 2023). Our survey is limited to December 2023.
Results may not apply to ranges outside the timeline.

Conclusion validity. This is related to the likelihood of reproducing the
research and obtaining the same results. To mitigate this threat, we
describe the entire research process in detail, including the RQs, the
search string, the inclusion/exclusion criteria, the quality assessment
form, and the data extraction form. In addition, our findings, i.e., con-
siderations, challenges, and solutions, are based on data extracted from
the original papers. We ensure the integrity of our survey and the
reality of our findings through rigorous paper selection.

9. Conclusion

Through a systematic analysis of 36 relevant studies on data prepa-
ration approaches for deep learning-based code smell detection until
December 2023, our survey illuminates key aspects of the data prepa-
ration process. We explore considerations across the data requirements,
collection, labeling, and cleaning phases, as well as prevalent chal-
lenges and proposed solutions from the literature. Key challenges
identified include data scarcity, limited generalizability, difficulties
in labeling, data imbalance, and redundancy issues. The solutions
proposed focused on leveraging cross-project data, two-phase data
utilization, semi-automated labeling, resampling, and data cleaning
techniques. Based on these results, our primary recommendations
are for researchers to establish standardized practices around dataset
quality assessment, transparency, and centralized resources. We also
recommend techniques for practitioners to construct industrial-strength
datasets representative of real-world codebases. This systematic review
provides a foundation for rigorously evaluating CSD data prepara-
tion efforts. Adopting its recommendations aims to foster continued
optimizations towards better detection capabilities with real-world
application potential.

Limitations and future work. To address the limitations inherent in a
systematic literature review, we acknowledge the absence of empirical
validation of the recommendations made in this paper. While our
study provides a comprehensive synthesis of available literature on data
preparation processes for deep learning-based code smell detection, the
conclusions drawn remain hypothetical. Recognizing this, we commit
to staying updated on the latest developments in DL-based CSD. We
plan to conduct practical experiments and detailed case studies for



The Journal of Systems & Software 216 (2024) 112131F. Zhang et al.

V
r
W
&
e
W

D

c
i

D

A

F
C
s
r
9

R

A

A

A

A

A

A

A

A

A

A

A

B

empirical validation in future studies. Such empirical evidence will be
crucial to substantiate the effectiveness of the proposed solutions and
further advance the field.

CRediT authorship contribution statement

Fengji Zhang: Writing – review & editing, Writing – original draft,
Validation, Project administration, Methodology, Investigation, Data
curation, Conceptualization. Zexian Zhang: Writing – original draft,

alidation, Investigation, Data curation. Jacky Wai Keung: Writing –
eview & editing, Supervision, Project administration. Xiangru Tang:
riting – review & editing, Validation. Zhen Yang: Writing – review
editing, Validation, Investigation. Xiao Yu: Writing – review &

diting, Writing – original draft, Validation, Supervision, Investigation.
enhua Hu: Writing – review & editing, Validation, Supervision.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability

Data will be made available on request.

cknowledgments

This work is partially supported by the National Natural Science
oundation of China (62202350), the Natural Science Foundation of
hongqing, China (cstc2021jcyj-msxmX1115), and the General Re-
earch Fund of the Research Grants Council of Hong Kong and the
esearch funds of the City University of Hong Kong (6000796, 9229109,
229098, 9220103, 9229029).

eferences

frin, M., Asma, S.A., Akhter, N., Ridoy, J.H., Sauda, S.S., Taher, K.A., 2022. A hybrid
approach to investigate anti-pattern from source code. In: 2022 25th International
Conference on Computer and Information Technology. ICCIT, IEEE, pp. 888–892.

kuthota, V., Kasula, R., Sumona, S.T., Mohiuddin, M., Reza, M.T., Rahman, M.M.,
2023. Vulnerability detection and monitoring using LLM. In: 2023 IEEE 9th
International Women in Engineering (WIE) Conference on Electrical and Computer
Engineering. WIECON-ECE, IEEE, pp. 309–314.

l-Shaaby, A., Aljamaan, H., Alshayeb, M., 2020. Bad smell detection using ma-
chine learning techniques: a systematic literature review. Arab. J. Sci. Eng. 45,
2341–2369.

lazba, A., Aljamaan, H., Alshayeb, M., 2023. Deep learning approaches for bad smell
detection: a systematic literature review. Empir. Softw. Eng. 28 (3), 77.

lkharabsheh, K., Crespo, Y., Manso, E., Taboada, J.A., 2019. Software design smell
detection: a systematic mapping study. Softw. Qual. J. 27, 1069–1148.

llal, L.B., Li, R., Kocetkov, D., Mou, C., Akiki, C., Ferrandis, C.M., Muennighoff, N.,
Mishra, M., Gu, A., Dey, M., et al., 2023. SantaCoder: don’t reach for the stars!.
arXiv preprint arXiv:2301.03988.

mershi, S., Begel, A., Bird, C., DeLine, R., Gall, H., Kamar, E., Nagappan, N.,
Nushi, B., Zimmermann, T., 2019. Software engineering for machine learning:
A case study. In: 2019 IEEE/ACM 41st International Conference on Software
Engineering: Software Engineering in Practice. ICSE-SEIP, IEEE, pp. 291–300.

rcelli Fontana, F., Mäntylä, M.V., Zanoni, M., Marino, A., 2016. Comparing and
experimenting machine learning techniques for code smell detection. Empir. Softw.
Eng. 21, 1143–1191.

rdimento, P., Aversano, L., Bernardi, M.L., Cimitile, M., Iammarino, M., 2021a.
Temporal convolutional networks for just-in-time design smells prediction using
fine-grained software metrics. Neurocomputing 463, 454–471.

rdimento, P., Aversano, L., Bernardi, M.L., Cimitile, M., Iammarino, M., et al.,
2021b. Transfer learning for just-in-time design smells prediction using temporal
convolutional networks. In: ICSOFT. pp. 310–317.

zeem, M.I., Palomba, F., Shi, L., Wang, Q., 2019. Machine learning techniques for
code smell detection: A systematic literature review and meta-analysis. Inf. Softw.
Technol. 108, 115–138.

arbez, A., Khomh, F., Guéhéneuc, Y.-G., 2019. Deep learning anti-patterns from code
metrics history. In: 2019 IEEE International Conference on Software Maintenance
and Evolution. ICSME, IEEE, pp. 114–124.
14
Bavota, G., Oliveto, R., Gethers, M., Poshyvanyk, D., De Lucia, A., 2013. Methodbook:
Recommending move method refactorings via relational topic models. IEEE Trans.
Softw. Eng. 40 (7), 671–694.

Bhave, A., Sinha, R., 2022. Deep multimodal architecture for detection of long param-
eter list and switch statements using distilbert. In: 2022 IEEE 22nd International
Working Conference on Source Code Analysis and Manipulation. SCAM, IEEE, pp.
116–120.

Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P., 2002. SMOTE: synthetic
minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357.

Checkstyle, http://checkstyle.sourceforge.net.
Chen, Y., Huang, J., Mou, L., Jin, P., Xiong, S., Zhu, X.X., 2023. Deep saliency

smoothing hashing for drone image retrieval. IEEE Trans. Geosci. Remote Sens.
61, 1–13.

Chen, Y., Lu, X., Wang, S., 2020. Deep cross-modal image–voice retrieval in remote
sensing. IEEE Trans. Geosci. Remote Sens. 58 (10), 7049–7061.

Croft, R., Xie, Y., Babar, M.A., 2022. Data preparation for software vulnerabil-
ity prediction: A systematic literature review. IEEE Trans. Softw. Eng. 49 (3),
1044–1063.

Danphitsanuphan, P., Suwantada, T., 2012. Code smell detecting tool and code
smell-structure bug relationship. In: 2012 Spring Congress on Engineering and
Technology. IEEE, pp. 1–5.

Das, A.K., Yadav, S., Dhal, S., 2019. Detecting code smells using deep learning. In:
TENCON 2019-2019 IEEE Region 10 Conference. TENCON, IEEE, pp. 2081–2086.

Dewangan, S., Rao, R.S., Mishra, A., Gupta, M., 2022. Code smell detection using
ensemble machine learning algorithms. Appl. Sci. 12 (20), 10321.

Di Nucci, D., Palomba, F., Tamburri, D.A., Serebrenik, A., De Lucia, A., 2018. Detecting
code smells using machine learning techniques: are we there yet? In: 2018 Ieee
25th International Conference on Software Analysis, Evolution and Reengineering.
Saner, IEEE, pp. 612–621.

Fakhoury, S., Arnaoudova, V., Noiseux, C., Khomh, F., Antoniol, G., 2018. Keep
it simple: Is deep learning good for linguistic smell detection? In: 2018 IEEE
25Th International Conference on Software Analysis, Evolution and Reengineering.
SANER, IEEE, pp. 602–611.

Feng, S., Keung, J., Yu, X., Xiao, Y., Bennin, K.E., Kabir, M.A., Zhang, M., 2021.
COSTE: Complexity-based OverSampling TEchnique to alleviate the class imbalance
problem in software defect prediction. Inf. Softw. Technol. 129, 106432.

Fontana, F.A., Zanoni, M., 2017. Code smell severity classification using machine
learning techniques. Knowl.-Based Syst. 128, 43–58.

Fowler, M., 2018. Refactoring. Addison-Wesley Professional.
Gao, Y., Wang, X., He, X., Feng, H., Zhang, Y., 2023. Rumor detection with self-

supervised learning on texts and social graph. Front. Comput. Sci. 17 (4),
174611.

Garousi, V., Felderer, M., 2017. Experience-based guidelines for effective and efficient
data extraction in systematic reviews in software engineering. In: Proceedings
of the 21st International Conference on Evaluation and Assessment in Software
Engineering. pp. 170–179.

Gong, L., Jiang, S., Bo, L., Jiang, L., Qian, J., 2019. A novel class-imbalance learning
approach for both within-project and cross-project defect prediction. IEEE Trans.
Reliab. 69 (1), 40–54.

Grodniyomchai, B., Chalapat, K., Jitkajornwanich, K., Jaiyen, S., 2019. A deep learning
model for odor classification using deep neural network. In: 2019 5th International
Conference on Engineering, Applied Sciences and Technology. ICEAST, IEEE, pp.
1–4.

Guo, X., Shi, C., Jiang, H., 2019. Deep semantic-based feature envy identification. In:
Proceedings of the 11th Asia-Pacific Symposium on Internetware. pp. 1–6.

Gupta, H., Kulkarni, T.G., Kumar, L., Neti, L.B.M., Krishna, A., 2021. An empirical
study on predictability of software code smell using deep learning models. In:
International Conference on Advanced Information Networking and Applications.
Springer, pp. 120–132.

Gupta, A., Suri, B., Misra, S., 2017. A systematic literature review: code bad smells
in java source code. In: Computational Science and Its Applications–ICCSA 2017:
17th International Conference, Trieste, Italy, July 3-6, 2017, Proceedings, Part V
17. Springer, pp. 665–682.

Gutierrez, B.J., McNeal, N., Washington, C., Chen, Y., Li, L., Sun, H., Su, Y., 2022.
Thinking about gpt-3 in-context learning for biomedical ie? think again. arXiv
preprint arXiv:2203.08410.

Hadj-Kacem, M., Bouassida, N., 2018. A hybrid approach to detect code smells using
deep learning. In: ENASE. pp. 137–146.

Hadj-Kacem, M., Bouassida, N., 2019a. Deep representation learning for code smells
detection using variational auto-encoder. In: 2019 International Joint Conference
on Neural Networks. IJCNN, IEEE, pp. 1–8.

Hadj-Kacem, M., Bouassida, N., 2019b. Improving the identification of code smells by
combining structural and semantic information. In: Neural Information Processing:
26th International Conference, ICONIP 2019, Sydney, NSW, Australia, December
12–15, 2019, Proceedings, Part IV 26. Springer, pp. 296–304.

Hamdy, A., Tazy, M., 2020. Deep hybrid features for code smells detection. J. Theor.
Appl. Inf. Technol. 98 (14), 2684–2696.

Ho, A., Bui, A.M., Nguyen, P.T., Di Salle, A., 2023. Fusion of deep convolutional
and LSTM recurrent neural networks for automated detection of code smells. In:
Proceedings of the 27th International Conference on Evaluation and Assessment in
Software Engineering. pp. 229–234.

http://refhub.elsevier.com/S0164-1212(24)00176-6/sb1
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb1
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb1
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb1
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb1
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb2
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb2
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb2
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb2
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb2
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb2
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb2
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb3
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb3
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb3
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb3
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb3
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb4
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb4
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb4
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb5
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb5
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb5
http://arxiv.org/abs/2301.03988
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb7
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb7
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb7
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb7
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb7
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb7
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb7
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb8
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb8
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb8
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb8
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb8
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb9
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb9
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb9
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb9
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb9
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb10
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb10
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb10
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb10
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb10
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb11
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb11
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb11
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb11
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb11
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb12
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb12
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb12
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb12
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb12
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb13
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb13
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb13
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb13
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb13
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb14
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb14
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb14
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb14
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb14
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb14
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb14
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb15
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb15
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb15
http://checkstyle.sourceforge.net
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb17
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb17
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb17
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb17
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb17
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb18
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb18
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb18
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb19
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb19
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb19
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb19
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb19
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb20
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb20
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb20
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb20
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb20
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb21
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb21
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb21
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb22
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb22
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb22
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb23
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb23
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb23
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb23
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb23
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb23
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb23
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb24
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb24
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb24
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb24
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb24
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb24
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb24
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb25
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb25
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb25
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb25
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb25
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb26
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb26
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb26
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb27
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb28
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb28
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb28
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb28
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb28
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb29
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb29
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb29
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb29
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb29
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb29
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb29
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb30
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb30
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb30
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb30
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb30
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb31
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb31
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb31
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb31
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb31
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb31
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb31
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb32
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb32
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb32
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb33
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb33
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb33
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb33
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb33
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb33
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb33
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb34
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb34
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb34
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb34
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb34
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb34
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb34
http://arxiv.org/abs/2203.08410
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb36
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb36
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb36
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb37
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb37
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb37
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb37
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb37
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb38
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb38
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb38
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb38
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb38
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb38
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb38
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb39
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb39
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb39
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb40
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb40
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb40
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb40
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb40
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb40
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb40


The Journal of Systems & Software 216 (2024) 112131F. Zhang et al.
Hu, W., Liu, L., Yang, P., Zou, K., Li, J., Lin, G., Xiang, J., 2023. Revisiting‘‘ code
smell severity classification using machine learning techniques’’. In: 2023 IEEE
47th Annual Computers, Software, and Applications Conference. COMPSAC, IEEE,
pp. 840–849.

Imam, A.T., Al-Srour, B.R., Alhroob, A., 2022. The automation of the detection of
large class bad smell by using genetic algorithm and deep learning. J. King Saud
Univ.-Comput. Inf. Sci. 34 (6), 2621–2636.

Jain, S., Saha, A., 2021. Improving performance with hybrid feature selection and
ensemble machine learning techniques for code smell detection. Sci. Comput.
Program. 212, 102713.

Jeevanantham, M., Jones, J., 2022. Extension of deep learning based feature envy
detection for misplaced fields and methods. Int. J. Intell. Eng. Syst. 15 (1), 563–574.

Jian, Y., Yu, X., Xu, Z., Ma, Z., 2019. A hybrid feature selection method for software
fault prediction. IEICE Trans. Inf. Syst. 102 (10), 1966–1975.

Karasneh, B., Chaudron, M.R., 2013. Img2uml: A system for extracting uml models
from images. In: 2013 39th Euromicro Conference on Software Engineering and
Advanced Applications. IEEE, pp. 134–137.

Kaur, A., Jain, S., Goel, S., Dhiman, G., 2021. A review on machine-learning based
code smell detection techniques in object-oriented software system (s). Recent Adv.
Electr. Electron. Eng. (Formerly Recent Pat. Electr. Electron. Eng.) 14 (3), 290–303.

Kaur, S., Singh, S., 2023. Improving the quality of open source software. In: Agile
Software Development: Trends, Challenges and Applications. Wiley Online Library,
pp. 309–323.

Khleel, N.A.A., Nehéz, K., 2022. Deep convolutional neural network model for bad code
smells detection based on oversampling method. Indones. J. Electr. Eng. Comput.
Sci. 26 (3), 1725–1735.

Kim, D.K., 2017. Finding bad code smells with neural network models. Int. J. Electr.
Comput. Eng. 7 (6), 3613.

Kim, D.K., 2020. A deep neural network-based approach to finding similar code
segments. IEICE Trans. Inf. Syst. 103 (4), 874–878.

Kitchenham, B., 2004. Procedures for Performing Systematic Reviews, Vol. 33, Keele,
UK, Keele University, pp. 1–26.

Kitchenham, B., Brereton, O.P., Budgen, D., Turner, M., Bailey, J., Linkman, S., 2009.
Systematic literature reviews in software engineering–a systematic literature review.
Inf. Softw. Technol. 51 (1), 7–15.

Lewowski, T., Madeyski, L., 2022. How far are we from reproducible research on code
smell detection? A systematic literature review. Inf. Softw. Technol. 144, 106783.

Li, F., Lu, W., Keung, J.W., Yu, X., Gong, L., Li, J., 2023a. The impact of feature
selection techniques on effort-aware defect prediction: An empirical study. IET
Softw. 17 (2), 168–193.

Li, Y., Zhang, X., 2022. Multi-label code smell detection with hybrid model based on
deep learning. In: SEKE. pp. 42–47.

Li, F., Zou, K., Keung, J.W., Yu, X., Feng, S., Xiao, Y., 2023b. On the relative value
of imbalanced learning for code smell detection. Softw. - Pract. Exp. 53 (10),
1902–1927.

Lin, T., Fu, X., Chen, F., Li, L., 2021. A novel approach for code smells detection
based on deep leaning. In: Applied Cryptography in Computer and Communications:
First EAI International Conference, AC3 2021, Virtual Event, May 15-16, 2021,
Proceedings 1. Springer, pp. 171–174.

Liu, H., Jin, J., Xu, Z., Zou, Y., Bu, Y., Zhang, L., 2019. Deep learning based code smell
detection. IEEE Trans. Softw. Eng. 47 (9), 1811–1837.

Liu, L., Lin, G., Zhu, L., Yang, Z., Song, P., Wang, X., Hu, W., 2024. Revisiting code
smell severity prioritization using learning to rank techniques. Expert Syst. Appl.
123483.

Liu, B., Liu, H., Li, G., Niu, N., Xu, Z., Wang, Y., Xia, Y., Zhang, Y., Jiang, Y., 2023.
Deep learning based feature envy detection boosted by real-world examples. In:
Proceedings of the 31st ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. pp. 908–920.

Lu, S., Guo, D., Ren, S., Huang, J., Svyatkovskiy, A., Blanco, A., Clement, C., Drain, D.,
Jiang, D., Tang, D., et al., 2021. Codexglue: A machine learning benchmark dataset
for code understanding and generation. arXiv preprint arXiv:2102.04664.

Ma, X., Keung, J.W., Yu, X., Zou, H., Zhang, J., Li, Y., 2023. AttSum: A deep
attention-based summarization model for bug report title generation. IEEE Trans.
Reliab..

Madeyski, L., Lewowski, T., 2020. MLCQ: Industry-relevant code smell data set. In:
Proceedings of the 24th International Conference on Evaluation and Assessment in
Software Engineering. pp. 342–347.

Malathi, J., Jabez, J., 2023. Class code smells detection using deep learning approach.
In: AIP Conference Proceedings. AIP Publishing.

Malhotra, R., Jain, B., Kessentini, M., 2023. Examining deep learning’s capability to
spot code smells: a systematic literature review. Cluster Comput. 1–29.

Marinescu, C., Marinescu, R., Mihancea, P., Ratiu, D., Wettel, R., 2005. Iplasma:
An integrated platform for quality assessment of object-oriented design. In: IEEE
International Conference on Software Maintenance-Industrial & Tool Volume. DBLP.

Martínez-Fernández, S., Bogner, J., Franch, X., Oriol, M., Siebert, J., Trendowicz, A.,
Vollmer, A.M., Wagner, S., 2022. Software engineering for AI-based systems: a
survey. ACM Trans. Softw. Eng. Methodol. (TOSEM) 31 (2), 1–59.

Naik, P., Nelaballi, S., Pusuluri, V.S., Kim, D.-K., 2023. Deep learning-based code
refactoring: A review of current knowledge. J. Comput. Inf. Syst. 1–15.
15
Palomba, F., Di Nucci, D., Tufano, M., Bavota, G., Oliveto, R., Poshyvanyk, D.,
De Lucia, A., 2015. Landfill: An open dataset of code smells with public evaluation.
In: 2015 IEEE/ACM 12th Working Conference on Mining Software Repositories.
IEEE, pp. 482–485.

PMD, https://pmd.github.io/.
Podobnik, B., Stanley, H.E., 2007. Detrended cross-correlation analysis: A new method

for analyzing two non-stationary time series. arXiv preprint arXiv:0709.0281.
Qiao, B., Wu, Z., Ma, L., Zhou, Y., Sun, Y., 2023. Effective ensemble learning approach

for SST field prediction using attention-based PredRNN. Front. Comput. Sci. 17 (1),
171601.

Ramos, M., de Mello, R., Fonseca, B., 2022. On Transfer Learning in Code Smells
Detection. Technical Report, EasyChair.

Ren, S., Shi, C., Zhao, S., 2021. Exploiting multi-aspect interactions for god class
detection with dataset fine-tuning. In: 2021 IEEE 45th Annual Computers, Software,
and Applications Conference. COMPSAC, IEEE, pp. 864–873.

Roziere, B., Gehring, J., Gloeckle, F., Sootla, S., Gat, I., Tan, X.E., Adi, Y., Liu, J.,
Remez, T., Rapin, J., et al., 2023. Code llama: Open foundation models for code.
arXiv preprint arXiv:2308.12950.

Santos, J.A.M., Rocha-Junior, J.B., Prates, L.C.L., Do Nascimento, R.S., Freitas, M.F.,
De Mendonça, M.G., 2018. A systematic review on the code smell effect. J. Syst.
Softw. 144, 450–477.

Schardt, C., Adams, M.B., Owens, T., Keitz, S., Fontelo, P., 2007. Utilization of the
PICO framework to improve searching PubMed for clinical questions. BMC Med.
Inform. Decis. Mak. 7, 1–6.

Sharma, T., Efstathiou, V., Louridas, P., Spinellis, D., 2021. Code smell detection by
deep direct-learning and transfer-learning. J. Syst. Softw. 176, 110936.

Sharma, T., Spinellis, D., 2018. A survey on software smells. J. Syst. Softw. 138,
158–173.

Shi, L., Mu, F., Chen, X., Wang, S., Wang, J., Yang, Y., Li, G., Xia, X., Wang, Q., 2022.
Are we building on the rock? on the importance of data preprocessing for code
summarization. In: Proceedings of the 30th ACM Joint European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering.
pp. 107–119.

Siddiq, M.L., Majumder, S.H., Mim, M.R., Jajodia, S., Santos, J.C., 2022. An empirical
study of code smells in transformer-based code generation techniques. In: 2022 IEEE
22nd International Working Conference on Source Code Analysis and Manipulation.
SCAM, IEEE, pp. 71–82.

Sidhu, B.K., Singh, K., Sharma, N., 2022. A machine learning approach to software
model refactoring. Int. J. Comput. Appl. 44 (2), 166–177.

Sousa, B.L., Souza, P.P., Fernandes, E.M., Ferreira, K.A., Bigonha, M.A., 2017.
FindSmells: flexible composition of bad smell detection strategies. In: 2017
IEEE/ACM 25th International Conference on Program Comprehension. ICPC, IEEE,
pp. 360–363.

Tarwani, S., Chug, A., 2022. Application of deep learning models for code smell predic-
tion. In: 2022 10th International Conference on Reliability, Infocom Technologies
and Optimization (Trends and Future Directions). ICRITO, IEEE, pp. 1–5.

Tempero, E., Anslow, C., Dietrich, J., Han, T., Li, J., Lumpe, M., Melton, H., Noble, J.,
2010. The qualitas corpus: A curated collection of java code for empirical studies.
In: 2010 Asia Pacific Software Engineering Conference. IEEE, pp. 336–345.

Tsantalis, N., Chaikalis, T., Chatzigeorgiou, A., 2008. JDeodorant: Identification and
removal of type-checking bad smells. In: 2008 12th European Conference on
Software Maintenance and Reengineering. IEEE, pp. 329–331.

Ucdetector, http://ucdetector.sourceforge.net/update.
Virmajoki, J., 2020. Detecting code smells using artificial intelligence: a prototype.
Virmajoki, J., Knutas, A., Kasurinen, J., 2022. Detecting code smells with AI: a

prototype study. In: 2022 45th Jubilee International Convention on Information,
Communication and Electronic Technology. MIPRO, IEEE, pp. 1393–1398.

Wang, H., Liu, J., Kang, J., Yin, W., Sun, H., Wang, H., 2020. Feature envy detection
based on bi-lstm with self-attention mechanism. In: 2020 IEEE Intl Conf on
Parallel & Distributed Processing with Applications, Big Data & Cloud Comput-
ing, Sustainable Computing & Communications, Social Computing & Networking
(ISPA/BDCloud/SocialCom/SustainCom). IEEE, pp. 448–457.

Wieman, R., 2011. Anti-Pattern Scanner: an Approach to Detect Anti-Patterns and
Design Violations. LAP Lambert Academic Publishing.

Wohlin, C., 2014. Guidelines for snowballing in systematic literature studies and
a replication in software engineering. In: Proceedings of the 18th International
Conference on Evaluation and Assessment in Software Engineering. pp. 1–10.

Xu, Z., Pang, S., Zhang, T., Luo, X.-P., Liu, J., Tang, Y.-T., Yu, X., Xue, L., 2019.
Cross project defect prediction via balanced distribution adaptation based transfer
learning. J. Comput. Sci. Tech. 34, 1039–1062.

Xu, W., Zhang, X., 2021. Multi-granularity code smell detection using deep learning
method based on abstract syntax tree. In: Proc. 33rd Int. Conf. Software Engineering
and Knowledge Engineering. pp. 503–509.

Yang, Z., Keung, J.W., Yu, X., Xiao, Y., Jin, Z., Zhang, J., 2023. On the significance
of category prediction for code-comment synchronization. ACM Trans. Softw. Eng.
Methodol. 32 (2), 1–41.

Yang, Y., Xia, X., Lo, D., Grundy, J., 2022. A survey on deep learning for software
engineering. ACM Comput. Surv. 54 (10s), 1–73.

Yedida, R., Menzies, T., 2022. How to improve deep learning for software analytics:
(a case study with code smell detection). In: Proceedings of the 19th International
Conference on Mining Software Repositories. pp. 156–166.

http://refhub.elsevier.com/S0164-1212(24)00176-6/sb41
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb41
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb41
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb41
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb41
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb41
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb41
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb42
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb42
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb42
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb42
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb42
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb43
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb43
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb43
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb43
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb43
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb44
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb44
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb44
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb45
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb45
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb45
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb46
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb46
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb46
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb46
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb46
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb47
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb47
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb47
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb47
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb47
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb48
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb48
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb48
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb48
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb48
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb49
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb49
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb49
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb49
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb49
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb50
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb50
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb50
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb51
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb51
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb51
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb52
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb52
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb52
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb53
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb53
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb53
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb53
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb53
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb54
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb54
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb54
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb55
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb55
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb55
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb55
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb55
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb56
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb56
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb56
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb57
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb57
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb57
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb57
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb57
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb58
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb58
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb58
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb58
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb58
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb58
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb58
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb59
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb59
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb59
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb60
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb60
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb60
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb60
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb60
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb61
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb61
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb61
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb61
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb61
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb61
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb61
http://arxiv.org/abs/2102.04664
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb63
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb63
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb63
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb63
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb63
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb64
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb64
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb64
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb64
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb64
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb65
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb65
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb65
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb66
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb66
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb66
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb67
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb67
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb67
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb67
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb67
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb68
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb68
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb68
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb68
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb68
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb69
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb69
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb69
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb70
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb70
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb70
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb70
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb70
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb70
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb70
https://pmd.github.io/
http://arxiv.org/abs/0709.0281
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb73
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb73
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb73
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb73
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb73
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb74
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb74
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb74
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb75
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb75
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb75
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb75
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb75
http://arxiv.org/abs/2308.12950
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb77
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb77
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb77
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb77
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb77
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb78
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb78
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb78
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb78
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb78
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb79
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb79
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb79
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb80
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb80
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb80
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb81
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb81
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb81
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb81
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb81
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb81
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb81
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb81
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb81
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb82
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb82
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb82
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb82
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb82
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb82
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb82
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb83
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb83
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb83
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb84
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb84
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb84
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb84
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb84
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb84
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb84
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb85
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb85
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb85
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb85
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb85
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb86
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb86
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb86
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb86
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb86
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb87
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb87
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb87
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb87
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb87
http://ucdetector.sourceforge.net/update
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb89
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb90
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb90
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb90
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb90
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb90
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb91
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb91
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb91
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb91
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb91
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb91
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb91
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb91
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb91
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb92
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb92
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb92
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb93
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb93
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb93
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb93
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb93
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb94
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb94
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb94
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb94
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb94
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb95
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb95
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb95
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb95
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb95
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb96
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb96
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb96
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb96
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb96
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb97
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb97
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb97
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb98
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb98
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb98
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb98
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb98


The Journal of Systems & Software 216 (2024) 112131F. Zhang et al.
Yin, X., Shi, C., Zhao, S., 2021. Local and global feature based explainable feature
envy detection. In: 2021 IEEE 45th Annual Computers, Software, and Applications
Conference. COMPSAC, IEEE, pp. 942–951.

Yu, X., Liu, J., Yang, Z., Jia, X., Ling, Q., Ye, S., 2017. Learning from imbalanced data
for predicting the number of software defects. In: 2017 IEEE 28th International
Symposium on Software Reliability Engineering. ISSRE, IEEE, pp. 78–89.

Yu, J., Mao, C., Ye, X., 2021. A novel tree-based neural network for android code
smells detection. In: 2021 IEEE 21st International Conference on Software Quality,
Reliability and Security. QRS, IEEE, pp. 738–748.

Yu, X., Wu, M., Jian, Y., Bennin, K.E., Fu, M., Ma, C., 2018. Cross-company defect
prediction via semi-supervised clustering-based data filtering and MSTrA-based
transfer learning. Soft Comput. 22, 3461–3472.
16
Zakeri-Nasrabadi, M., Parsa, S., Esmaili, E., Palomba, F., 2023. A systematic literature
review on the code smells datasets and validation mechanisms. ACM J. Comput.
Cult. Herit..

Zhang, H., Babar, M.A., Tell, P., 2011. Identifying relevant studies in software
engineering. Inf. Softw. Technol. 53 (6), 625–637.

Zhang, Y., Ge, C., Hong, S., Tian, R., Dong, C., Liu, J., 2022. DeleSmell: code smell
detection based on deep learning and latent semantic analysis. Knowl.-Based Syst.
255, 109737.

Zhang, M., Jia, J., 2022. Feature envy detection with deep learning and snapshot
ensemble. In: 2022 9th International Conference on Dependable Systems and their
Applications. DSA, IEEE, pp. 215–223.

Zhou, X., Jin, Y., Zhang, H., Li, S., Huang, X., 2016. A map of threats to validity of
systematic literature reviews in software engineering. In: 2016 23rd Asia-Pacific
Software Engineering Conference. APSEC, IEEE, pp. 153–160.

http://refhub.elsevier.com/S0164-1212(24)00176-6/sb99
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb99
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb99
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb99
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb99
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb100
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb100
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb100
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb100
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb100
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb101
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb101
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb101
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb101
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb101
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb102
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb102
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb102
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb102
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb102
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb103
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb103
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb103
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb103
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb103
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb104
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb104
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb104
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb105
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb105
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb105
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb105
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb105
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb106
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb106
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb106
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb106
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb106
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb107
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb107
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb107
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb107
http://refhub.elsevier.com/S0164-1212(24)00176-6/sb107

	Data preparation for Deep Learning based Code Smell Detection: A systematic literature review
	Introduction
	Related Work
	Code Smell Detection
	Related CSD SLRs

	Research Methodology
	Search Strategy
	Paper Selection
	Inclusion/Exclusion Criteria
	Quality Assessment

	Snowballing
	Data Extraction

	RQ1 - Critical Considerations in CSD Data Preparation
	Data Requirements
	Data Collection
	Data labeling
	Data Cleaning

	RQ2 - Challenges in CSD Data Preparation
	Data Scarcity
	Limited Generalization Ability
	Limited Data Accessibility
	Heavy Expert Dependency
	Difficulty of Data Labeling
	Data Imbalance
	Data Redundancy
	The Interplay of Challenges

	RQ3 - Solutions Presented in the Literature
	Utilizing Cross-project Data
	Two-phase Data Utilization
	Resampling Imbalanced Data
	Semi-automatic Labeling
	Data Cleaning

	Recommendation
	Threats to validity
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


