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a b s t r a c t

Stack Overflow is one of the most popular programming communities where developers can seek
help for their encountered problems. Nevertheless, if inexperienced developers fail to describe their
problems clearly, it is hard for them to attract sufficient attention and get the anticipated answers. To
address such a problem, we propose M3NSCT5, a novel approach to automatically generate multiple
post titles from the given code snippets. Developers may take advantage of the generated titles to
find closely related posts and complete their problem descriptions. M3NSCT5 employs the CodeT5
backbone, which is a pre-trained Transformer model with an excellent language understanding and
generation ability. To alleviate the ambiguity issue that the same code snippets could be aligned with
different titles under varying contexts, we propose the maximal marginal multiple nucleus sampling
strategy to generate multiple high-quality and diverse title candidates at a time for the developers to
choose from. We build a large-scale dataset with 890,000 question posts covering eight programming
languages to validate the effectiveness of M3NSCT5. The automatic evaluation results on the BLEU and
ROUGE metrics demonstrate the superiority of M3NSCT5 over six state-of-the-art baseline models.
Moreover, a human evaluation with trustworthy results also demonstrates the great potential of our
approach for real-world applications.

© 2023 Elsevier Inc. All rights reserved.
1. Introduction

Stack Overflow (SO) is one of the most popular Question&
nswering websites for developers to seek answers to program-
ing problems. However, it remains a challenge (Chatterjee et al.,
020; Mondal et al., 2021; Rubei et al., 2020) to help developers
rite high-quality question posts that attract sufficient atten-
ion from potential experts. Especially, non-English speaking or
nexperienced developers may struggle to clearly describe their
ncountered problems, let alone summarize the problems into
nformative titles. One way for developers to improve the quality
f their posts is to search for related posts with the problematic
ode snippets. If no answers are found, this process can still help
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developers gain a better understanding of their problems and
complete the posts. Nonetheless, previous studies (Gao et al.,
2020; Zhang et al., 2022b; Liu et al., 2022a; Gao et al., 2022)
demonstrated the unsatisfying performance of the commonly
used retrieval methods like TF-IDF and BM25 (Robertson and
Zaragoza, 2009) on searching related posts with given code snip-
pets. First, such retrieval methods calculate the lexical overlap
and ignore the essential semantic similarity. Second, different
from natural language queries, code snippets usually have very
long contexts and plentiful user-defined tokens, making it hard
to extract lexical features.

Recently, Gao et al. (2020) proposed an end-to-end genera-
tion model to automatically produce post titles with the given
code snippets. First, they train an LSTM (Long Short-Term Mem-
ory) (Hochreiter and Schmidhuber, 1997) model on a large-scale
dataset collected from Stack Overflow, which contains pairs of
code snippets and post titles. Then, a developer could provide
the model with code snippets to get a generated post title that
summarizes the problem. The generated titles are coherent and
informative, which will help developers understand their prob-
lems and find related posts more easily. However, as suggested
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Fig. 1. Illustration of the ambiguity issue — posts with the same code snippets
ave different titles under varying contexts.

y Liu et al. (2022a), the same code snippets could be aligned with
ifferent titles under varying contexts, which is reasonable be-
ause code snippets without surrounding context can be unclear
n meaning and open to interpretation. In this study, we refer to
he difficulty in determine the intention behind a code snippet
ithout sufficient context as the ambiguity issue. For example, in
ig. 1, the two SO posts ask different questions and have different
itles. However, they have the same code snippets that implement
he Python function get_client_ip. Liu et al. (2022a) then proposed
to tackle the issue by leveraging the surrounding text descriptions
in the post body to eliminate the semantic ambiguity of code
snippets. Nonetheless, it remains an open challenge to generate
the expected post titles when developers cannot provide precise
descriptions of their problems.

To mitigate this challenge, we reformulate the title generation
task as generating multiple candidate titles simultaneously under
the condition that only code snippets are provided. Since code
snippets can be ambiguous without the surrounding context, we
could offer the developers an acceptable amount of candidate
titles to choose from. But this will pose a new challenge of im-
proving the diversity of generated titles while keeping the quality
so that the titles can nicely summarize the code snippets as well
as cover different intentions under varying contexts. To this end,
we propose M3NSCT5, a novel approach to generate high-quality
and diverse post titles from the given code snippets. M3NSCT5
is a hybrid method combining the Maximal Marginal Multiple
Nucleus Sampling strategy and the CodeT5 model. Specifically,
we employ the state-of-the-art sequence-to-sequence generation
model CodeT5 (Wang et al., 2021) as the backbone of M3NSCT5
to generate titles with higher quality. CodeT5 is a Transformer-
based (Vaswani et al., 2017) model pre-trained on a large-scale
code-related corpus. It has strong code understanding and text
generation capabilities and is able to capture long-range de-
pendencies more effectively than traditional LSTMs (Khandelwal
et al., 2018; Chen et al., 2021b; Ma et al., 2022; Yang et al., 2021a;
Zhen et al., 2022). To address the issue of ambiguity and gener-
ate more diverse titles, we employ nucleus sampling (Holtzman
et al., 2019) during decoding instead of the commonly used beam
2

search. While nucleus sampling can produce samples with high
variance in quality, we propose the maximal marginal ranking
strategy to select the highest quality and diverse titles from
the samples. In this way, we can tackle the ambiguity issue by
offering multiple title candidates for developers to choose from.
The following are the top three titles generated by M3NSCT5 for
the code snippet in Fig. 1:

(1) How to get the client IP address in Django
(2) Why is HTTP_X_FORWARDED_FOR used here
(3) Django - reverse proxy setup not working

As can be seen, the generated titles are coherent and able to
address a range of potential intentions. It demonstrates the effec-
tiveness of our approach in generating high-quality and diverse
post titles. To comprehensively evaluate the effectiveness of our
approach, we conduct an empirical study by raising the following
Research Questions (RQs):

RQ-1: What is the prevalence of the ambiguity issue? We
conduct a human study on a sample of 300 posts from our
dataset, where human evaluators are asked to determine whether
each post contains ambiguous code snippets. The results of the
study indicate that a significant proportion of the posts hava
ambiguity issue, highlighting the need and usefulness of our pro-
posed approach.

RQ-2: Does our approach outperform state-of-the-art base-
lines under automatic evaluation? We build a large-scale
dataset Dso with around 890,000 high-quality SO posts covering
eight programming languages. We employ BLEU (Papineni et al.,
2002) and ROUGE (Lin and Och, 2004) as the automatic evaluation
metrics and choose six baseline models (i.e., BM25 Robertson and
Zaragoza, 2009, Code2Que Gao et al., 2020, BART Lewis et al.,
2020, CCBERT Zhang et al., 2022b, SOTtitle Liu et al., 2022a, and
PLBART Ahmad et al., 2021) for comparison. Experimental results
show that M3NSCT5 outperforms all the baselines by a large
margin, having an around 9% improvement over the second best
performing PLBART on average of different experimental settings.

RQ-3: How effective is our maximal marginal multiple nu-
cleus sampling? We compare the performance of our sampling
strategy with beam search and vanilla random nucleus sampling.
Results show that our method could improve both the quality
and diversity of generated titles, especially when the number of
output titles is limited to a small value (≤5), making it suitable
for real-world applications.

RQ-4: What is the performance of our approach under hu-
man evaluation? To compensate for the non-intuitive automatic
evaluation, we recruit six experienced programmers to perform
an additional human evaluation. Participants are required to score
the titles generated by M3NSCT5, PLBART, and BM25 involving
three programming languages on the Readability, Correlation, Di-
versity, and Usability criteria. Results show that our approach has
better performance under human-centered evaluation.

The contributions of this paper are as follows:

• We propose M3NSCT5, a novel approach combining the pre-
trained CodeT5 model and the maximal marginal multiple
nucleus sampling strategy, which could improve the quality
and diversity of generated SO titles.

• We collect a large-scale dataset containing 890,000 high-
quality posts covering eight programming languages and
demonstrate the effectiveness of our approach under auto-
matic and human evaluation.

• We have released the source code and processed dataset1 to
facilitate future research.

1 https://github.com/zfj1998/M3NSCT5.

https://github.com/zfj1998/M3NSCT5
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Fig. 2. The overall framework of our approach for Stack Overflow post title generation. Given the input code snippets, M3NSCT5 can produce multiple title candidates.
here are three critical components inside M3NSCT5, namely the CodeT5 backbone, the nucleus sampling method, and the maximal marginal ranking strategy.
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We organize the rest of this paper as follows: Section 2 intro-
uces the details of our proposed approach. Section 3 describes
he basic setup of our experiment, including the construction
f the experimental dataset, hyper-parameter settings, baseline
odels, and evaluation metrics. Section 4 presents the exper-

mental results. Section 5 discusses the limitations of our ap-
roach. Section 6 introduces the related works. Section 7 dis-
usses threats to the validity of our work. Finally, we conclude
his paper and introduce the future work in Section 8.

. The proposed approach

Generating post titles from code snippets can be seen as a PL-
o-NL (Programming Language to Natural Language) generation
ask. Fig. 2 illustrates the overall framework of our M3NSCT5, a
ovel end-to-end approach that could improve the quality and
iversity of the post titles generated from the code snippets.
pecifically, we employ CodeT5 as the backbone, which takes in
he code snippets and generates post titles. We further incorpo-
ate the nucleus sampling and maximal marginal ranking strategy
o produce a set of high-quality and diverse title candidates. The
etails of our approach are described in this section.

.1. CodeT5 backbone model

CodeT5 (Wang et al., 2021) is a state-of-the-art Transformer
odel pre-trained on a large-scale code-related corpus involving
ultiple programming languages. It inherits the encoder–decoder
rchitecture from T5 (Raffel et al., 2020), which has been shown
eneficial for generation tasks. Moreover, the use of CodeT5 is
articularly suitable for our task, as it is able to handle input code
nippets from Stack Overflow that may be incomplete and un-
ompilable. By inputting the code as a sequence of tokens, CodeT5
an understand the structural semantics of the code, thanks to its
xtensive pre-training on various code understanding objectives.
his enables our model to effectively handle the code that are
ifficult to parse or analyze. We follow the pre-train then fine-
une paradigm and further update the trainable parameters θ of
odeT5 on our task-specific dataset Dso.

ine-Tuning: Our objective is to maximize the probability Pθ (Y |X)
iven the input code sequence X and the target title Y from
he training dataset. X and Y are first split into tokens by the
efault byte-pair encoding (Gage, 1994) tokenizer of CodeT5, then
urned into vectors through the embedding layer. Especially, if
he input contains multiple code snippets, we concatenate them

o a long sequence with the additional [NEXT] identifier. Suppose

3

= (x1...x|X |) and Y = (y1...y|Y |), where xi, yj ∈ Rdmodel . dmodel
s the model hidden size, and |X | and |Y | denote the sequence
length with respect to X and Y . We feed X to the encoder, which
mainly performs bidirectional self-attention to get

C = ENCODER(X), (1)

where C = (c1...c|X |) and vector ci ∈ Rdmodel is the hidden
representation of the i-th input token. We then feed the auto-
regressive decoder with C and Y to get

G = DECODER(C, Y ), (2)

where G = (g1...g|Y |) and vector gj ∈ Rdmodel represents the hidden
state of the j-th predicted token. Next, we employ an additional
neural layer to map G from the decoder hidden space to the
probability distribution over the prediction vocabulary

P = LinearSoftmax(G), (3)

where P = (P1...P|Y |), Pj ∈ Rdvocab , dvocab is the vocabulary size,
and LinearSoftmax is a linear neural network with the softmax
activation function. Eventually, we can get the loss function for
fine-tuning by calculating the average negative log-likelihood

Loss =
1

|Y |

|Y |∑
j=1

− log Pj(yj), (4)

where Pj(yj) is the predicted probability of the j-th token in the
arget title.

nference: We employ the already fine-tuned model and the
uto-regressive decoding method to get the predicted title Ŷ
oken by token. To be specific, we first feed the decoder with
he start identifier <s> to generate a probability distribution P1
ver the vocabulary, which is used for sampling the first predicted
oken ŷ1. After that, we will again take (< s >, ŷ1) as the input
equence for the decoder to predict the second token ŷ2 by
epeating the previous steps. Our model predicts each token in
ˆ recursively until encountering the ending identifier </s>.

When generating multiple titles, we follow the parallel man-
er to save the computation cost. Generally, we first take M
tart identifiers (< s >1...< s >M )⊺ as the input for decoding.
n return, we get the sampled first tokens (ŷ1,1...ŷM,1)⊺ for M
andidates. Through the auto-regressive decoding method, our
odel will repeatedly sample tokens at each step until all the
andidates meet the ending identifier </s>. Finally, we will get
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Fig. 3. Applying nucleus sampling to predict the next token in the title.

he sampled titles

ˆM,N =

⎛⎜⎜⎝
ŷ1,1 ŷ1,2 · · · ŷ1,N
ŷ2,1 ŷ2,2 · · · ŷ2,N
...

...
. . .

...

ŷM,1 ŷM,2 · · · ŷM,N

⎞⎟⎟⎠ , (5)

here ŷm,n is the n-th sampled token of the m-th candidate title,
is the length of the longest candidate, and shorter candidates
ill be padded to length N with a special [PAD] identifier.

.2 Nucleus sampling

An essential step of the decoding step is to sample the pre-
icted token ŷ from its probability distribution P over the vo-
abulary. The most common decoding method is beam search,
hose objective is to maximize the probability P(Ŷ ) over the
redicted tokens, where P(Ŷ ) =

∏
|Ŷ |

r=1 Pr (ŷr ). Specifically, beam
search maintains a fixed number of ordered candidate sequences
during decoding, and re-ranks them based on the combinatorial
probability of their tokens at each prediction step. The sequence
with the highest probability is then selected as the final out-
put. Nonetheless, the content produced by beam search lacks
divergence compared with the content written by humans (Holtz-
man et al., 2019). It is because the maximization-based objective
always suppresses the occurrence of uncommon phrases.

In this study, we need to ensure the diversity of generated
titles so that they can cover different intentions under varying
contexts. To this end, we employ the nucleus sampling (Holtzman
et al., 2019) method, the intuition of which is to sample the
predicted token from a nucleus distribution instead of choosing
the token with the highest probability. As shown in Fig. 3, given
the already sampled tokens [‘What’, ‘does’, ‘the’, ‘yield’], we are
now going to choose the next token from the vocabulary distri-
bution. Some tokens in the vocabulary are unlikely to be chosen,
such as [‘execution’, ‘continue’, . . . , ‘itertools’], which make up the
unreliable tail of the distribution. The tokens in the nucleus, a
inimal subset of the vocabulary that takes up the vast major-

ty of probability mass, are [‘keyword’, ‘return’, . . . , ‘statement’],
hich are most likely to follow the previous token ‘yield’. Using
ucleus sampling, any token in the nucleus has the chance to be
hosen, which could bring randomness to the sampling process
nd significantly improve the diversity of generated titles.
4

Formally, suppose we are generating the r-th token ŷr using
nucleus sampling, with the probability distribution Pr over the
vocabulary V . We first find the minimal nucleus set V (p)

⊂ V∑
v∈V (p)

Pr (v) ≥ β, (6)

where v ∈ V and β (also denoted as top-p) is a hyper-parameter
f nucleus sampling ranging from 0.0 to 1.0. Let p′

=
∑

v∈V (p) Pr
(v). The original distribution Pr can be re-scaled to

′

r (v) =

{
Pr (v)/p′ if v ∈ V (p)

0 otherwise,
(7)

nd ŷr will be sampled from the new distribution P ′
r .

.3 Maximal marginal ranking

Nucleus sampling has been successfully applied to the do-
ain of code generation (Chen et al., 2021a; Fried et al., 2022;
endrycks et al., 2021; Xu et al., 2022). For example, state-of-
he-art code generation models CodeGen (Nijkamp et al., 2022)
nd OpenAI Codex (Chen et al., 2021a) both incorporate nucleus
ampling to generate hundreds and thousands of candidate code
olutions for each programming problem, which will significantly
mprove the problem-solving rates. This can be attributed to
he randomness brought by the nucleus sampling, which could
nlarge the exploration space of pre-trained models and increase
he chance of generating high-quality content. However, due
o the random nature of sampling, there is a high variance in
eneration quality. A common practice to tackle this issue is to
ample multiple times and then choose the best samples (Cobbe
t al., 2021; Inala et al., 2022; Shi et al., 2022). For example,
lphaCode (Li et al., 2022) employs sophisticated filtering and
lustering methods over the generated code solutions to nar-
ow the number of candidates so that the target programming
roblem can be solved within minimum tries.
In this study, we propose a simple yet effective maximal

arginal ranking strategy to ensure the diversity and quality of
he final predicted titles. We illustrate the rough idea of our rank-
ng strategy in Fig. 4, where the nodes in the two-dimensional
pace represent the title samples produced by nucleus sampling.
urthermore, the nodes (titles) that are similar should have a
loser distance. Our goal is to find the top-ranked titles with
ood diversity and quality from all the samples. First, we need
o choose a node to start the ranking process. In the example,
e choose the node ① from the majority cluster of the red color
s the initial candidate. Second, we choose the yellow node ②

s another candidate, which has the maximal distance from ①

mong all the nodes. Then, we choose the blue node ③ as the next
andidate, which has the maximal distance from both ① and ②.
imilarly, we choose the purple node ④ as the fourth candidate,
hich has the maximal distance from all the previously chosen
odes. In this way, we can include nodes from different clusters
o ensure the diversity of chosen titles. The following introduces
he details of our ranking strategy:

hoosing the initial sample: It is crucial to choose a high-quality
nitial title to start the ranking process because the maximal
arginal ranking objective only guarantees the diversity of cho-
en titles and is blind to their quality. However, discriminating
he quality of generated titles is a nontrivial task due to the
ack of explicit rules that define ‘good quality’. To tackle this
roblem, we adapt the idea of self-consistency (Wang et al., 2022)
o facilitate selecting the initial title from generated samples.
he self-consistency was proposed to improve the performance
f reasoning tasks. Generally, after sampling a set of diverse
andidates from the model, the final answer should be the one



F. Zhang, J. Liu, Y. Wan et al. The Journal of Systems & Software 200 (2023) 111672

a
r
t
f

Y

w
t
p
r
r
u
r

c
l
a
q
2
p

Fig. 4. Illustration of the maximal marginal ranking strategy. Nodes marked in
four colors denote the title samples grouped into four clusters based on their
distance in the space. This figure shows a four-step example of choosing four
titles from all the samples: start from an initial title; the following steps are
to choose the title that has the maximal distance to the already chosen ones.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

that is most consistent among the other generated answers. In
this study, we propose to measure the quality of generated titles
through the bigram consistency. Precisely, we first extract all the
token bigrams from the generated titles and then calculate the
frequency of each bigram. Finally, we rank the titles based on
the average frequency of their bigrams, and the top-1 title will
be considered the most promising initial sample.

Choosing the next samples: Suppose we will offer K titles for the
developer, our model needs to sample M candidates for ranking,
where M ≫ K (e.g., M is 200 when K is 5). In the following
notation, ŶM is the set of all M candidate titles and ŶS is a set
consisting of the already chosen titles Ŷ1, . . . , ŶS , where ŶS ⊂ ŶM
nd S < K . We now need to choose the next title, ŶS+1, from the
emaining candidates ŶM \ ŶS . To improve the diversity of chosen
itles, we propose to find the one that has the maximal distance
rom those in ŶS ,

ˆS+1 = argmax
Ŷm∈ŶM\ŶS

( ∑
Ŷs∈ŶS

−relevance(Ŷm, Ŷs)
)
, (8)

here relevance(Ŷm, Ŷs) is computed by the cosine similarity of
he bag-of-bigram vectors built from the titles. We repeat this
rocess until the size of ŶS reaches K . Additionally, we find that
anking without filtering out stopwords consistently outperforms
anking with stopword removal, regardless of the stopword list
sed.2 As a result, we do not include stopword filtering in our
anking process.

2 We have tried using stopwords from Gensim, NLTK, and scikit-learn.
5

3 Experimental setup

This section introduces the construction of our dataset, the
implementation of our model, the baselines for performance com-
parison, the automatic evaluation metrics, and the criteria for
human evaluation.

3.1 Data preparation

Though previous studies (Gao et al., 2020; Zhang et al., 2022b;
Liu et al., 2022a) have proposed open-sourced datasets for the
SO title generation task, there are several drawbacks we still
have to overcome. Specifically, Gao et al. (2020) only considered
the posts with an interrogative title, which account for less than
a third of real-world data samples, thus resulting in a biased
dataset. While both Zhang et al. (2022b) and Liu et al. (2022a) had
their published bi-modal posts stripped and tokenized through
natural language processing tools, which damaged the lexical and
structural information (such as the white spaces and line breaks)
of the code snippets. As a result, we re-construct a large-scale
dataset Dso to perform our experiments.

Dso is built on the SOTorrent dataset proposed by Baltes et al.
(2018), which is originally used for analyzing the evolution of
SO posts. The latest checkpoint of SOTorrent contains all the
posts from July 2008 to December 2020. Baltes et al. (2018)
extracted the code snippets marked by various notations from
post bodies and reserved all the white spaces, line breaks, user-
defined identifiers, etc. They also removed the noisy fragments
wrongly marked as code in the text blocks.

Moreover, previously proposed datasets (Gao et al., 2020;
Zhang et al., 2022b; Liu et al., 2022a) only focused on a few dom-
inant Programming Languages (PLs) with abundant data samples,
such as Python, C#, Java, JS(JavaScript), and PHP. In this study, we
onsider the posts involving eight PLs, including the above popu-
ar ones and the minorities (C, Ruby, and Go). Besides, we perform
dditional filtering on the collected data to ensure the overall
uality of our dataset. We follow the previous settings (Gao et al.,
020; Zhang et al., 2022b; Liu et al., 2022a) and only select the
osts satisfying the following four heuristic rules:

1. The post is not closed; Stack Overflow may close posts
that are not original, relevant to programming and devel-
opment, or clear and specific enough for users to provide a
useful answer.

2. The post has an accepted answer; A post that has received
an accepted answer is likely to be clear and understand-
able, as it has been answered satisfactorily according to the
original poster or the Stack Overflow community.

3. The post gets more than one vote; The number of votes
can serve as a measure of perceived value and importance
within the Stack Overflow community. A post with more
votes may indicate it is useful, relevant, and of high quality.

4. The post includes code snippets; For our experiments, it
is necessary to ensure that the selected posts include code
snippets, as our goal is to generate post titles from the
given code snippets.

As for data partitioning, we separate the filtered posts in
chronological order, where the latest posts are randomly grouped
into validation and test sets, and the rest are for training. This
is reasonable because our model should take the past data for
training and is applied to new questions in the real-world sce-
nario. We set the number of validation and test samples to 5000
with respect to different PLs. For the languages with insufficient
data, we set their proportions of validation and test sets to 10%.
In the end, we get the large-scale and high-quality dataset Dso for
the SO title generation task. The statistics of Dso is summarized in
Table 1.
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Table 1
The number of samples in Dso with respect to different PLs.
PL Train Validation Test

Python 190,934 5000 5000
C# 175,070 5000 5000
Java 162,161 5000 5000
JS 151,540 5000 5000
PHP 86,729 5000 5000
C 29,746 3700 3700
Ruby 23,774 3000 3000
Go 6820 850 850

Total 826,774 32,550 32,550

3.2 Implementation details

We implement M3NSCT5 with the transformers3 library and
he pre-trained model checkpoint4 of CodeT5, which consists of
2 encoder layers and 12 decoder layers with a hidden size of
68. We optimize all the trainable parameters through AdamW
Loshchilov and Hutter, 2017), with an initial learning rate of
×10−5 scheduled by the linear warm-up. We employ the default

byte-pair encoding tokenizer of CodeT5, whose vocabulary size
is 32,100. We have two Tesla V100 (16 GB memory) GPUs for
training, where each one could hold a data batch size of 8. We
further increase the overall batch size to 32 by gradient accumu-
lation. The model is set to train for ten epochs, and we employ the
early stopping strategy to avoid overfitting. We follow previous
studies in using nucleus sampling with pre-trained models Chen
et al., 2021a; Fried et al., 2022; Xu et al., 2022 to set the number
of sampled candidates to 200 during decoding. We also tuned
the two remaining hyper-parameters of nucleus sampling on our
validation dataset and found that a top-p value of 0.8 and a
temperature value of 1 provided the best performance. We use
these values in the evaluation of our model.

3.3 Baselines

To demonstrate the effectiveness of our approach, we choose
everal state-of-the-art baseline methods for comparison. We
ive a brief introduction to these approaches and their experi-
ental settings.

(1) BM25 was proposed by Robertson and Zaragoza (2009),
which has been widely used in the field of information
retrieval (Chen et al., 2020b, 2022). It could estimate the
relevance of documents for a given search query. The ba-
sic idea of BM25 is to rank the referencing documents
based on the overlapping query terms, thus ignoring their
correlation within the document. Our study adopts this
method to retrieve the most relevant posts in the training
dataset given the testing code snippets. We could select
one or more best matches for each query as the predicted
title candidates. We take advantage of the ready-to-use
Elasticsearch engine5 to implement this retrieval baseline,
whose default similarity ranking algorithm is BM25.

(2) Code2Que was proposed by Gao et al. (2020) to generate
SO titles from given code snippets. It is an end-to-end
model with the LSTM (Hochreiter and Schmidhuber, 1997)
encoder–decoder architecture. Its encoder is a multi-layer
bidirectional LSTM network that sequentially handles the
input code tokens, while its decoder is a single-layer LSTM
that recursively returns the predicted tokens. Moreover,

3 https://huggingface.co/docs/transformers/index.
4 https://huggingface.co/Salesforce/codet5-base.
5 https://www.elastic.co/elasticsearch/.
6

Code2Que incorporates the copy (See et al., 2017) mech-
anism to allow the decoder to focus on more relevant
parts of the input and facilitate capturing some rare but
important tokens, and the coverage (Tu et al., 2016) mecha-
nism to discourage generating meaningless repetitions. We
employ the OpenNMT6 library to reproduce this method.

(3) BART (Lewis et al., 2020) is a pre-trained Transformer
model that achieves state-of-the-art results on a range of
NL tasks, especially abstractive summarization, question
answering, and machine translation. Unlike the previous
successful pre-trained language models BERT (Kenton and
Toutanova, 2019) (only with the Transformer encoder) and
GPT (Radford et al., 2018) (only with the Transformer de-
coder), BART employs a standard encoder–decoder archi-
tecture and proposes specially designed denoising objec-
tives for pre-training. As a result, BART could improve the
performance over previous work when fine-tuned for both
text understanding and generation tasks. We reproduce
this baseline using its pre-trained model checkpoint.7

(4) CCBERT was proposed by Zhang et al. (2022b), which is
also used for SO title generation but takes bi-modal content
(code snippets and text descriptions in the post body) as
the model input. CCBERT is a Transformer-based model
equipped with CodeBERT (Feng et al., 2020) and an ad-
ditional copy attention layer. Specifically, CodeBERT is a
Transformer encoder pre-trained on a vast scale NL-PL bi-
modal corpus, and generate vector representations that
support downstream tasks, such as fault prediction and
localization (Yu et al., 2019b, 2022; Feng et al., 2021; Yu
et al., 2018, 2019a, 2017; Mashhadi and Hemmati, 2021),
code clone detection (Zhang et al., 2022a), code smell de-
tection (Liu et al., 2022b), etc. The copy attention layer
is an adapted version of the copy mechanism (See et al.,
2017) for the Transformer architecture, which helps the
model focus on input tokens during decoding. Zhang et al.
(2022b) showed the superiority of CCBERT over Code2Que
and BART using their collected dataset. We take advantage
of their published source code and the pre-trained model
checkpoint8 of CodeBERT to reproduce this baseline.

(5) SOTitle was proposed by Liu et al. (2022a), which is an-
other novel approach used for SO title generation. The
backbone of SOTitle is the pre-trained T5 (Raffel et al.,
2020) model, which follows the Transformer encoder–
decoder architecture and employs a transfer learning tech-
nique that unifies all text-based language problems into a
text-to-text paradigm. T5 was pre-trained on a large-scale
corpus crawled from the web and achieved state-of-the-art
performance on various NL tasks. Liu et al. (2022a) fine-
tuned T5 on their collected SO dataset and reported it could
outperform Code2Que and BART. We use their published
source code and the pre-trained model checkpoint9 of T5
to reproduce this baseline.

(6) PLBART (Ahmad et al., 2021) is a specialized version of
the BART model, whose name is the abbreviation for ‘‘Pro-
gram and Language BART’’. It also employs the Transformer
encoder–decoder architecture and applies denoising ob-
jectives for pre-training. PLBART was proposed to pro-
duce multilingual representations applicable to NL-PL un-
derstanding and generation tasks. It was pre-trained on
a large-scale bi-modal corpus collected from GitHub and

6 https://opennmt.net.
7 https://huggingface.co/facebook/bart-base.
8 https://huggingface.co/microsoft/codebert-base.
9 https://huggingface.co/t5-base.

https://huggingface.co/docs/transformers/index
https://huggingface.co/Salesforce/codet5-base
https://www.elastic.co/elasticsearch/
https://opennmt.net
https://huggingface.co/facebook/bart-base
https://huggingface.co/microsoft/codebert-base
https://huggingface.co/t5-base
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Stack Overflow, then fine-tuned to downstream applica-
tions. Results showed that PLBART could outperform state-
of-the-art models in a wide range of tasks, especially code
summarization and translation. We reproduce this baseline
using its pre-trained model checkpoint.10

Overall, except BM25, all the baselines are essentially
equence-to-sequence generation models. We notice that CCBERT
nd SOTitle originally took bi-modal sequences (including code
nippets and text descriptions) as input. While in this study,
e aim to assist developers who may have difficulty providing
lear and concise descriptions for their programming problems
n Stack Overflow. Therefore, we use code snippets as the sole
nput and produce post titles as the output for all the models in
ur experiments.

.4 Evaluation methods

We believe a high-quality post title should have good readabil-
ty and a strong correlation with the post body. Manual evaluation
s the ideal way to measure these criteria. Nevertheless, consider-
ng the tremendous scale of our dataset, it is necessary to perform
n automatic evaluation. An additional human evaluation is per-
ormed on a small subset of test samples to demonstrate the
ntuitive quality of titles generated by our model.

.4.1 Automatic evaluation
Following previous studies (Gao et al., 2020; Zhang et al.,

022b; Liu et al., 2022a), we automatically evaluate the qual-
ty of the generated titles by using two text similarity metrics:
LEU (Papineni et al., 2002) and ROUGE (Lin, 2004). These metrics
easure the similarity of a generated title to its corresponding

eference title in the original post, with scores ranging from 0 to
. Higher values indicate greater similarity. In our presentation
f the results, we express the scores as percentages for easier
eadability. For example, a BLEU score of 0.2 is presented as 20%.
elow, we provide a more detailed introduction to these metrics.
BLEU originates from machine translation tasks, which mainly

alculates the lexical overlap between sentences through n-gram
recision. It also incorporates the brevity penalty to penalize
he behavior of generating short sentences for higher precision
cores. In our experiments, we use the BLEU-4 score calculated
ith 1/2/3/4-gram. Besides, we apply a smoothing method intro-
uced by Lin and Och (2004) to prevent negative scores caused
y excessive short sentences. We denote the smoothed method
s BLEUS-4 and use the NLTK11 library for implementation.
ROUGE is a set of metrics commonly used in text summariza-

ion, mainly focusing on the n-gram recall. In our experiments, we
mploy three ROUGE-family metrics, including the ROUGE-1/2
cores that are calculated with 1/2-gram co-occurrence and the
OUGE-L score that concerns the longest common subsequence.
oreover, we use an open source library12 for implementation.

.4.2 Human evaluation
In practice, a high-quality post title can be written in dif-

erent styles. It is hard to tell the actual quality of a generated
itle based on its similarity with a single reference. Therefore,
e perform an additional evaluation on four human-centered
riteria. As described in Table 2, each criterion can be quanti-
ied by a score number. Specifically, Readability measures the
rammaticality and fluency of a title, while Correlation considers
he consistency between a title and its corresponding post body.

10 https://huggingface.co/uclanlp/plbart-base.
11 http://www.nltk.org/_modules/nltk/translate/bleu_score.html.
12 https://pypi.org/project/rouge.
7

Table 2
The criteria used for human evaluation.
Criteria Scoring standard

Readability
1 ⇒ Very hard to read and understand
2 ⇒ Just readable and understandable
3 ⇒ Very easy to read and understand

Correlation
1 ⇒ Totally digress from the key points
2 ⇒ Relevant to the key points
3 ⇒ Exactly match the key points

Diversity [1,K] ⇒ The number of covered intentions

Usability
1 ⇒ Not useful for post search or writing
2 ⇒ Moderately helpful for post search and writing
3 ⇒ Efficiently streamline post search and writing

Diversity is the number of potential intentions covered by the
generated titles. We also evaluate the Usability of the generated
titles, which reflects their usefulness in helping developers find
relevant posts and complete problem descriptions.

For the human evaluators, we recruit six postgraduate stu-
dents with strong English and programming proficiency. The
participants have at least three years of programming experience
with their preferred languages, as well as more than one year of
experience using Stack Overflow. Additionally, they have at least
one year of studying or working experience in English-speaking
regions. During the evaluation, participants are evenly divided
into three groups according to their preferred programming lan-
guages (including the popular Python and Java languages, as well
s the low-resource Go language). Finally, we take the average
core of each two participants in the same group and report the
esults by different PLs.

.4.3 Evaluation on multiple outputs
Finally, we introduce the evaluation method when the model

utputs multiple titles for a single input. Suppose the output
umber is K . We first calculate the scores of all the titles on

a specific Metric and then take the highest score as the result,
which is denoted as Metric@K . In this way, we can get the
LEU@K , ROUGE@K , Readability@K , Correlation@K , Diversity@K ,
nd Usability@K that are used for our experiments.

.5 Research questions

We demonstrate the effectiveness of our model by conducting
xperiments to answer the following Research Questions (RQs):

RQ-1 What is the prevalence of the ambiguity issue? Moti-
vation: Fig. 1 illustrates an instance where it is difficult
to comprehend the intentions of a specific code snippet
without the surrounding context. This research question
aims to further examine the prevalence of the ambigu-
ity issue in our Stack Overflow title generation task and
demonstrate the usefulness of our proposed approach in
practical applications.

RQ-2 Does our approach outperform state-of-the-art base-
lines under automatic evaluation?
Motivation: In Section 3.3, we have introduced several
state-of-the-art models proposed for the SO title genera-
tion task (i.e., Code2Que, CCBERT, and SOTitle) as well as
the promising approaches for this task (i.e., BM25, BART,
and PLBART). This research question explores whether our
model could improve the quality of generated titles com-
pared with the existing methods.

RQ-3 How effective is our maximal marginal multiple nucleus
sampling?
Motivation: Apart from applying CodeT5 as our backbone,
the novelty of M3NSCT5 mainly lies in our elaborate sam-
pling strategy. We use the nucleus sampling instead of

https://huggingface.co/uclanlp/plbart-base
http://www.nltk.org/_modules/nltk/translate/bleu_score.html
https://pypi.org/project/rouge
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Table 3
The automatic evaluation results of M3NSCT5 and six baselines on the test dataset with respect to different PLs. The values in the table are the average scores
expressed as percentages (%), and K is the number of output titles. B4, R1, R2, and RL are the abbreviations of BLEUS-4, ROUGE-1, ROUGE-2, and ROUGE-L.
(a) Python (b) C#

Setting Model B4@K R1@K R2@K RL@K Setting Model B4@K R1@K R2@K RL@K

K = 1

BM25 6.95 11.42 1.53 10.70

K = 1

BM25 6.36 9.93 1.85 9.53
Code2Que 12.06 23.07 6.61 22.17 Code2Que 9.91 17.45 5.05 17.55
BART 12.76 24.98 7.56 23.13 BART 11.48 20.95 6.81 19.99
CCBERT 12.98 25.66 8.12 24.15 CCBERT 11.05 20.30 6.79 19.62
SOTitle 12.90 25.45 7.85 23.63 SOTitle 11.52 20.91 6.67 19.98
PLBART 13.05 26.55 8.50 24.69 PLBART 11.61 22.58 7.73 21.68
M3NSCT5 13.34 28.65 9.68 26.44 M3NSCT5 12.16 25.06 9.10 23.75

(c) Java (d) JavaScript

Setting Model B4@K R1@K R2@K RL@K Setting Model B4@K R1@K R2@K RL@K

K = 1

BM25 6.43 10.68 1.49 10.14

K = 1

BM25 6.60 10.57 1.43 10.03
Code2Que 10.51 19.49 5.24 19.25 Code2Que 11.29 20.83 5.78 20.44
BART 11.53 22.32 6.48 21.11 BART 12.21 23.45 6.68 22.15
CCBERT 11.46 22.13 6.89 21.23 CCBERT 12.36 23.84 7.21 22.63
SOTitle 11.63 22.55 6.58 21.36 SOTitle 12.34 23.73 6.89 22.48
PLBART 11.72 24.14 7.56 22.94 PLBART 12.50 24.88 7.58 23.65
M3NSCT5 12.37 26.07 8.60 24.46 M3NSCT5 12.74 26.96 8.53 25.25

(e) PHP (f) C

Setting Model B4@K R1@K R2@K RL@K Setting Model B4@K R1@K R2@K RL@K

K = 1

BM25 7.72 12.15 1.53 11.27

K = 1

BM25 6.32 10.07 1.42 9.62
Code2Que 11.14 19.97 5.14 19.28 Code2Que 9.24 16.52 4.22 16.40
BART 12.24 22.94 5.75 21.29 BART 10.68 19.83 5.62 18.97
CCBERT 12.46 23.04 6.26 21.50 CCBERT 10.75 20.15 5.84 19.36
SOTitle 12.40 22.87 5.76 21.14 SOTitle 10.91 20.30 5.69 19.42
PLBART 12.48 24.06 6.53 22.45 PLBART 10.98 21.67 6.48 20.73
M3NSCT5 12.91 25.86 7.45 23.82 M3NSCT5 11.49 24.18 7.68 22.85

(g) Ruby (h) Go

Setting Model B4@K R1@K R2@K RL@K Setting Model B4@K R1@K R2@K RL@K

K = 1

BM25 6.87 10.98 1.44 10.31

K = 1

BM25 6.74 10.56 1.40 9.87
Code2Que 11.24 20.34 5.72 19.73 Code2Que 10.66 18.84 4.76 19.00
BART 12.74 23.60 7.04 22.08 BART 12.45 22.63 6.44 21.52
CCBERT 12.80 24.36 8.00 23.12 CCBERT 12.54 22.61 7.22 21.76
SOTitle 12.60 23.59 7.13 22.11 SOTitle 12.66 22.70 6.44 21.36
PLBART 12.92 24.41 7.59 22.92 PLBART 12.82 23.78 7.44 22.84
M3NSCT5 13.08 26.77 9.31 25.13 M3NSCT5 13.21 25.57 8.85 24.50
3
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beam search and propose the maximal marginal ranking
for further performance improvement. This research ques-
tion aims to investigate the effectiveness of our sampling
strategy.

RQ-4 What is the performance of our approach under human
evaluation?
Motivation: Automatic metrics mainly evaluate the sim-
ilarity between the generated titles and the given refer-
ences. Nevertheless, such similarity does not necessarily
correlate to human perceptible quality. This research ques-
tion aims to demonstrate the intuitive quality of generated
titles through human evaluation.

4 Results and analysis

4.1 RQ-1: What is the prevalence of the ambiguity issue?

Methods & Results: The meaning of code can be unclear and
open to interpretation without sufficient context, which also hap-
pens to the code snippets within Stack Overflow posts. To in-
vestigate the prevalence of this ambiguity issue, we estimate
the percentage of ambiguous code snippets through a human
study. Specifically, we ask six human evaluators (introduced in
Section 3.4.2) to determine whether they can infer the original
intention of a post based on its code snippets. We sample 50
posts from our dataset for each participant according to their
preferred programming language and question tags. This results
in 300 annotated samples in total covering three PLs (100 in
8

Python, 100 in Java, and 100 in Go). The results show that 43%,
7%, and 51% of the posts are marked as ambiguous for Python,
ava, and Go, respectively. The evaluators conclude several factors
hat contribute to the ambiguity of a code snippet, including its
ength (too short or too long), the absence of comments, and
he differing perspectives and prior experiences of the evaluators.
hese findings indicate a significant prevalence of the ambiguity
ssue, which contributes to the usability of our proposed approach
n real-world applications.

Answer to RQ-1: The ambiguity issue is prevalent in our
Stack Overflow title generation task, which highlights the
need and usefulness of our proposed approach.

4.2 RQ-2: Does our approach outperform state-of-the-art baselines
under automatic evaluation?

Methods: We compare M3NSCT5 with six state-of-the-art base-
lines on the four automatic evaluation metrics (i.e., BLEUS-4,
ROUGE-1, ROUGE-2, and ROUGE-L). Since we propose to over-
come the ambiguity issue by sampling multiple times, we also
experiment with the number of outputs K = 3 and K = 5.
Following previous studies (Zhang et al., 2022b; Liu et al., 2022a)
on Stack Overflow title generation, we train all the models, except
for BM25, on the whole training set of our D dataset that covers
so
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Table 4
The automatic evaluation results of M3NSCT5, PLBART, and BM25 on the test dataset when K > 1, where K is the number of output titles. The values in the table
are the average scores expressed as percentages (%) of the best title among the K title candidates. B4, R1, R2, and RL are the abbreviations of BLEUS-4, ROUGE-1,
ROUGE-2, and ROUGE-L.
(a) Python (b) C#

Setting Model B4@K R1@K R2@K RL@K Setting Model B4@K R1@K R2@K RL@K

K = 3
BM25 11.18 19.26 3.56 17.95

K = 3
BM25 10.81 17.37 4.07 16.66

PLBART 15.11 30.81 10.76 28.67 PLBART 14.44 27.02 9.89 25.84
M3NSCT5 15.94 33.42 11.93 30.96 M3NSCT5 14.87 29.54 10.87 27.97

K = 5
BM25 12.72 22.55 4.87 21.00

K = 5
BM25 12.52 20.85 5.50 19.92

PLBART 16.17 33.09 12.06 30.86 PLBART 15.57 29.29 11.26 28.00
M3NSCT5 17.08 35.58 13.28 33.05 M3NSCT5 16.06 31.75 12.14 30.09

(c) Java (d) JavaScript

Setting Model B4@K R1@K R2@K RL@K Setting Model B4@K R1@K R2@K RL@K

K = 3
BM25 10.67 18.12 3.24 17.14

K = 3
BM25 10.87 18.02 3.33 17.02

PLBART 14.47 28.25 9.42 26.73 PLBART 14.69 29.44 9.68 27.74
M3NSCT5 14.99 30.71 10.49 28.89 M3NSCT5 15.15 31.46 10.46 29.53

K = 5
BM25 12.41 21.60 4.56 20.46

K = 5
BM25 12.49 21.19 4.50 20.01

PLBART 15.47 30.45 10.61 28.86 PLBART 15.80 31.68 11.01 29.84
M3NSCT5 16.21 32.94 11.80 30.99 M3NSCT5 16.25 33.64 11.72 31.65

(e) PHP (f) C

Setting Model B4@K R1@K R2@K RL@K Setting Model B4@K R1@K R2@K RL@K

K = 3
BM25 12.08 19.93 3.46 18.38

K = 3
BM25 10.72 17.61 3.28 16.76

PLBART 14.67 28.99 8.61 26.96 PLBART 13.62 26.33 8.49 25.09
M3NSCT5 15.66 31.75 9.81 29.32 M3NSCT5 14.09 28.79 9.48 27.21

K = 5
BM25 13.75 23.39 4.93 21.60

K = 5
BM25 12.49 20.96 4.49 19.83

PLBART 15.76 31.16 9.75 29.04 PLBART 14.78 28.61 9.73 27.25
M3NSCT5 16.97 34.53 11.46 31.84 M3NSCT5 15.40 31.22 10.73 29.46

(g) Ruby (h) Go

Setting Model B4@K R1@K R2@K RL@K Setting Model B4@K R1@K R2@K RL@K

K = 3
BM25 11.04 18.28 3.40 17.18

K = 3
BM25 11.56 18.30 3.42 17.30

PLBART 15.24 29.63 10.34 27.86 PLBART 15.26 28.58 9.19 27.13
M3NSCT5 16.17 32.16 11.49 30.25 M3NSCT5 16.22 30.80 10.97 29.39

K = 5
BM25 12.84 21.82 4.81 20.51

K = 5
BM25 13.11 21.58 4.71 20.33

PLBART 16.98 31.90 11.84 30.06 PLBART 16.48 30.64 10.23 29.12
M3NSCT5 17.63 34.77 13.14 32.70 M3NSCT5 17.69 33.60 12.23 31.74
eight PLs and test on individual subsets of different PLs. The
experimental results are shown in Tables 3 and 4.

Results: Based on the results, we can conclude that M3NSCT5
chieves the best performance under automatic evaluation, out-
erforming all the baseline models. Specifically, we have the
ollowing findings:

(1) According to Table 3, when all the models output only
one candidate (i.e., K = 1), M3NSCT5 could achieve the
best performance. Among all the baselines, the retrieval
method BM25 obtains the worst performance. The LSTM-
based Code2Que outperforms BM25 by a large margin
but is no match for large pre-trained Transformer models,
which aligns with the results of the previous study (Liu
et al., 2022a). We also find that BART, CCBERT, and SOTitle
share similar results on different PL subsets, where all
of them are worse than PLBART. We attribute the good
performance of PLBART to its generation-oriented denois-
ing objectives and code-related corpus for pre-training.
Furthermore, M3NSCT5 outperforms PLBART by 3.3%, 8.8%,
16.5%, and 7.9% in terms of BLEUS-4, ROUGE-1, ROUGE-2,
and ROUGE-L on average of different PL subsets.

(2) According to Table 4, when all the models output multiple
candidates (K = 3 and K = 5), M3NSCT5 could also sig-
nificantly improve the performance as well as outperform
other baselines. We choose BM25 for comparison because
returning multiple candidates for a query is common for in-
formation retrieval. We also compare with PLBART, which
shares a similar model architecture with CodeT5 and has
the most competitive results when K = 1.
9

As shown in Table 4, increasing the output number K
(i.e., offering more title candidates for the developers to
choose from) boosts the performance of all models by a
large margin. In particular, when K changes from 1 to 3,
M3NSCT5 performs 21.5%, 18.9%, 23.7%, and 19.1% better
in terms of BLEUS-4, ROUGE-1, ROUGE-2, and ROUGE-L on
average of different PL subsets. As for the baselines, BM25
remains the worst performance. Though PLBART achieves
acceptable results, M3NSCT5 still outperforms it by 4.7%,
8.6%, 12%, and 8.1% in terms of BLEUS-4, ROUGE-1, ROUGE-
2, and ROUGE-L on average when K = 3, and by 4.9%, 8.6%,
11.7%, and 7.9% in terms of BLEUS-4, ROUGE-1, ROUGE-2,
and ROUGE-L on average when K = 5.

(3) According to the sub-tables of different PLs in Tables 3 and
4, M3NSCT5 achieves excellent performance on every PL
subset. Surprisingly, the results on less popular PLs like C,
Ruby, and Go are totally comparable to the dominant ones.
This finding also applies to other baselines, where models
never pre-trained on code-related corpus like Code2Que,
BART and SOTitle can perform well on all subsets. Though
PLBART has only been pre-trained on Python and Java cor-
pus, it can achieve quite competitive results to our model
on other PLs. All the evidence indicates that models can
benefit from fine-tuning on the joint dataset of different
PLs, and it is applicable to introduce new PLs with less
sufficient data to the SO title generation task.
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Fig. 5. Automatic evaluation results of equipping the fine-tuned CodeT5 model with three sampling strategies.
Table 5
Human evaluation results of M3NSCT5, PLBART, and BM25 on three programming languages when K = 3. S-1, S-2, and S-3 represent the percentage of samples rated
o score 1, 2, and 3. S-Avg represents the average score of title candidates. The numbers in the table are the mean values of two participants in the same group.
Language Criteria(@3) M3NSCT5 PLBART BM25

S-1 S-2 S-3 S-Avg S-1 S-2 S-3 S-Avg S-1 S-2 S-3 S-Avg

Python

Readability – 23% 77% 2.77 – 24% 76% 2.76 – 13% 87% 2.87
Diversity 3% 33% 64% 2.61 17% 49% 34% 2.17 5% 35% 60% 2.55
Correlation 11% 52% 37% 2.26 19% 49% 32% 2.13 68% 32% – 1.32
Usability 1% 54% 45% 2.44 12% 72% 16% 2.04 71% 29% – 1.29

Go

Readability – 39% 61% 2.61 – 38% 62% 2.62 – 16% 84% 2.84
Diversity 4% 39% 57% 2.53 21% 51% 28% 2.07 3% 37% 60% 2.57
Correlation 12% 55% 33% 2.21 19% 54% 27% 2.08 71% 29% – 1.29
Usability 4% 59% 37% 2.33 14% 70% 16% 2.02 72% 28% – 1.28

Java

Readability – 31% 69% 2.69 – 32% 68% 2.68 – 14% 86% 2.86
Diversity 3% 36% 61% 2.58 18% 49% 33% 2.15 4% 36% 60% 2.56
Correlation 10% 56% 34% 2.24 19% 51% 30% 2.11 69% 31% – 1.31
Usability 3% 59% 38% 2.35 13% 69% 18% 2.05 72% 28% – 1.28
s
e
(
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Answer to RQ-2: Our proposed M3NSCT5 can outper-
form state-of-the-art baselines on automatic evaluation
by generating titles of higher quality under different
experimental settings.

4.3 RQ-3: How effective is our maximal marginal multiple nucleus
sampling?

Methods: Remaining the already fine-tuned CodeT5 unchanged,
e compare the performance of the three decoding strategies
hen K varies from 1 to 20. First, we use the vanilla Beam
 h

10
Search (BS) method, which ranks the generated candidates by
the combinatorial probability of their tokens. We set the beam
size to 20 and select the top K candidates as output. Second, we
repeat Random Nucleus Sampling (RNS) K times, then take the
ampled candidates as output. The third is our proposed strat-
gy, which mainly performs Maximal Marginal Nucleus Sampling
MMNS). The experimental results are shown in Fig. 5, where
he sub-figures individually demonstrate the performance of the
hree sampling strategies on each automatic evaluation metric,
veraged on eight PL subsets.

esults: From the results, we can easily find the superiority of
ur sampling strategy, especially when K ≤ 5. Specifically, we
ave the following findings:
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(1) The performance of RNS has a large fluctuation range and
is highly sensitive to the value of K . While BS has a more
moderate performance improvement than RNS when K
increases. Considering the user scenario of the SO title
generation task, it is applicable when K takes small val-
ues, e.g., recommending at most 5 title candidates for the
developer. When K ≤ 2, BS outperforms RNS, indicating
the titles generated with higher probability are of better
quality. When 3 ≤ K ≤ 5, BS performs worse than RNS,
showing that ranking titles purely on probability could
damage the trait of diversity.

(2) Our MMNS strategy takes advantage of nucleus sampling
and maximal marginal ranking to increase the diversity of
output titles. It also incorporates self-consistency voting
to obtain the most promising title with higher quality.
As a result, when K = 1, MMNS outperforms BS (and
RNS) by 9%, 14.6%, 29.2%, and 14.1% (by 18.2%, 27.4%, 74%,
and 29.5%) in terms of BLEUS-4, ROUGE-1, ROUGE-2, and
ROUGE-L. When K = 3, MMNS outperforms RNS (and
BS) by 3.5%, 4.5%, 12.1%, and 5.1% (by 2.3%, 7.9%, 10.5%,
and 7.3%) in terms of BLEUS-4, ROUGE-1, ROUGE-2, and
ROUGE-L. When K = 5, MMNS is still comparable to RNS.

Answer to RQ-3: Our sampling strategy can improve the
quality and diversity of generated titles, especially when
K ≤ 5, making it more suitable and effective for the SO
title generation task.

4.4 RQ-4: What is the performance of our approach under human
evaluation?

Methods: As introduced in Section 3.4.2, we recruit six students
for human evaluation. Participants are required to score the titles
generated by M3NSCT5, PLBART, and BM25 on three PLs. We
assign each participant 100 random post samples where each
post is paired with nine titles generated by the three approaches
(i.e., the output number K = 3). Participants do not know the
titles are generated by which approach during the evaluation, and
they are requested to tell the scores of each sample according to
the scoring standard in Table 2. Additionally, we employ Cohen’s
Kappa (Cohen, 1960) to measure the agreement between the two
participants in each group. The main evaluation results are shown
in Table 5 and the Cohen’s Kappa statistics are summarized in
Tables 6 and 7. In addition, we provide examples in Table 8
to illustrate the quality and diversity of the titles generated by
the three approaches. We also include the automatic and human
evaluation scores of these generated titles in Table 9 to provide a
more intuitive understanding of our evaluation.

Results: From the results, we can find that M3NSCT5 achieves
the best performance in terms of Diversity, Correlation, and Usabil-
ity compared with the other two approaches. Furthermore, the
performance of M3NSCT5 is consistent among different program-
ming languages, even for the low-resource Go subset. Moreover,
the participants have a substantial or nearly perfect agreement
according to Cohen’s Kappa statistics, which validates the trust-
worthiness of our human evaluation. Specifically, we have the
following findings:

(1) In terms of the Readability criterion, BM25 achieves the best
performance because it just returns the human-written ti-
tles retrieved from the training set. Besides, both M3NSCT5
and PLBART can achieve a competitive score ≥2.6 on three
PLs, indicating the capability of pre-trained models on nat-
ural language generation. The examples in Table 8 also
demonstrate the good readability of generated titles.
11
Table 6
The interpretation of Cohen’s Kappa agreement.
Cohen’s Kappa Interpretation

0% No agreement
1%∼20% Slight agreement
21%∼40% Fair agreement
41%∼60% Moderate agreement
61%∼80% Substantial agreement
81%∼99% Near perfect agreement
100% Perfect agreement

(2) In terms of the Diversity criterion, both M3NSCT5 and BM25
have good results, having an average number of distinct
titles ≥2.5 when K = 3. BM25 performs well because
there are almost no duplicate posts in the training set. The
excellent performance of M3NSCT5 should attribute to our
elaborate sampling strategy that maximizes the difference
between the output titles. In contrast, the poor perfor-
mance of PLBART on Diversity should blame on the beam
search decoding method. From the examples in Table 8, we
can find that the titles generated by PLBART have higher
lexical and semantic overlap than our approach.

(3) As for the Correlation criterion, M3NSCT5 outperforms
PLBART and BM25, with around 90% samples relevant to or
exactly matching the key points of original posts. It shows
the feasibility of inferring user intents from code snip-
pets. We attribute the excellent performance of M3NSCT5
to the initial choice of high-quality titles based on self-
consistency when performing the maximal marginal rank-
ing. We can see from Tables 8 and 9 that BM25 is totally off
the point and even recommends PHP posts for the Go code
snippets because of their high lexical overlap, indicating
the limitations of the retrieval method. The titles generated
by PLBART are relevant to the posts but still missing the
points. At the same time, M3NSCT5 shows a good ability
to understand the code snippets and generate diverse title
candidates, with the best candidate closely related to the
post.

(4) Regarding the Usability criterion, results in Table 5 demon-
strate that our M3NSCT5 significantly outperforms the
PLBART and BM25 baselines in terms of generating useful
titles for developers. Around 40% of the titles generated
by M3NSCT5 are found to significantly assist human eval-
uators in retrieving relevant posts and completing their
problem descriptions, while less than 5% are marked as
useless. This suggests that M3NSCT5 has strong potential
for real-world applications. In contrast, BM25 obtains the
worst performance, with around 70% of its titles being
deemed useless by evaluators. This is likely due to the low
correlation scores and relevance to the input code of these
titles. While PLBART performs better than BM25 in terms of
usability, it is still not as effective as M3NSCT5. Therefore,
the findings validate the effectiveness of M3NSCT5 in our
Stack Overflow title generation task.

Answer to RQ-4: Our approach shows a strong ability to
generate high-quality and diverse post titles that can help
developers retrieve relevant posts and complete their
problem descriptions.

5 Limitation

While our proposed approach, M3NSCT5, has demonstrated
impressive performance in generating high-quality and diverse
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Table 7
The agreement values of human evaluation results.
Language Criteria(@3) M3NSCT5 PLBART BM25

Python

Readability 83.1% 78.3% 73.7%
Diversity 79.4% 83.9% 84.5%
Correlation 79.6% 84.0% 81.8%
Usability 84.3% 82.0% 85.5%

Go

Readability 79.2% 74.9% 85.2%
Diversity 81.0% 77.6% 80.3%
Correlation 82.7% 76.9% 76.0%
Usability 80.7% 74.5% 80.3%

Java

Readability 76.9% 81.8% 83.4%
Diversity 80.1% 77.7% 84.4%
Correlation 85.8% 80.6% 86.0%
Usability 80.4% 83.2% 80.3%

Stack Overflow post titles from input code snippets, there are
still some limitations to consider. One limitation is that, like all
data-driven deep learning models, M3NSCT5 is susceptible to the
ong-tail problem and may not perform well on the code snippets
utside the scope of training data. Additionally, M3NSCT5 may
truggle to handle input code that is either too short or too long,
s this can lead to a lack of semantics or an increase in seman-
ic complexity, respectively. As a result, it may be difficult for
3NSCT5 to generate titles with the expected intentions in these
ases, even if the diversity of generated titles is high. Despite
hese limitations, we believe that the potential benefits of using
3NSCT5 in real-world applications outweigh the potential risks,
nd our work will inspire future research in this area.

Related work

A Stack Overflow post usually consists of three parts: body,
itle, and tags. Previous studies on the tag recommendation task
emonstrated that one could utilize the recommended tags for
ost retrieval, similar to our motivation. But the discrete tags
re more suitable for post classification than serving as search
ueries. In comparison, a coherent and informative post title can
etter help developers understand the problem and search for
elated posts. Once developers have narrowed their search to
pecific posts, answer summarization techniques can be helpful
n identifying and extracting the most relevant information from
engthy responses. Moreover, generating post titles from code
nippets can be seen as a specialized PL-to-NL translation task. A
losely related task is code summarization, an emerging research
irection in software engineering and natural language process-
ng. This section introduces the previous studies of post title
eneration, tag recommendation, answer summarization, and the
ecent advances in code summarization.

itle generation: Gao et al. (2020) first proposed the SO title
eneration task to help improve the quality of poorly written
uestion posts. They trained an LSTM network with the copy (See
t al., 2017) and coverage (Tu et al., 2016) mechanisms to gener-
te titles from mined code snippets. Later, Zhang et al. (2022b)
nd Liu et al. (2022a) found that taking advantage of both code
nippets and text descriptions in the post body could signifi-
antly improve the quality of generated titles. Though utilizing
he natural language descriptions could reduce the ambiguity of
he context, it is less helpful when developers cannot provide
ood question descriptions. Therefore, in this study, we focus on
he application scenario where only code snippets are available.
e propose M3NSCT5 to improve the quality and diversity of
enerated titles compared with previous approaches.

12
Tag recommendation: Post tags are vital for Stack Overflow,
which are helpful in organizing relevant posts. Nevertheless,
poorly chosen tags may cause severe redundancy over time. To
tackle this challenge, early studies (Xia et al., 2013; Wang et al.,
2014, 2015; Zhou et al., 2017; Liu et al., 2018) proposed to
automatically recommend tags with the given post body, title,
and user profile through feature extraction and similarity-based
methods. Recently, Zhou et al. (2019) and Xu et al. (2021) intro-
duced deep learning models for this task, which could achieve
better performance. Moreover, Devine and Blincoe (2022) and
He et al. (2022b) proposed to take advantage of pre-trained
models for further improvement. However, it remains unexplored
to recommend post tags with code snippets. We believe tag
recommendation and title generation models can be combined
for post retrieval, which is a direction of our future work.

Answer summarization: Stack Overflow is a popular resource for
developers seeking answers to their questions, but the process
of reviewing related posts and detailed answers can be time-
consuming. To address this issue, researchers proposed many
automated answer summarization approaches to improve the ef-
ficiency and effectiveness of the information-seeking process. For
example, Xu et al. (2017) developed the AnswerBot framework to
generate answer summaries for non-factoid technical questions.
Nadi and Treude (2020) studied the problem of identifying es-
sential sentences in Stack Overflow answers. Chatterjee (2022)
utilized natural language based approaches to suggest code pairs
from a post. More recently, Kou et al. (2022) and Chengran et al.
(2022) proposed more large scale datasets and promising meth-
ods for the answer summarization task. Empirical experiments
have demonstrated the effectiveness of these approaches. And we
believe the answer summarization approaches can be combined
with our title generation model to further improve the user
experience on Stack Overflow.

Code summarization: The code summarization task is to generate
readable descriptions of the given program, aiming to save the
effort of developers on program comprehension. Nowadays, with
the emergence of large-scale NL-PL bi-modal datasets and the
rapid development of deep learning techniques (Chen and Lu,
2020; He et al., 2022a; Chen et al., 2020a; He et al., 2021; Yang
et al., 2021a; He et al., 2020; Zhao et al., 2022, 2023), it be-
comes feasible to train deep models to generate high-quality code
summaries. Most existing code summarization approaches (Wan
et al., 2018; Ahmad et al., 2020) follow the encoder-decoder
framework, which first propose to encode the sequential code
tokens into a hidden state via LSTM or Transformer, and then
decode it into a natural-language summary. Then, a number of
follow-up studies (Tang et al., 2021, 2022; Shi et al., 2021; Guo
et al., 2022b; Zhou et al., 2022a; Li et al., 2021; Cheng et al., 2022;
Zhou et al., 2022b; Yang et al., 2021b) proposed to incorporate the
structural information by parsing the source code into abstract
syntax trees or control flow graphs to improve the performance.
Since code snippets extracted from SO posts are always problem-
atic, we cannot apply static parsing techniques to get the syntax
trees or control flow graphs. Therefore, as mentioned in Sec-
tion 3.1, we try to reserve the structural information by keeping
the white spaces and line breaks in code snippets. Furthermore,
some other studies (Lu et al., 2021; Feng et al., 2020; Ahmad
et al., 2021; Wang et al., 2021; Guo et al., 2022a; Fried et al.,
2022) proposed to utilize the large-scale unlabeled data and self-
supervised learning to pre-train models through self-supervised
objectives and achieved state-of-the-art results on code sum-
marization benchmarks. Motivated by the good performance of
pre-training, we employ the pre-trained CodeT5 model as our

backbone. Nonetheless, generating titles for SO posts presents its
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Table 8
Example input code snippets and the titles generated by M3NSCT5, PLBART, and BM25. The scores of the generated titles on automatic evaluation metrics and human
criterion are shown in Table 9.

Code Snippets Titles

Example 1 — Python Language:
letter_list = [’a’,’d’,’o’,’m’,’s’]
>>> df
ID WORD
1 ’yellow’
2 ’orange’
3 ’green’
4 ’blue’
>>> expected output
ID WORD
3 ’green’
4 ’blue’

Origin:
filter dataframe for words which do not contain any of the letters in a list
M3NSCT5:
1.1 how to filter rows in pandas dataframe based on a list of letters
1.2 pandas - replace rows with values of list from another list
1.3 pandas : groupby by letters of string
PLBART:
1.4 use pandas to group words from a list
1.5 how to group elements of a list in pandas
1.6 how to group by a second list in pandas
BM25:
1.7 pandas merge creates unwanted duplicate entries
1.8 using nested loops in order to group data in a csv
1.9 sort a list with known values before unknown values

Example 2 — Java Language:
try(Scanner scan = new Scanner(System.in)) {

String s = scan.nextLine();
System.out.println(s);
scan = null;

}

Origin:
try with resource why cannot modify resource
M3NSCT5:
2.1 how to close a scanner in a try-with-resources block
2.2 why is the scanner null after the first line
2.3 java scanner.nextline() not working as expected
PLBART:
2.4 will it be a nullpointerexception in try-with-resource
2.5 java scanner() throws nullpointerexception
2.6 how do I prevent a nullpointerexception from being thrown
BM25:
2.7 copying characters in a string
2.8 java how to parse for words in a string for a specific word
2.9 how to terminate scanner when input is complete

Example 3 — Go Language:
{{range $m := .messages}}

<div>Message subject: {{$m.Subject}}</div>
{{$lastMsg := $m}}

{{end}}
<div>

The last message’s subject: {{$lasMsg.Subject}}
</div>

undefined variable ‘‘$lastMsg’’

unexpected ‘‘:=’’ in operand

Origin:
how to use template variable outside a loop
M3NSCT5:
3.1 how to access a variable in a range in go template
3.2 golang nested loop variable not found
3.3 why does {{$variable}} not work in this case
PLBART:
3.4 go range variables in html template
3.5 go templates, use variable in range
3.6 accessing a slice value inside a range in go
BM25:
3.7 rails: form in partial for new nested resource
3.8 how to use visual studio - generated async wcf calls
3.9 how do i secure this php script
own challenges, as the code in a post may be flawed or incom-
plete, making it difficult to understand the intended semantics.
Additionally, developers may have different intentions for the
same code, which highlights the need to increase the diversity
of generated titles.

7 Threats to validity

This section reveals the potential threats that may affect the
eproduction of our experiments and the validation of our results.

The threats to internal validity mainly relate to the im-
lementation of baseline models. For CCBERT and SOTitle that
lready have released source code and model checkpoints, we
eep their default hyper-parameters unchanged in our experi-
ents. For BM25, Code2Que, BART, and PLBART, which have no
ff-the-shelf implementations, we take advantage of the widely
sed libraries (i.e., Elasticsearch, OpenNMT, and transformers)
or reproduction and tune their hyper-parameters to the best
n our dataset. In this way, we make sure the comparison be-
ween our model and the baselines is fair. And we release our
mplementations of the baselines to facilitate future studies.

The threats to external validity mainly relate to the construc-
ion of our dataset. We have tried our best to ensure the quality
f our dataset. First, we utilize the already processed dataset

OTorrent to avoid potential bugs when extracting code snippets

13
from the post body. Second, we only include the filtered high-
quality posts in the dataset to reduce the noise of training and
test data. Third, our dataset covers eight programming languages,
including the minorities (Ruby and GO), which would better test
the generalization ability of models. Moreover, we split the train
and test sets in chronological order to fit real-world scenarios. We
also release our dataset for validation and reproduction.

The threats to construct validity mainly relate to the eval-
uation methods. Though BLEU and ROUGE are the most popular
evaluation metrics for generation tasks, measuring the quality of
the generated content remains an open challenge. In the SO title
generation task, there is no golden title for a given post, which
makes it unfair to judge the quality of generated titles by com-
paring them with the only reference title. Therefore, we perform
an additional human evaluation to show the intuitive quality of
generated titles. To perform a comprehensive study, we invite six
participants to evaluate the posts covering three programming
languages. Additionally, we conducted a large-scale automated
evaluation of readability using the classical Automated Readabil-
ity Index (ARI) (Senter and Smith, 1967) and Flesch Reading Ease
(FRE) (Kincaid et al., 1975) indices on our test dataset, which
consists of high-quality posts that could attract significant atten-
tion and elicit responses. However, the results of the readability
analysis using ARI and FRE showed that the human-written titles

in our test dataset were perceived as difficult to read. The SO titles
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Table 9
The detailed scores of the generated titles listed in Table 8. The scores of automatic evaluation metrics are presented as percentages (%), and the scores of human
evaluation are the averaged numbers of two human evaluators in a group. The three titles generated by the same model share the Diversity score for each example
Model Title No. Automatic Evaluation Human Evaluation

BLEUS-4 ROUGE-1 ROUGE-2 ROUGE-L Readability Diversity Correlation Usability

Example 1 — Python Language

M3NSCT5
1.1 13.60 50.00 7.69 28.57 3.0 3.0 2.5 3.0
1.2 8.36 15.38 0.00 16.00 3.0 3.0 2.0 2.0
1.3 8.36 18.18 0.00 9.09 2.5 3.0 1.5 1.5

PLBART
1.4 11.00 26.09 9.52 26.09 3.0 2.0 1.5 1.5
1.5 11.82 33.33 9.09 25.00 3.0 2.0 1.5 1.5
1.6 9.25 25.00 0.00 16.67 3.0 2.0 2.0 1.5

BM25
1.7 0.00 0.00 0.00 0.00 3.0 3.0 1.0 1.5
1.8 9.94 15.38 8.33 16.00 3.0 3.0 1.0 1.0
1.9 9.94 16.67 9.09 17.39 2.5 3.0 1.0 1.0

Example 2 — Java Language

M3NSCT5
2.1 8.15 20.00 0.00 23.53 3.0 3.0 2.5 2.5
2.2 12.14 12.50 0.00 14.29 3.0 3.0 2.0 2.0
2.3 0.00 0.00 0.00 0.00 2.5 3.0 1.5 1.5

PLBART
2.4 12.00 33.33 0.00 37.50 3.0 2.0 2.0 1.5
2.5 0.00 0.00 0.00 0.00 3.0 2.0 2.0 1.5
2.6 0.00 0.00 0.00 0.00 3.0 2.0 2.0 1.5

BM25
2.7 0.00 0.00 0.00 0.00 3.0 3.0 1.0 1.0
2.8 0.00 0.00 0.00 0.00 2.5 3.0 1.0 1.0
2.9 0.00 0.00 0.00 0.00 3.0 3.0 1.5 1.5

Example 3 — Go Language

M3NSCT5
3.1 16.97 52.63 11.76 47.06 3.0 3.0 3.0 3.0
3.2 16.52 28.57 0.00 14.29 3.0 3.0 2.5 2.5
3.3 7.43 9.52 0.00 10.53 3.0 3.0 2.0 2.0

PLBART
3.4 13.89 14.29 0.00 14.29 2.5 2.0 2.0 2.5
3.5 16.52 26.67 0.00 26.67 2.5 2.0 2.0 2.0
3.6 12.26 11.76 0.00 12.50 2.5 2.0 2.5 2.5

BM25
3.7 0.00 0.00 0.00 0.00 2.5 3.0 1.0 1.0
3.8 22.28 33.33 25.00 33.33 3.0 3.0 1.0 1.0
3.9 13.89 13.33 0.00 13.33 2.5 3.0 1.0 1.0
often contain code identifiers and special symbols, and are often
very short, making them difficult to evaluate using indices such as
ARI and FRE, which often assume complete, grammatically correct
sentences. Based on the finding, these indices may not be suitable
for evaluating the readability of the generated titles in our task.

8 Conclusion and future work

In this paper, we proposed M3NSCT5, a novel approach to
utomatically generate Stack Overflow post titles from the given
ode snippets, which can help non-English speaking or inexpe-
ienced developers improve their poorly written question posts.
ombining the pre-trained CodeT5 model and the maximal
arginal multiple nucleus sampling strategy, M3NSCT5 can gen-
rate high-quality and diverse title candidates for the developers
o choose from. To validate the effectiveness of our approach,
e have built a large-scale dataset with 890,000 posts covering
ight programming languages and choose six state-of-the-art
aselines for comparison. We performed extensive experiments
o demonstrate the superiority of our approach, including an
utomatic evaluation on the BLEU and ROUGE metrics and a
uman evaluation using the Readability, Correlation, Diversity,
nd Usability criteria. Results showed that M3NSCT5 outperforms
ll the baseline methods by a significant margin and has great
otential for real-world applications.
For future work, we plan to further incorporate more powerful

re-trained language models and tag recommendation methods
o improve the title generation task performance. Moreover, we
lan to deploy our model as web services so that real-world
evelopers from Stack Overflow could benefit from our work and
roduce valuable user feedback for future improvement.
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