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A B S T R A C T

Context: Effort-Aware Defect Prediction (EADP) ranks software modules or changes based on their predicted
number of defects (i.e., considering modules or changes as effort) or defect density (i.e., considering LOC as
effort) by using learning to rank algorithms. Ranking instability refers to the inconsistent conclusions produced
by existing empirical studies of EADP. The major reason is the poor experimental design, such as comparison
of few learning to rank algorithms, the use of small number of datasets or datasets without indicating numbers
of defects, and evaluation with inappropriate or few metrics.
Objective: To find a stable ranking of learning to rank algorithms to investigate the best ones for EADP,
Method: We examine the practical effects of 34 algorithms on 49 datasets for EADP. We measure the
performance of these algorithms using 7 module-based and 7 LOC-based metrics and run experiments under
cross-release and cross-project settings, respectively. Finally, we obtain the ranking of these algorithms by
performing the Scott-Knott ESD test.
Results: When module is used as effort, random forest regression performs the best under cross-release setting,
and linear regression performs the best under cross-project setting among the learning to rank algorithms; (2)
when LOC is used as effort, LTR-linear (Learning-to-Rank with the linear model) performs the best under
cross-release setting, and Ranking SVM performs the best under cross-project setting.
Conclusion: This comprehensive experimental procedure allows us to discover a stable ranking of the studied
algorithms to select the best ones according to the requirement of software projects.
. Introduction

Software Defect Prediction (SDP) has typically been modeled by
raining a binary classifier using historical software data, and predicts
hether or not a new software module is defective [1,2]. However,

onventional SDP models based on the binary classification do not
ccount for defect densities of various software modules [3,4]. Con-
equently, software modules that have different defect densities are
llocated with the same amount of testing resources. Therefore, Mende
t al. [3] and Kamei et al. [4] proposed the Effort-Aware Defect
rediction (EADP) model to rank software modules according to the
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predicted defect density. Specifically, they used the inspected Lines Of
Code (LOC) as a proxy for effort. Recently, Yang et al. [5] proposed
to rank software modules based on the predicted number of defects.
They used the number of the inspected software modules as a proxy
for effort. Therefore, in our study, we define EADP as a task of ranking
software modules based on both the defect density (considering LOC as
effort) and the number of defects (considering module as effort). The
core component of EADP models is the learning to rank (henceforth,
L2R) algorithm [5], which automatically constructs a ranking model
using training data, such that the model can sort new software modules
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according to their defect quantity or density. A good L2R algorithm can
precisely rank software modules with more defects or higher defect
density first, allowing software testers to find more defects with less
inspection effort. Hence, selecting the best L2R algorithm becomes the
key to build successful EADP models.

Although there have been extensive studies on searching for the best
L2R algorithms [6–13], different researchers often provide inconsistent
rankings of L2R algorithms, i.e., there is no consensus on what is the
‘‘best’’ L2R algorithm for building the EADP model. Nguyen et al. [6]
found that RankBoost had more stable prediction performance. Bennin
et al. [7,8] discovered that Decision Tree Regression (DTR) performed
the best in cross-release settings. Wang et al. [10] found that RankNet
performed the best regarding Normalized Discounted Cumulative Gain
(NDCG) in the scenario of cross-project EADP. Miletić et al. [11] found
that Logistic Regression (LogR) gained the best results in the scenario of
cross-release EADP. Yang et al. [12] found that Random Forest Regres-
sion (RFR) can achieve better results under cross-release setting. Yan
et al. [9] found that ManualUp did not perform statistically significantly
better than some classification models and Linear Regression (LR)
under within-project setting, and can perform statistically significantly
better than them under cross-project setting. Ni et al. [13] found that
some supervised algorithms can statistically significantly outperform
ManualUp for cross-project EADP. Such inconsistent findings make
it hard to derive practical guidelines about which learning to rank
algorithms should be employed to build EADP models, and Menzies
et al. [14] and Keung et al. [15,16] refer to the inconsistent findings
as the ranking instability problem. Therefore, we aim to empirically
investigate the selection of L2R algorithms for EADP and find the best
ones. As suggested by Menzies et al. [14] and Keung et al. [15,16],
three experimental conditions should be carefully controlled for a
stable ranking result: (1) Variants of datasets are sufficient to draw
a conclusion; (2) The procedure to sample the training/test modules
is logical; (3) The performance measures are sufficient in amount and
are valid. The primary aim of EADP is to find more defective modules
and defects and obtain the accurate global ranking of software modules
according to the number of defects or defect density. It is also important
to consider that inspecting too many modules and LOC may result in
increased effort. Furthermore, developers may be hesitant to utilize an
EADP model if false alarms are high. As such, these three factors should
be considered when evaluating an EADP model. Last but not least,
developers are reluctant to use a EADP model if the false alarms are
high. Therefore, the three aspects should be taken into consideration to
evaluate a EADP model. However, we observed that results of existing
studies tend to be impacted, presumably without fully respecting these
experimental conditions, such as comparison of few L2R algorithms on
small number of datasets, and evaluation with inappropriate or few
performance measures.

To address the aforementioned issues, we aim to find a stable rank-
ing of various L2R algorithms that are widely used in existing EADP
studies through a comprehensive experimental design. We investigate
34 algorithms, including 31 L2R algorithms, two unsupervised learn-
ing algorithms (i.e., ManualUp and ManualDown) and the OneWay
algorithm on 49 module-level datasets. We also compare these algo-
rithms with 7 module-based and 7 LOC-based effort-aware performance
measures under cross-release and cross-project settings. For more ro-
bust result analysis, we use the Scott-Knott with Cohen’s d effect size
awareness (Scott-Knott ESD) [17] test to divide these algorithms into
statistically distinct rankings. Compared with the existing empirical
studies [6–13], we carefully control the three experimental conditions
mentioned by Menzies and Keung et al. and evaluate more algorithms
with a robust statistical test. This comprehensive experimental proce-
dure allows us to draw stable conclusions about the performance of the
algorithms.

The experimental results show that: (1) When using module as
effort, ManualDown performs the best in terms of PofB@20%module
2

(Proportion of the inspected Bugs when inspecting top 20% modules) e
and P𝑜𝑝𝑡@module under cross-release and cross-project settings. How-
ever, ManualDown requires the inspection of significantly more LOC
than other algorithms when inspecting top 20% modules. (2) When
using module as effort, RFR (Random Forest Regression) performs
only behind ManualDown under cross-release setting, and LR (Linear
Regression) performs only behind ManualDown and OneWay under
cross-project setting in terms of PofB@20%module and P𝑜𝑝𝑡@module.
But RFR and LR require software testers to inspect significantly less LOC
than ManualDown and OneWay. (3) When using LOC as effort, LTR-
linear (Learning-to-Rank with the linear model) performs the best under
cross-release setting, and Ranking SVM performs the best under cross-
project setting in terms of PofB@20%LOC (Proportion of the inspected
Bugs when inspecting top 20% Lines Of Code) and P𝑜𝑝𝑡@LOC among
hose algorithms with low IFA (Initial False Alarms encountered before
e find the first defect) values.

This paper is an extended version of our study published in SANER
18]. The extensions include the following updates:

(1) We enhance the experimental settings by using the more practi-
al cross-release and cross-project validations. In addition, we employ
ore evaluation measures, i.e., Precision, Recall, IFA, PLI (Propor-

ion of LOC Inspected), PMI (Proportion of Modules Inspected), PofB,
ofB/PLI (ratio between PofB and PLI), and PofB/PMI (ratio between
ofB and PMI) to comprehensively evaluate the performance of EADP
odels. The performance measures allow us to evaluate a EADP model

omprehensively from the above-mentioned three aspects. In summary,
ompared with our SANER paper, the paper carefully controls the last
wo experimental conditions suggested by Menzies et al. [14] and
eung et al. [15,16] so that we can find a stable ranking of L2R
lgorithms.

(2) We investigate the performance of more L2R algorithms, in-
luding simple logistic, radial basis functions network, logistic model
ree, ripper, ripple down rules, random forest regression, least angle
egression, multivariate adaptive regression splines, and K*, and com-
are the L2R algorithms with ManualUp, ManualDown, and OneWay.
ompared with our SANER paper, we obtain additional experimental

indings. Specifically, when module is considered as effort, Manual-
own performs the best but requires the inspection of more LOC.
mong the other models, RFR and LR achieve the best performance
nder cross-release and cross-project settings, respectively. When LOC
s considered as effort, LTR-linear and Ranking SVM perform the best
nder cross-release and cross-project settings, respectively.

(3) We identify and analyze a set of 24 primary module-level EADP
tudies, and further discuss the differences between our work and
revious studies.

(4) We give some implications based on our experimental results
nd provide a few suggestions to practitioners and researchers in the
ield of EADP.

Our contributions can be summarized as follows.
∙ We make a comprehensive comparison of 34 algorithms for EADP

sing 7 module-based and 7 LOC-based performance measures under
ross-release and cross-project settings. To the best of our knowledge,
his is the first large-scale study of finding a stable ranking of L2R
lgorithms for EADP.
∙ We identify and analyze a set of 24 primary studies related to

odule-level EADP published until 2022 from different perspectives,
ncluding the used datasets, L2R algorithms, evaluation measures, and
anking criterion. Community can use this set as a starting point to
onduct further research on EADP. To the best of our knowledge, this is
he first work to conduct a systematic literature review of EADP studies.

∙ We provide suggestions and guidelines based on our findings to

ncourage further research in the field of EADP.
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Fig. 1. An overview of the three types of L2R algorithms.

. Background

Let m𝑖 =(x 𝑖, y 𝑖) denote a software module, where x 𝑖=(x1, x2, . . . ,
x𝑚) is a m-dimensional software feature vector of the 𝑖th module, and
y 𝑖 is the number of defects of the corresponding module. A software
module dataset containing both defective and non-defective modules
can be represented as:

𝑆 =
{

𝒎1,𝒎2,… ,𝒎𝑛
}

, (1)

where n is the number of modules in S. The goal of EADP is to train a
prediction model from S in order to rank new modules according to
he predicted number of defects or defect density. In the following,
e briefly introduce the studied 34 algorithms, including 31 L2R
lgorithms, two unsupervised learning algorithms, and the OneWay
lgorithm. The 31 L2R algorithms cover three families, including 24
ointwise L2R algorithms (12 classification-based pointwise algorithms
nd 12 regression-based pointwise algorithms), 4 pairwise algorithms,
nd 3 listwise algorithms. Fig. 1 shows an overview of the three types
f L2R algorithms, and Table 1 provides an overview of the 31 L2R
lgorithms. Following Tantithamthavorn et al. [19], when the candi-
ate parameter values of the learning to algorithms are not unique,
e use the grid search to tune parameters of the L2R algorithms to
aximize the P𝑜𝑝𝑡 value, because P𝑜𝑝𝑡 evaluates the global ranking of

EADP models. We set the number of iterations of SL, LMT, RankBoost,
RankNet, LambdaRank, ListNet, and Coordinate Ascent as 500, 500,
300, 100, 100, 1500, and 25, since our preliminary experiments showed
that more iterations of these algorithms did not result in significant
improvement. Following You et al. [20] and Yang et al. [5], we set the
feasible solution space to [−20,20], and set both population size and
maximal generation to 100 for GP and LTR.

2.1. The pointwise algorithm

The pointwise algorithm ranks software modules by directly predict-
ing the number of defects or defect density [21]. As shown in Fig. 1,
there are three modules (i.e., A, B, and C) that need to be ranked. As-
suming that the pointwise approach predicts that the number of defects
in module A is N(A), the number of defects in module B is N(B), the
number of defects in module C is N(C), and N(A)>N(B)>N(C), then the
predicted ranking is A>B>C. According to different machine learning
technologies used, the pointwise algorithm can be further divided into
two subcategories: classification-based algorithms and regression-based
algorithms [21]. The classification-based pointwise algorithm uses the
classification technique to predict the possibility of a module being
defective, and regards the possibility as the number of defects, while
the regression-based algorithm uses the regression technique to directly
predict the number of defects or defect density.

(1) Naive Bayes (NB) [22]: It is a classification algorithm based
on the Bayes’ theorem with the ‘‘naive’’ assumption that every pair of
software features are independent.
3

(2) Logistic Regression (LogR) [23]: It is a classification algorithm
to classify software modules into discrete outcomes. It maximizes the
entropy of the labels conditioned on the software features with respect
to the distribution.

(3) Simple Logistic (SL) [24]: It is a classifier for building linear lo-
gistic regression models. It uses LogitBoost [25] with simple regression
functions as base learners for fitting the logistic models.

(4) Radial Basis Functions Network (RBFNet) [26]: It is an artificial
neural network that uses radial basis functions as the activation func-
tions. RBFNet’s output is a linear combination of radial basis functions
of the inputs and neuron parameters.

(5) Sequential Minimal Optimization (SMO) [27]: It is a support
vector machines (SVM) classifier, which uses sequential minimal opti-
mization to solve the quadratic programming (QP) problem during the
training.

(6) Classification and Regression Tree (CART) [28]: It is a decision
tree classifier, which partitions the training dataset into small segments
using the Gini index, and labels these small segments with one of the
class labels (i.e., defective or non-defective).

(7) C4.5 [29]: It is also a decision tree classifier, which partitions the
training dataset into small segments using the information gain rather
than the Gini index in CART.

(8) Logistic Model Tree (LMT) [24]: It is a classification model with
an associated training algorithm that combines logistic regression and
decision tree learning. It produces a logistic regression model at every
node in the tree using the LogitBoost algorithm [25], and splits the node
using the information gain.

(9) Random Forest (RF) [30]: It is an ensemble classifier that fits a
number of decision tree classifiers on various subsets of the original
dataset, and uses averaging to improve the predictive accuracy and
control over-fitting.

(10) K-nearest Neighbors (KNN) [31]: It finds k training software
modules closest to the new software module, and predicts the label of
the new software module from these training modules.

(11) Repeated Incremental Pruning to Produce Error Reduction
(Ripper) [32]: It is a propositional rule based algorithm that creates
series of rules with pruning to remove the rules that lead to lower
classification performance.

(12) Ripple Down Rules (Ridor) [33]: It is a rule-based decision tree
algorithm, where the decision tree consists of four nodes: a classifica-
tion, a predicate function, a true branch, and a false branch.

(13) Decision Tree Regression (DTR) [34]: It fits a regression model
in the form of a decision tree structure by learning from the training
dataset.

(14) Random Forest Regression (RFR) [35]: It is an ensemble re-
gression model that fits a number of decision tree regression models on
various subsets of the original dataset, and uses averaging to improve
the predictive accuracy and control over-fitting.

(15) Linear Regression (LR) [36]. It trains a linear model:

𝑦 = 𝑓 (𝒃,𝒙) = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 +⋯ + 𝑏𝑚𝑥𝑚, (2)

here b = (b0, b1, . . . , b𝑚) represents a (m+1)-dimensional vector of
egression coefficients, x = (x1, x2, . . . , x𝑚) is a m-dimensional software
eature vector of the module, and y is the predicted number of defects
r defect density of the module. LR uses the least square method to find
he optimal b value by minimizing the following loss function:
𝑛
∑

𝑖=1
(𝑦𝑖 − 𝑓 (𝒃,𝒙𝑖))2, (3)

here y 𝑖 is the actual number of defects or defect density of the 𝑖th
odule, and x 𝑖 is the m-dimensional software feature vector of the 𝑖th
odule.

(16) Ridge Regression (RR) [37]: It trains the same linear model as
R, but uses the gradient descent approach to find the optimal b value
y minimizing the following loss function:
𝑛

(𝑦𝑖 − 𝑓 (𝒃,𝒙𝑖))2 + 𝜆|𝒃|2, (4)

𝑖=1
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Table 1
Parameter value overview of the L2R algorithms.

Family Label Algorithma Parameter descriptionb Candidate parameter values
(Default value is in bold)

Classification
based
Pointwise
Approach

Bayes C1 Naïve Bayes (NB) [N] Laplace Correction (0 indicates no
correction).

{0}

Function

C2 Logistic Regression (LogR) [N] Tolerance for stopping criteria. {0.1,0.01,0.001,0.0001,0.00001}

C3 Simple Logistic (SL) [N] The number of iterations for LogitBoost. {500}

C4 Radial Basis Functions Network
(RBFNet)

[N] Ridge factor for quadratic penalty on
output weights.

{0.1,0.01,0.001, 0.0001,
0.00001}

C5 Sequential Minimal Optimization
(SMO)

[N] Penalty parameter of the error term with
linear kernel.

{1}

Tree

C6 Classification and Regression Tree
(CART)

[N] The minimum number of samples required
to split an internal node.

{2,3,4,5,6}

C7 C4.5 [N] The confidence factor that are used for
pruning (smaller values incur more pruning).

{0.25}

C8 Logistic Model Tree (LMT) [N] The number of iterations for LogitBoost. {500}

C9 Random Forest (RF) [N] The number of trees in the forest. {10,20,30,40,50}

Lazy C10 K-Nearest Neighbors (KNN) [N] The number of neighbors. {1,5,9,13,17}

Rule C11 Repeated Incremental Pruning to
Produce Error Reduction (Ripper)

[N] The number of runs of optimizations. {1,2,3,4,5}

C12 Ripple Down Rules (Ridor) [N] The number of shuffles to randomize the
data in order to get better rule.

{2,6, 10,14,18}

Regression
based
Pointwise
Approach

Tree R1 Decision Tree Regression (DTR) [N] The minimum number of samples required
to split an internal node.

{2,3,4,5,6}

R2 Random Forest Regression (RFR) [N] The number of trees in the forest. {10,20,30,40,50}

Linear

R3 Linear Regression (LR) [L] Whether the regressor will be normalized
before.

{true, false}

R4 Ridge Regression (RR) [N] Stop the algorithm if whas converged. {0.1,0.01,0.001,0.0001,0.00001}

R5 Least Angle Regression (LAR) [L] Whether the regressor will be normalized
before.

{true, false}

R6 Genetic Programming (GP) [C] Feasible solution space. [-20,20]

[N] Population size and maximal generation. {100}

Nolinear

R7 Neural Network Regression (NNR) [N] The number of neurons in the hidden
layers.

{4,8,16,32,64,100}

[N] L2 penalty (regularization term) parameter. {0, 0.0001, 0.001, 0.01, 0.1}

R8 Support Vector Regression (SVR) [N] Penalty parameter of the error term. {0.25, 0.5,1, 2, 4}

R9 Relevance Vector Machine (RVM) [N] Penalty parameter of the error term with
Linear kernel.

{1}

R10 Multivariate Adaptive Regression
Splines (MARS)

[N] Penalty parameter of the error term. The
maximum degree of interaction (Friedman’s
mi). The default is 1, meaning build an
additive model (i.e., no interaction terms).

{1}

Lazy R11 K-nearest Neighbors Regression
(KNR)

[N] The number of neighbors. {1,5,9,13,17}

R12 K* N/A N/A

Pairwise
Approach

P1 Ranking SVM [N] Penalty parameter of the error term with
linear kernel.

{1}

P2 RankBoost [N] The number of rounds to train. {300}

P3 RankNet [N] The number of epochs to train. {100}

P4 LambdaRank [N] The number of epochs to train. {100}

Listwise
Approach

L1 ListNet [N] The number of epochs to train. {1500}

L2 Coordinate Ascent [N] The number of iterations to search in each
direction.

{25}

L3 Learning-to-Rank (LTR) [C] Feasible solution space. [-20,20]

[N] Population size and maximal generation. {100}

aWe implement NB, LogR, CART, RF, KNN, DTR, RFR, LR, RR, LAR, GP, NNR, SVR, RVM, MARS, KNR, Ranking SVM and LTR based on sklearn (http://scikit-learn.github.io/stable).
e implement SL, RBFNet, SMO, C4.5, LMT, Ripper, Ridor, and K* based on Weka (https://www.cs.waikato.ac.nz/~ml/weka/). We implement RankBoost, RankNet, LambdaRank,

istNet, Coordinate Ascent based on an open-source library of popular L2R algorithms RankLib(https://sourceforge.net/p/lemur/wiki/RankLib/).
[N] denotes a numeric value; [L] denotes a logical value; [C] denotes the continuous space.
o

∑

here 𝜆 is a small regularization parameter.

(17) Least Angle Regression (LAR) [38]: It trains the same linear
4

odel as LR, but uses the least angle regression approach to find the
ptimal b value by minimizing the following loss function:

𝑛

(𝑦𝑖 − 𝑓 (𝒃,𝒙𝑖))2 + 𝜆|𝒃|. (5)

𝑖=1

http://scikit-learn.github.io/stable
https://www.cs.waikato.ac.nz/~ml/weka/
https://sourceforge.net/p/lemur/wiki/RankLib/
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(18) Genetic Programming (GP) [39]: It trains the same linear
model as LR, but uses the genetic algorithm to find the optimal b value
by minimizing the following loss function:
𝑛
∑

𝑖=1
(𝑦𝑖 − 𝑓 (𝒃,𝒙𝑖))2. (6)

(19) Neural Network Regression (NNR) [40]: It learns a non-linear
function approximator using backpropagation with no activation func-
tion in the output layer.

(20) Support Vector Regression (SVR) [41]: It uses the same princi-
ples as SVM, with only a few minor differences. Because the output of
SVR is a real number, it is difficult to predict the information at hand,
which has infinite possibilities. In the case of regression, a margin of
tolerance is set in approximation to the SVM which would have already
requested from the problem.

(21) Relevance Vector Machine (RVM) [42]: It has an identical func-
tional form to SVR, but uses Bayesian inference to obtain parsimonious
solutions for regression.

(22) Multivariate Adaptive Regression Splines (MARS) [43]: It is
a nonparametric regression algorithm based on the divide and con-
quer strategy, in which the training data is partitioned into separate
piecewise linear segments.

(23) K-nearest Neighbors Regression (KNR) [44]: It finds k training
software modules that are the nearest to the new software module
based on the Euclidean distance, and predicts the number of defects
or defect density of the new software module based on the mean of
those of these nearest neighbors.

(24) K* [45] is similar to KNR, except that it uses an entropy-based
distance function to calculate the distance between the new module and
the training modules.

2.2. The pairwise algorithm

The pairwise approach views EADP problem as a classification
task, i.e., learning a binary classifier f that can identity which mod-
ule contains more defects or has higher defect density in a given
module pair [6]. As shown in Fig. 1, assuming that the pairwise
approach predicts that module A contains more defects than module
B (i.e., f (A)>f (B)), module A contains more defects than module C
(i.e., f (A)>f (C)), and module B contains more defects than module C
(i.e., f (B)>f (C)), then the predicted ranking becomes A>B>C.

(1) Ranking SVM [46]: It first transforms the ranking problem into
classification by computing x1 - x2, where x1 and x2 are the feature
vectors of a pair of modules (i.e., m1 and m2), and then uses SVM to
classify (x1 - x2) into 1 or −1. If the class label is 1, m1 contains more
defects than m2 ; otherwise, m2 contains more defects than m1.

(2) RankBoost [47]: It adopts AdaBoost to classify the modules
pairs. The only difference between them is that the distribution is de-
fined on modules pairs in RankBoost, while that is defined on individual
modules in AdaBoost [48].

(3) RankNet [49]: The loss function of RankNet is also defined on
module pairs, but the hypothesis is defined with the use of a scoring
function.

(4) LambdaRank [50]: LambdaRank optimizes an upgraded version
of the loss function in RankNet with less computing complexity using
the gradient descent method.

2.3. The listwise algorithm

The listwise approach directly optimizes the performance measures
to obtain a ranking model [21]. As shown in Fig. 1, assuming that
the listwise approach predicts that the ranking list P𝐴,𝐵,𝐶 has the best
performance among all possible ranking lists (i.e., P𝐴,𝐵,𝐶 , P𝐴,𝐶,𝐵 , P𝐵,𝐴,𝐶 ,
P𝐵,𝐶,𝐴, P𝐶,𝐴,𝐵 , and P𝐶,𝐵,𝐴), so the predicted ranking is A>B>C.

(1) ListNet [51]: Similar to RankNet, it uses a neural network
5

approach with the gradient descent method to minimize a loss function. w
The loss function is defined by the probability distribution on all
possible ranking lists.

(2) Coordinate Ascent [52]: It trains a ranking model by minimizing
the Mean Average Precision (MAP) values. It does a number of restarts
to guarantee avoidance of the local minimum.

(3) Learning-to-Rank (LTR).1 It trains the same linear model as LR,
i.e.,

𝑦 = 𝑓 (𝒃,𝒙) = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 +⋯ + 𝑏𝑚𝑥𝑚 (7)

but uses the composite differential evolution algorithm to directly
optimize the FPA(Fault Percentile Average) value to find the optimal
b value when considering module as effort. When considering LOC as
effort, LTR directly optimizes the P𝑜𝑝𝑡@LOC value to find the optimal
b value, which is actually the LRM-GA algorithm [53]. In addition,
some studies [54,55] used the logistic regression model to describe the
relationship between software features and the number of defects or
defect density:

𝑦 = 1
1 + 𝑒−(𝑏0+𝑏1𝑥1+𝑏2𝑥2+⋯+𝑏𝑚𝑥𝑚)

. (8)

Therefore, we also investigate the performance of LTR when us-
ing the logistic regression model to build EADP models. We denote
LTR with linear model as LTR-linear, and denote LTR with logistic
regression model as LTR-logistic.

2.4. Other ranking algorithms

Besides the L2R technology, we also investigate other algorithms
for ranking, including ManualDown [56], ManualUp [56] and OneWay
[57]. ManualDown and ManualUp are two unsupervised learning al-
gorithms. They are based on the observation of previous studies of
Koru et al. [58,59] and Menzies et al. [56]: ManualDown assumes that
larger modules tend to have more defects, while ManualUp assumes
that smaller modules tend to have higher defect density. Given a
module m and one software feature x 𝑖 of the module, ManualDown
ranks all predicted modules in descending order according to x 𝑖, while
ManualUp ranks all predicted modules in ascending order according to
x 𝑖. OneWay [57] is a supervised learning algorithm which leverages
the training data to automatically choose the best software feature
for ManualUp. When module is used as effort, we employ OneWay to
automatically choose the best software feature for ManualDown.

3. Experimental methodology

3.1. Datasets

Many publicly-available module-level module datasets such as
NASA [60], SOFTLAB [61] and Relink [62] only contain the infor-
mation of class label. Since EADP ranks software modules based on
defect number or density, we only choose the 49 datasets from the
PROMISE [63,64], AEEEM [65], and Eclipse [66] repositories which
contain the information of the number of defects. Table 2 shows details
of the selected 49 datasets, where #Module represents the number of
modules in the dataset, %Defect represents the percentage of defective
modules in the dataset, TotalDefects represents the total number of
defects in the dataset, AvgDefects represents the average number of
defects in the dataset, TotalLOC represents the total number of LOC in
the dataset, and AvgLOC represents the average number of LOC in the
dataset.

Due to the space limitation, we do not list the software features
of the experimental datasets. For a more detailed description of the
software features, please refer to [63,65,66] .

1 The algorithm is named LTR by Yang et al. [5]. Its meaning is different
ith L2R.
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Table 2
Details of the module-level datasets.

Corpora Dataset #Module %Defects TotalDefects AvgDefects TotalLOC AvgLOC

PROMISE

Ant 1.3 125 16% 33 1.65 37699 301.6
Ant 1.4 178 22.5% 47 1.18 54195 304.5
Ant 1.5 293 10.9% 35 1.09 87047 297.1
Ant 1.6 351 26.2% 184 2.00 113246 322.6
Ant 1.7 745 22.3% 338 2.04 208653 280.1
Camel 1.0 339 3.8% 14 1.08 33721 99.5
Camel 1.2 608 35.5% 522 2.42 66302 109.0
Camel 1.4 872 16.6% 335 2.31 98080 112.5
Camel 1.6 965 19.5% 500 2.66 113055 117.2
Ivy 1.1 111 56.8% 233 3.7 27292 245.9
Ivy 1.4 241 6.6% 18 1.12 59286 246
Ivy 2.0 352 11.4% 56 1.4 87769 249.3
Jedit 3.2 272 33.1% 382 4.24 128883 473.8
Jedit 4.0 306 24.5% 226 3.01 144803 473.2
Jedit 4.1 312 25.3% 217 2.75 153087 490.7
Jedit 4.2 367 13.1% 106 2.21 170683 465.1
Jedit 4.3 492 2.2% 12 1.09 202363 411.3
Log4j 1.0 135 25.2% 61 1.79 21549 159.6
Log4j 1.1 109 33.9% 86 2.32 19938 182.9
Log4j 1.2 205 92.2% 498 2.63 38191 186.3
Lucene 2.0 195 46.7% 268 2.95 50596 259.5
Lucene 2.2 247 58.3% 414 2.88 63571 257.4
Lucene 2.4 340 59.7% 632 3.11 15508601 302.5
Poi 1.5 237 59.5% 342 2.43 55428 233.9
Poi 2.0 314 11.8% 39 1.05 93171 296.7
Poi 2.5 385 64.4% 496 2.0 119731 311.0
Poi 3.0 442 63.6% 500 1.78 129327 292.6
Synapse 1.0 157 10.2% 21 1.31 28806 183.5
Synapse 1.1 222 27% 99 1.65 42302 190.5
Synapse 1.2 256 33.6% 145 1.69 53500 209.0
Velocity 1.4 196 75% 210 1.43 51713 263.8
Velocity 1.5 214 66.4% 331 2.33 53141 248.3
Velocity 1.6 229 34.1% 190 2.44 57012 249.0
Xalan 2.4 723 15.2% 156 1.42 225088 311.3
Xalan 2.5 803 48.2% 531 1.37 304860 379.7
Xalan 2.6 885 46.4% 625 1.52 411737 465.2
Xalan 2.7 909 98.8% 1213 1.35 428555 471.5
Xerces init 162 47.5% 167 2.17 90718 560.0
Xerces 1.2 440 16.1% 115 1.62 159254 361.9
Xerces 1.3 453 15.2% 193 2.8 167095 368.9
Xerces 1.4 588 74.3% 1596 3.65 141180 240.1

AEEEM

Eclipse JDT Core 3.4 997 20.7% 374 1.82 224055 224.7
Eclipse PDE UI 3.4.1 1497 14.0% 341 1.63 146952 98.2
Equinox framework 3.4 324 39.8% 244 1.89 39534 122.0
Mylyn 3.1 1862 13.2% 340 1.39 156102 83.8
Apache Lucene 2.4.0 691 9.26% 97 1.52 146952 212.7

Eclipse
Eclipse_II_Package2.0 377 50.4% 917 4.83 796941 2114.0
Eclipse_II_Package2.1 434 44.7% 662 3.41 987603 2275.6
Eclipse_II_Package3.0 661 47.3% 1534 4.90 1305908 1975.7
f
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3.2. Preparing training and testing data

We use the following two validation settings, and repeat the training
and testing phases 10 times to alleviate possible bias during hyperpa-
rameter tuning.

(1) Cross-release Validation: We use the previous release as the
training dataset, and use the current release as the testing dataset,
i.e., cross-release validation. For example, we use Ant 1.3 as the train-
ing dataset and use Ant 1.4 as the testing dataset. Since the AEEEM
datasets only contain the single release, we do not employ them under
cross-release validation. Therefore, we obtain 32 pairs of training and
testing datasets.

(2) Cross-Project Validation: In this setting, EADP models are tested
on one project (i.e., the testing dataset), and trained on all other
projects (i.e., the training datasets). Given n projects, there are n pairs
of training and testing datasets. Since there are 41 releases of 11
projects in the PROMISE datasets and there are duplicated software
modules in the different releases of the same project, we only choose
the most recent release dataset as training dataset or testing dataset.
Finally, we obtain 11 pairs of training and testing datasets for the
6

PROMISE datasets, and 5 pairs of training and testing datasets for the
AEEEM datasets.

3.3. Constructing EADP models

We use all software features as independent variables to build EADP
models when using module as effort.

(1) For the classification-based pointwise L2R algorithms, we
irst discretize the number of defects into ‘‘defective’’ and
‘non-defective’’ class labels, and further use these class labels to train
he algorithms to build EADP models. Then, we use the trained EADP
odels to predict the possibility of new software modules being defec-

ive, and regard the possibility as the predicted number of defects of
ew software modules.

(2) For the regression-based pointwise L2R algorithms, pairwise
2R algorithms, and listwise L2R algorithms, we use the actual num-
er of defects as the target variable to build EADP models. Then, we
se the trained EADP models to rank new software modules according
o the number of defects.

(3) ManualDown with LOC software feature in the PROMISE
atasets achieves the highest P @module value under cross-release
𝑜𝑝𝑡
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and cross-project settings. ManualDown with NOA (Number of At-
tributes) software feature in the AEEEM datasets achieves the high-
est P𝑜𝑝𝑡@module value under cross-project setting. ManualDown with

odifier software feature in the Eclipse datasets achieves the highest
𝑜𝑝𝑡@module value under cross-release setting. Therefore, we choose

he software features as the underlying software features for Manual-
own.

We use 19 software features (excluding LOC) of the PROMISE
atasets, 18 software features (excluding LOC) of the AEEEM datasets,
06 software features (excluding TotalLOC) of the Eclipse datasets as
ndependent variables to build EADP models when using LOC as effort,
ince LOC and TotalLOC make up the effort value in the dependent
ariable of EADP models.

(1) For the classification-based pointwise L2R algorithms, we
se the class labels to train EADP models. Then, we use the trained
odels to predict the class label (i.e., Label(m)) and possibility of a
ew software module m being defective (i.e., P(m)). Finally, we have
hree definitions of the predicted defect density (i.e., D(m)) of the new

module m. According to Mende et al. [3], the first definition is as
follows:

D(𝒎) = Label(𝒎)∕effort(𝒎), (9)

where effort(m) is LOC of the module m.
According to Yang et al. [67], the second definition is as follows:

D(𝒎) = P(𝒎)∕effort(𝒎). (10)

According to Ni et al. [13], the third definition is as follows:

(𝒎) =

{

P(𝒎)∕effort(𝒎), if P(𝒎) ≥ 0.5 (a)
(P(𝒎) − 1)∕effort(𝒎), if P(𝒎) < 0.5. (b)

(11)

ote that the defect density will be negative according to Eq. (11)(b),
ut we only use the predicted defect density to rank modules. Eqs.
11)(a) and (11)(b) mean that following Ni et al.’s approach [13],
e first inspect all the predicted defective modules according to their
efect density, then inspect the predicted non-defective modules ac-
ording to their defect density.

For the 12 investigated classification-based L2R algorithms, we
enote the three definitions as X_1, X_2, X_3, where ‘‘X’’ represents the
2R algorithm, ‘‘1’’ represents the first definition to calculate the defect
ensity, ‘‘2’’ represents the second definition to calculate the defect
ensity, and ‘‘3’’ represents the third definition to calculate the defect
ensity. For example, when employing NB to build EADP models and
sing the first definition to calculate the defect density, we denote it
s NB_1. Ni et al. [13] proposed the EASC method, which uses the
aive Bayes algorithm to build EADP models and then uses the third
efinition to calculate the defect density. That is, EASC is NB_3.

(2) For the regression-based pointwise L2R algorithms, pairwise
2R algorithms, and listwise L2R algorithms, we use the actual
efect density as the target variable to build EADP models, then use
he trained models to rank new software modules according to the
efect density. The actual defect density is the ratio between the actual
umber of defects and LOC or TotalLOC.

(3) ManualUp with CAM (Cohesion Among Methods of class) soft-
are feature in the PROMISE dataset achieves the highest P𝑜𝑝𝑡@LOC
alue under cross-release and cross-project settings. ManualUp with
OMI (Number Of Methods Inherited) software feature in the AEEEM
atasets achieves the highest P𝑜𝑝𝑡@LOC value under cross-project set-
ing. ManualUp with NORM_CompilationUnit software feature in the
clipse datasets achieves the highest P𝑜𝑝𝑡@LOC value under cross-
elease setting. Therefore, we choose the software features as the
nderlying software features for ManualUp.

We use the grid search to tune hyperparameters of the L2R algo-
ithms to maximize the P𝑜𝑝𝑡@effort value, because P𝑜𝑝𝑡@effort eval-
ates the global ranking of EADP models. The candidate parameter
alues of the classification-based pointwise algorithms and the corre-
ponding regression-based pointwise algorithms are almost the same
7

a

s the setting of Tantithamthavorn et al.’s work [19], which used the
rid search to study the impact of automated parameter optimization
n defect prediction models.

.4. Evaluation measures

We restrict our effort to 20% of total effort in our study. The number
0% has been commonly used as a cutoff value to set the effort required
or the defect inspection [68,69]. Suppose we have a dataset with M
odules, N bugs and P LOC. Among the M modules, K modules are
efective. Given 20% effort, we inspected m modules, which contain
bugs, and p LOC. Among the m modules, k modules are defective.

esides, when we find the first defective module, we have inspected m’
odules. We use the following evaluation measures in the experiments,

ome of which are also widely used in the fields of both software
ngineering [70–75] and machine learning [76–81].
Precision@20%effort is the proportion of the inspected actual

efective modules among all the inspected modules. When the ef-
ort is LOC, Precision@20%effort is denoted as Precision@20%LOC;
hen the effort is module, Precision@20%effort is denoted as Preci-

ion@20%module. The denotations of the following evaluation mea-
ures are similar to that of Precision@20%effort. A lower
recision@20%effort value indicates that software testers would en-
ounter more false alarms, which may have negative impact on devel-
pers’ confidence on the EADP model [54].

recision@20%effort = 𝑘∕𝑚 (12)

Recall@20%effort is the proportion of the inspected actual defec-
ive modules among all the actual defective modules in the dataset. A
igher Recall@20%effort value indicates that more defective modules
an be detected.

ecall@20%effort = 𝑘∕𝐾 (13)

IFA@20%effort is the number of Initial False Alarms encountered
efore we find the first defect. A higher IFA@20%effort value indicates
hat software testers need to inspect more modules to find the first
efect.

FA@20%effort = 𝑚′ (14)

PMI@20%LOC is the Proportion of Module Inspected. A higher
MI@20%LOC value indicates that under the same number of LOC
i.e., 20% LOC) to inspect, software testers need to inspect more
odules.

MI@20%LOC = 𝑚∕𝑀 (15)

PLI@20%module is the Proportion of LOC Inspected. A higher
LI@20%module value indicates that under the same number of mod-
les (i.e., 20% modules) to inspect, software testers need to inspect
ore LOC.

LI@20%module = 𝑝∕𝑃 (16)

PofB@20%effort is the Proportion of the inspected Bugs among all
ugs in the dataset. A higher PofB@20%effort value indicates that more
ugs could be detected.

ofB@20%effort = 𝑛∕𝑁 (17)

PofB/PMI@20%LOC is the ratio between PofB@20%LOC and
MI@20%LOC. A higher PofB/PMI@20%LOC value indicates that,
nder the same number of LOC (i.e., 20% LOC) to inspect, software
esters can find more bugs by inspecting per 1% module.

ofB∕PMI@20%LOC = PofB@20%LOC∕PMI@20%LOC (18)

PofB/PLI@20%module is the ratio between PofB@20%module
nd PLI@20%module. A higher PofB/PLI@20%module value indicates
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Fig. 2. A Cumulative Lift Chart.

hat, under the same number of modules (i.e., 20% modules) to inspect,
oftware testers can find more bugs by inspecting per 1% LOC.

ofB∕PLI@20%module = PofB@20%module
PLI@20%module

(19)

P𝑜𝑝𝑡@effort is based on the cumulative lift chart shown in Fig. 2,
which was proposed by Kamei et al. [4]. In the chart, the x-axis
is the cumulative percentage of effort to inspect, and the y-axis is
the cumulative percentage of defects found given the effort. There
are three curves in the chart, corresponding to the prediction model,
the optimal model and the worst model. Modules are ranked by the
decreasing predicted number of defects or defect densities according
to the prediction model, modules are ranked by the decreasing actual
number of defects or defect densities according to the optimal model,
and modules are ranked by the increasing actual number of defects or
defect densities according to the worst model. P𝑜𝑝𝑡@effort is computed
as follows:

𝑃opt@effort =
Area(prediction) − Area(worst)
Area(optimal) − Area(worst) (20)

here Area() represents the area under the corresponding curve. A
arger P𝑜𝑝𝑡 value means a smaller difference between the prediction
odel and the optimal model. Different from the above evaluation
easures, P𝑜𝑝𝑡 evaluates the global ranking of the predicted modules.

When evaluating the performance of EADP models considering mod-
le as effort, researchers [5,12] usually employ FPA(Fault Percentile
verage) as the evaluation measure. Yang et al. [5] proved that FPA
as related to the area under the prediction curve when using module
s effort. The difference between FPA and P𝑜𝑝𝑡@module is that FPA
nly reports how well a prediction model is, rather than tells us how
lose to the optimal model a prediction model is. Therefore, we employ
𝑜𝑝𝑡@module as the performance measure to evaluate the performance
f EADP models when considering module as effort.

.5. Statistical comparison test

The Scott-Knott test [82] is a multiple comparison technique that
roduces statistically distinct ranks at the significance level of 0.05
sing hierarchical clustering algorithm. This test ranks and clusters
he studied algorithms into significantly different groups, in which the
lgorithms in distinct groups have significant differences, while the
lgorithms in the same group have no significant differences [19].
herefore, the Scott-Knott test can group the studied algorithms dis-
inctly without any overlapping [82]. For more robust result analysis,
e use the extended Scott-Knott with Cohen’s d effect size awareness

Scott-Knott ESD) [17], which merges any pair of ranks that have a
egligible Cohen’s d effect size between them to post-processes the
tatistically distinct ranks produced by the traditional Scott-Knott test.
pecifically, we provide the median performance measure values of the
0 cross-release or cross-project iterations of each L2R algorithm to the
cott-Knott ESD test. Then, the test generates statistically distinct ranks
f the L2R algorithms.
8

. Experimental results

.1. RQ1: What is the best algorithm for EADP when using module as
ffort?

isualizations: Figs. 3 and 4 show the distribution of
PofB@20%module, PLI@20%module, and P𝑜𝑝𝑡@module values with
the Scott-Knott ESD test over all datasets under the cross-release and
cross-project settings, respectively. Different colors of the boxplot indi-
cate different Scott-Knott ESD test ranks. From top down, the order is
red, green, blue, yellow, purple, orange, pink and gray. Table 3 lists the
top-ranked algorithms in terms of P𝑜𝑝𝑡@module and PofB@20%module,
and the median performance values of the algorithms over all datasets
under cross-release and cross-project settings.

Results under the cross-release setting: Fig. 3 and Table 3 reveal
that (1) ManualDown and RFR have the highest ranks in terms of
P𝑜𝑝𝑡@module; (2) LTR-linear, ManualDown, RFR, and RR have the
highest ranks in terms of PofB@20%module. Therefore, we will focus
on discussing the four algorithms, i.e., ManualDown, RFR, LTR-linear
and RR.

(1) ManualDown has the highest median P𝑜𝑝𝑡@module value
0.788). When inspecting top 20% modules, ManualDown can identify
edian 50.2% bugs. But it requires inspecting median 66.5% LOC,
hich is significantly higher than the amount required by of LTR-linear,
R and RFR.

(2) RFR has the second highest median P𝑜𝑝𝑡@module value (0.778).
FR has the highest rank in terms of PofB@20%module, and requires
ignificantly less LOC to be inspected compared with LTR-linear, Man-
alDown and RR. When inspecting top 20% modules, RFR can identify
edian 49.6% bugs and requires inspecting median 48.6% LOC. In

ddition, RFR has the highest PofB/PLI@20%module value (1.033),
hich indicates that when inspecting top 20% modules, RFR can find
edian 1.033% bugs by inspecting per 1% LOC.

(3) LTR-linear performs significantly worse than ManualDown and
FR in terms of P𝑜𝑝𝑡@module, but has the highest median
ofB@20%module value. When inspecting top 20% modules, LTR-
inear can identify median 50.4% bugs and requires inspecting median
0.1% LOC.

(4) RR achieves the lowest median P𝑜𝑝𝑡@module value and
ofB@20%module value among the four algorithms. When inspecting
op 20% modules, RR can identify median 48.9% bugs, and requires
nspecting median 50.9% LOC.

(5) The median IFA@20%module values of the four algorithms are
ero, which indicates that following the recommendations given by the
our algorithms, the ranked first module is defective in most situations.
n terms of Precision@20%module and Recall@20%module, there is
ot significantly difference among ManualDown, RFR, LTR-linear and
R, since all of them belong to the first rank.

ummary under the cross-release setting: ManualDown and RFR
perform the best in terms of Precision@20%module,
Recall@20%module, PofB@20%module, and P𝑜𝑝𝑡@module, since they
have the highest ranks in these evaluation measures. When inspect-
ing top 20% modules, RFR requires significantly less LOC to be in-
spected and can identify more defects by inspecting per 1% LOC than
ManualDown.

Results under the cross-project setting: Fig. 4 and Table 3 show that
(1) ManualDown has the highest rank, OneWay has the second highest
rank, and RFR, RankBoost, LTR-linear, and LTR-logistic have the third
highest rank in terms of P𝑜𝑝𝑡@module; (2) ManualDown has the highest
rank, and LR, RR, RankBoost, LTR-linear, and LTR-logistic have the
second highest rank in terms of PofB@20%module. Therefore, we will
focus on discussing the seven algorithms, i.e., ManualDown, OneWay,
RankBoost, LTR-logistic, RR, LR, and LTR-linear.



Information and Software Technology 157 (2023) 107165X. Yu et al.

(
v
a
m
r

L
P
h

Table 3
The median performance of the top-ranked algorithms under the cross-release and cross-project settings when module is used as effort. (The
algorithms that belong to the first rank are in bold; The algorithms that belong to the second rank are in black; The algorithms that belong to
the other ranks are in gray.).
Performance measure Cross-release setting Cross-project setting

Precision@20%module ManualDown(0.638), RFR(0.619),
LTR-linear(0.616), RR(0.605)

ManualDown(0.631), OneWay(0.627),
LTR-linear(0.614), LTR-logistic(0.594), RR(0.589),
LR(0.588), RankBoost(0.579)

Recall@20%module ManualDown(0.366), RFR(0.362),
LTR-linear(0.345), RR(0.334)

LTR-linear(0.326), OneWay(0.314), LTR-logistic(0.31),
ManualDown(0.309), RR(0.296), LR(0.294),
RankBoost(0.287)

IFA@20%module ManualDown(0), RFR(0), LTR-linear(0), RR(0) ManualDown(0), OneWay(0), RankBoost(0),
LTR-logistic(0), RR(0), LR(0), LTR-linear(0)

PLI@20%module ManualDown(0.665), LTR-linear(0.601),
RR(0.509), RFR(0.486)

ManualDown(0.655), LTR-logistic(0.647),
LTR-linear(0.601), OneWay(0.592), RankBoost(0.561),
RR(0.556), LR(0.553)

PofB@20%module LTR-linear(0.504), ManualDown(0.502),
RFR(0.496), RR(0.489)

ManualDown(0.492), LTR-linear(0.483), OneWay(0.479),
LR(0.474), RR(0.473), LTR-logistic(0.456),
RankBoost(0.452)

PofB/PLI@20%module RFR(1.033), RR(0.933), LTR-linear(0.812),
ManualDown(0.784)

LR(0.855), RR(0.848), RankBoost(0.846), OneWay(0.828),
ManualDown(0.775), LTR-linear(0.759),
LTR-logistic(0.728)

P𝑜𝑝𝑡@module ManualDown(0.788), RFR(0.778),
LTR-linear(0.777), RR(0.734)

ManualDown(0.796), OneWay (0.765), RankBoost(0.75),
LTR-logistic(0.748), RR(0.74), LR(0.739),
LTR-linear(0.735)
Fig. 3. The boxplots of the performance measure values for EADP under the cross-release setting when module is used as effort. (Different colors of the boxplot indicate different
Scott-Knott ESD test ranks. From top down, the order is red, green, blue, yellow, purple, orange, pink and gray.).
(1) ManualDown has the highest median P𝑜𝑝𝑡@module value
0.796), PofB@20%module value (0.492), and Precision@20%module
alue (0.631). When examining top 20% modules, ManualDown is
ble to identify median 49.2% bugs. However, it requires inspecting a
edian of 65.5% LOC, which is significantly higher than the amounts

equired by the other algorithms.
(2) There is not significant difference among LR, RR, RankBoost,

TR-linear and LTR-logistic, and OneWay in terms of
ofB@20%module, as they all have the second highest rank. OneWay
as the second highest rank, while LR, RR, RankBoost, LTR-linear and
9

LTR-logistic have the third highest rank in terms of P𝑜𝑝𝑡@module. LR
requires significantly less LOC to be inspected compared with RR,
RankBoost, LTR-linear and LTR-logistic, and OneWay when examining
top 20% modules. LR, RR, RankBoost, LTR-linear and LTR-logistic,
and OneWay can find median 0.855%, 0.848%, 0.846%, 0.759%, and
0.728% bugs by inspecting per 1% LOC, respectively.

(3) The median IFA@20%module values of the seven algorithms
are zero, which indicates that following the recommendations given
by the seven algorithms, the ranked first module is defective in most
situations. LR, RR, RankBoost, LTR-linear and LTR-logistic, OneWay,
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and RFR have the highest rank in terms of Precision@20%module, and
belong to the second rank in terms of Recall@20%module.

Summary under the cross-project setting: ManualDown performs
he best in terms of Precision@20%module, Recall@20%module,
ofB@20%module, and P𝑜𝑝𝑡@module, but requires significantly more
OC to be inspected compared to the other algorithms. LR has the
hird highest rank in terms of P𝑜𝑝𝑡@module, only behind Manual-
own and OneWay, and has the second highest rank in terms of
ofB@20%module, only behind ManualDown. When inspecting top
0% modules, LR is able to inspect more bugs by inspecting per 1%
OC than ManualDown and OneWay.

Answer to RQ1: ManualDown performs the best in terms of
PofB@20%module and P𝑜𝑝𝑡@module, but requires inspecting
much more LOC than other algorithms. RFR performs only
behind ManualDown under the cross-release setting, and
LR performs only behind ManualDown and OneWay under
the cross-project setting in terms of PofB@20%module and
P𝑜𝑝𝑡@module.

4.2. RQ2: What is the best algorithm for EADP when using LOC as effort?

Visualizations: Figs. 5 and 6 present the boxplots to show the dis-
tribution of PofB@20%LOC, PMI@20%LOC, and P𝑜𝑝𝑡@LOC values of
the algorithms with the Scott-Knott ESD test results across all studied
datasets under the cross-release and cross-project, respectively. In or-
der to show the results clearly, we only list the algorithms with the
best-performing defect density definition in terms of P𝑜𝑝𝑡@LOC and
PofB@20%LOC for NB, SL, RBFNet, SMO, CART, KNN, Ripper, and
Ridor, since none of three defect density definitions of these algorithms
gain high performance. Tables 4 lists the top-ranked algorithms in
10

terms of P𝑜𝑝𝑡@LOC and PofB@20%LOC, and the median performance
values of the algorithms over all datasets under the cross-release and
cross-project settings, respectively.

Results under the cross-release setting: From Fig. 5 and Table 4, we
observe that LogR_1, LTR-linear, ManualUp, and OneWay belong to the
first rank in terms of P𝑜𝑝𝑡@%LOC, and LogR_1, SL_1, RBFNet_1, Manu-
alUp, and OneWay belong to the first rank in terms of PofB@20%LOC.
Therefore, we mainly discuss the six algorithms, i.e., LogR_1, SL_1,
RBFNet_1, LTR-linear, ManualUp, and OneWay.

(1) LTR-linear achieves the highest median P𝑜𝑝𝑡@%LOC value
(0.695) and Precision@20%LOC value (0.394), and belongs to the
second rank in terms of PofB@20%LOC. LTR-linear needs to inspect sig-
nificantly less modules, and performs significantly better than LogR_1,
SL_1, RBFNet_1, ManualUp, and OneWay in terms of PofB/PMI
@20%LOC. When inspecting top 20% LOC, LTR-linear can find median
1.034% bugs by inspecting per 1% module. In addition, LTR-linear
performs significantly better than LogR_1, SL_1, RBFNet_1, ManualUp,
and OneWay in terms of IFA@20%LOC. The median IFA@20%LOC
value of LTR-linear is 3.

(2) LogR_1, ManualUp, and OneWay belong to the first rank in terms
of P𝑜𝑝𝑡@LOC and PofB@20%LOC. SL_1 and RBFNet_1 belong to the
irst rank in terms of PofB@20%LOC, and belong to the second rank
n terms of P𝑜𝑝𝑡@LOC. In addition, LogR_1, SL_1, RBFNet_1, ManualUp,
nd OneWay perform the best in terms of Recall@20%LOC, since they
eed to inspect significantly more modules than LTR-linear. In addition,
he Precision@20%LOC values of the algorithms are very low, and the
FA@20%LOC values are very high. Kochhar et al. [83] conducted a
urvey about the expectations of software testers on automated fault
ocalization, and found that most practitioners thought it unacceptable
f the first 10 suspicious program elements returned by a tool are all
alse alarms.

ummary under the cross-release setting: LogR_1, ManualUp, and
OneWay perform the best in terms of PofB@20%LOC and P𝑜𝑝𝑡@LOC.
However, they need to inspect significantly more modules and produce
many false alarms. LTR-linear achieves the highest median P𝑜𝑝𝑡@%LOC
value, and significantly performs better than LogR_1, ManualUp, and
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OneWay in terms of Precision@20%LOC, IFA@20%LOC and
PofB/PMI@20%LOC.

Results under the cross-project setting: From Fig. 6 and Table 4, we
observe that LogR_1, SL_2, RBFNet_1, SMO_2, LMT_2, Ripper_1, Ridor_2,
and ManualUp belong to the first rank, C4.5_2, RF_1, Ranking SVM,
LTR-linear, LTR-logistic, and OneWay belong to the second rank in
terms of P𝑜𝑝𝑡@%LOC; Ripper_1, ManualUp, and OneWay belong to the
first rank, LogR_1, SL_2, RBFNet_1, SMO_2, C4.5_2, LMT_2, Ridor_2,
and LTR-logistic belong to the second rank in terms of PofB@20%LOC.
Therefore, we mainly discuss the 14 algorithms, i.e., LogR_1, SL_2,
RBFNet_1, SMO_2, LMT_2, Ripper_1, Ridor_2, C4.5_2, RF_1, Ranking
SVM, LTR-linear, LTR-logistic, ManualUp, and OneWay.

(1) Ripper_1 and ManualUp belong to the first rank in terms
of P𝑜𝑝𝑡@%LOC and PofB@20%LOC. LogR_1, SL_2, RBFNet_1, SMO_2,
LMT_2, Ridor_2, C4.5_2, RF_1, LTR-logistic and OneWay belong to
the first or second rank in terms of P𝑜𝑝𝑡@%LOC and PofB@20%LOC.
However, the median IFA@20%LOC of the algorithms are very high.
Following the recommendations given by the algorithms, software
testers need to inspect more than ten modules to find the first defective
modules in most situations. In addition, the Precision@20%LOC values
of the algorithms are very low, which also indicates that software
testers would encounter many false alarms when recommended by the
algorithms.

(2) Ranking SVM belongs to the second rank in terms of
P𝑜𝑝𝑡@%LOC. When inspecting top 20% LOC, Ranking SVM can find
median 28.5% bugs and needs to inspect median 16.1% modules. In
other words, Ranking SVM can find median 1.555% bugs by inspecting
per 1% module, which is significantly higher than other algorithms. The
median IFA@20%LOC value of Ranking SVM is 3, which indicates that
software testers need to inspect median three modules to find the first
defective module in most situations. In addition, Ranking SVM belongs
to the first rank in terms of Precision@20%LOC, which indicates that
the false alarm rate of Ranking SVM is significantly lower than other
algorithms.

(3) LTR-linear belongs to the second rank in terms of P𝑜𝑝𝑡@%LOC,
and belong to the fourth rank in terms of PofB@20%LOC. The median
P𝑜𝑝𝑡@%LOC and PofB@20%LOC values are lower than those of Ranking
SVM.

Summary under cross-project setting: Ripper_1 and ManualUp per-
form the best in terms of PofB@20%LOC and P𝑜𝑝𝑡@LOC. However,
they need to inspect significantly more LOC and produce very high
false alarms. Ranking SVM belongs to the second rank in terms of
P𝑜𝑝𝑡@%LOC, and significantly performs better than Ripper_1 and Manu-
alUp in terms of Precision@20%LOC, IFA@20%LOC and
PofB/PMI@20%LOC.

Answer to RQ2: Among those algorithms with low IFA
values, LTR-linear performs the best under the cross-release
setting, and Ranking SVM performs the best in terms of
Precision@20%LOC, PofB@20%LOC and P𝑜𝑝𝑡@%LOC.

5. Discussion

5.1. Performance interpretation

When using module as effort, i.e., ranking modules according to the
predicted number of defects, ManualDown and OneWay rank the larger
modules first. Since larger modules tend to have more defects [58],
ManualDown and OneWay can find more defective modules and de-
fects under the same inspection cost, and most of the 20% modules
are defective. Therefore, the Recall@20%module, PofB@20%module,
and Precision@20%module values of ManualDown and OneWay are
high. The modules with more defects are ranked first by a EADP
model, the higher P @module value of the model is. Therefore, the
11

𝑜𝑝𝑡 i
P𝑜𝑝𝑡@module value is also high. But the larger modules contain more
LOC, ManualDown and OneWay require software testers to inspect
more LOC under the same inspection cost (i.e., 20% module). There-
fore, the PLI@20%module values of ManualDown and OneWay are
high. As a result, ManualDown and OneWay belong to the first or
second rank in terms of Precision@20%module, Recall@20%module,
PofB@20%module, P𝑜𝑝𝑡@module, and PLI@20%module in most situa-
tions.

When using LOC as effort, i.e., ranking modules according to the
predicted defect density, ManualUp and OneWay rank the smaller
modules first. Most modules are small while a few are large. Manu-
alUp and OneWay require software testers to inspect more modules
(i.e., higher PMI@20%LOC) under the same inspection cost. There-
fore, the Recall@20%LOC and PofB@20%LOC values of ManualUp
and OneWay are high. The modules with higher defect density are
ranked first by the model, the higher P𝑜𝑝𝑡@LOC value of the model is.
Therefore, the P𝑜𝑝𝑡@LOC value is also high. But the smaller modules
tend to be non-defective, the Precision@20%LOC values of ManualUp
and OneWay are low and the IFA@20%LOC values are high. There-
fore, ManualUp and OneWay belong to the first or second rank in
terms of Recall@20%LOC, PofB@20%LOC, P𝑜𝑝𝑡@LOC, PMI@20%LOC,
CI@20%LOC, and IFA@20%LOC in most situations.

The performance of the three categories of L2R algorithms can be
ue to the difference of utility functions during training.

(1) As mentioned in Section 2, the listwise approach directly opti-
izes the performance measure to obtain a ranking function. We find

hat LTR-linear and LTR-logistic perform well in terms of P𝑜𝑝𝑡@effort,
ecause they directly optimize the P𝑜𝑝𝑡@effort value. However, other
istwise algorithms have poor performance. The main reason is that
he goal of these algorithms is to optimize some information retrieval
erformance measures, such as normalized discounted cumulative gain
nd mean average precision, which do not take the effort into con-
ideration [10]. Since the high P𝑜𝑝𝑡@effort value indicates that the
odules with more defects or higher defect density are ranked first,

he Recall@20%effort and PofB@20%effort values of LTR-linear and
TR-logistic are also high. In addition, the performance of LTR-linear is
etter than that of LTR-logistic in most cases, which indicates that there
s a stronger linear relationship than no-linear relationship between
oftware features and the number of defects or defect density.

(2) When considering module as effort, the classification-based
ointwise algorithms have poor performance in most situations. The
ain reason is that the algorithms only use the class label instead

f the number of defects to build the EADP models. When consid-
ring LOC as effort, the PofB@20%LOC and P𝑜𝑝𝑡@LOC values of the
lassification-based pointwise algorithms with the first and second
efinitions of defect density (i.e., Eq. (9) and Eq. (10)) are high. The
ain reason is that the predicted defect density is the ratio between

he predicted class label or possibility of the module being defective
nd the LOC of the module, which makes that the modules with less
OC are more likely ranked first. Therefore, similar to ManualUp and
neWay, the classification-based pointwise algorithms have high Re-
all@20%LOC, PofB@20%LOC, P𝑜𝑝𝑡@LOC, and PMI@20%LOC values
n most situations. Since the classification algorithms are imperfect, for
hose modules that are predicted as defective, some of them may be
alse positives (i.e., they are actually non-defective modules), especially
nder the cross-project setting because there is different data distribu-
ion between cross-project data and within-project data. Therefore, the
op ranked modules are likely to be non-defective according to the first
nd second definitions of defect density, i.e., the IFA@20%LOC values
f the classification algorithms are high.

(3) Some regression-based pointwise algorithms perform well in
erms of PofB@20%module and P𝑜𝑝𝑡@module, such as RFR, RR, and
R. These algorithms outperform other regression algorithms for sev-
ral reasons. RFR is an ensemble learning algorithm, which grows an
nsemble of regression trees and allows them to vote on the decision to

mprove the performance. Since we find that there is a stronger linear
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Table 4
The median performance of the top-ranked algorithms for EADP under the cross-release and cross-project settings when LOC is used as effort. (The algorithms
that belong to the first rank are in bold; The algorithms that belong to the second rank are in black; The algorithms that belong to the other ranks are in gray.).
Performance measure Cross-release setting Cross-project setting

Precision@20%LOC LTR-linear(0.394), LogR_1(0.201), ManualUp(0.201),
OneWay(0.19), RBFNet_1(0.18), SL_1 (0.176)

Ranking SVM(0.53), LTR-linear(0.241), OneWay(0.219),
RF_1(0.218), LTR-logistic(0.214), ManualUp(0.208),
LMT_2(0.201), C4.5_2(0.2), Ridor_2(0.199), SL_2(0.198),
RBFNet_1(0.197), LogR_1(0.197), Ripper_1(0.197),
SMO_2(0.196)

Recall@20%LOC RBFNet_1(0.494), LogR_1(0.493), ManualUp(0.487),
SL_1(0.485), OneWay(0.467), LTR-linear(0.324)

Ripper_1(0.532), ManualUp(0.53), SMO_2(0.529),
SL_2(0.527), SMO_2(0.527), RBFNet_1(0.524),
OneWay(0.521), Ridor_2(0.505), LogR_1(0.461),
C4.5_2(0.46), LTR-logistic(0.455), RF_1(0.365),
LTR-linear(0.268), Ranking SVM(0.232)

IFA@20%LOC RBFNet_1(18), SL_1(17), LogR_1(15), OneWay(11),
ManualUp(9), LTR-linear(3)

RBFNet_1(24), SL_2(19), SMO_2(19), LMT_2(19),
Ripper_1(19), Ridor_2(19), C4.5_2(19), LogR_1(18), RF_1(16),
ManualUp(14), OneWay(14), LTR-logistic(11),
LTR-linear(4), Ranking SVM(3)

PMI@20%LOC RBFNet_1(0.677), SL_1(0.671), OneWay(0.648),
ManualUp(0.636), LogR_1(0.625), LTR-linear(0.363)

SMO_2(0.7), Ripper_1(0.699), SL_2 (0.697), LMT_2(0.691),
RBFNet_1(0.689), Ridor_2(0.686), ManualUp(0.666),
OneWay(0.661), C4.5_2(0.66), LogR_1(0.649), RF_1 (0.624),
LTR-logistic(0.613), LTR-linear(0.497), Ranking SVM (0.161)

PofB@20%LOC ManualUp(0.375), LogR_1(0.373), RBFNet_1(0.346),
OneWay(0.345), SL_1(0.343), LTR-linear(0.34)

ManualUp(0.42), Ripper_1(0.416), OneWay(0.414),
RBFNet_1(0.388), LogR_1(0.387), SMO_2(0.386), SL_2(0.38),
Ridor_2(0.38), LMT_2(0.38), C4.5_2(0.359), LTR-logistic
(0.345), RF_1 (0.331), Ranking SVM (0.285), LTR-linear
(0.283)

PofB/PMI@20%LOC LTR-linear(1.034), LogR_1(0.615), ManualUp(0.601),
OneWay (0.561), SL_1(0.542), RBFNet_1(0.536)

Ranking SVM(1.555), LTR-linear(0.672), RF_1(0.615),
ManualUp(0.601), LTR-logistic(0.587), OneWay(0.587),
LogR_1(0.583), SMO_2(0.568), Ripper_1(0.564),
Ridor_2(0.563), C4.5_2(0.561), SL_2(0.556), RBFNet_1(0.556),
LMT_2(0.552)

P𝑜𝑝𝑡@LOC LTR-linear(0.695), LogR_1(0.685), ManualUp(0.674),
OneWay(0.664), RBFNet_1(0.618), SL_1(0.602)

ManualUp(0.711), LogR_1(0.677), Ripper_1(0.672),
SMO_2(0.669), SL_2(0.662), Ridor_2(0.66), LMT_2(0.655),
RBFNet_1(0.653), OneWay (0.652), LTR-logistic(0.649),
C4.5_2(0.649), Ranking SVM(0.616), LTR-linear(0.609),
RF_1(0.603)
Fig. 5. The boxplots of the performance measure values for EADP under the cross-release setting when LOC is used as effort. (Different colors of the boxplot indicate different
Scott-Knott ESD test ranks. From top down, the order is red, green, blue, yellow, purple, orange, pink and gray.).
12
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Fig. 6. The boxplots of the performance measure values for EADP under the cross-project setting when LOC is used as effort. (Different colors of the boxplot indicate different
Scott-Knott ESD test ranks. From top down, the order is red, green, blue, yellow, purple, orange, pink and gray.).
relationship than no-linear relationship between software features and
the number of defects, RR and LR perform better than other non-
linear regression algorithms, except RFR. As for the other two linear
regression algorithms, GP has poor performances, and LAR has poor
performances under the cross-release and cross-project settings. The
reasons can be explained as follows. GP and LR minimize the same
loss function (i.e., Eq. (3)), but LR uses the least square method, while
GP uses the genetic algorithm. We find that it is more difficult for
GP to obtain the small value of Eq. (6), thus GP has poor perfor-
mances. There is a different data distribution between the training
dataset and the testing dataset under the cross-release and cross-project
settings, and LAR is known to be extremely sensitive to noise [38].
Consequently, LAR has poor performances under the cross-release and
cross-project settings. When considering LOC as effort, the regression-
based pointwise algorithms belong to the latter ranks in terms of
Recall@20%LOC, PofB@20%LOC and P𝑜𝑝𝑡@LOC in most situations.
The main reason is that the classification-based pointwise algorithms
have higher Recall@20%LOC, PofB@20%LOC, and P𝑜𝑝𝑡@LOC values
than the regression algorithms.

(4) In most cases, the pairwise algorithms have poor performance.
The reasons can be explained as follows. The goal of the pairwise
algorithms is to minimize the number of incorrect rankings. Here, an
incorrect ranking means that a module with less defects or lower defect
density is ranked ahead of a module with more defects or higher defect
density in a given module pair. When a model ranks the modules
with more defects or higher defect density correctly, the model will
obtain higher P𝑜𝑝𝑡@effort value. Therefore, EADP models should rank
the modules with more defects or higher defect density correctly, and a
higher cost should be assigned to the incorrect ranking of a module with
more defects or higher defect density than a module with less defects
or lower defect density. However, the pairwise algorithms allocate the
same costs for incorrect ranked modules with more defects or higher
defect density and incorrect ranked modules with one defect or lower
defect density. That is, the training utility function of these pairwise al-
gorithms also does not take the effort into consideration. But RankBoost
perform well in terms of PofB@20%module and P @module, and
13

𝑜𝑝𝑡
Ranking SVM performs well in terms of PofB@20%LOC and P𝑜𝑝𝑡@LOC
under the cross-project setting. The reason is that there is different
data distribution between cross-project modules and within-project
modules. Ranking SVM and RankBoost compute the difference of soft-
ware features of two modules to generate the module pairs, then train
EADP models on the module pairs. Since the distribution difference of
cross-project module pairs and within-project module pairs is smaller
than that of cross-project modules and within-project modules, the
performances of Ranking SVM and RankBoost is higher than that of
other algorithms under the cross-project setting.

5.2. Implications

In this subsection, we analyze implications based on our exper-
imental results and provide a few suggestions to practitioners and
researchers in this domain.

(1) When module is considered as effort, if software testers are
insensitive to the number of inspected LOC, ManualDown is recom-
mended due to the several advantages: (a) ManualDown enables testers
to find most bugs when inspecting top 20% modules; (b) It does not
require training data and L2R algorithms. Therefore, it can be easily
applied in a new project, and it is faster to execute. (c) The intuition
behind the algorithm is straightforward: larger modules tend to contain
more bugs. Otherwise, RFR is recommended to build the cross-release
EADP model, and LR is recommended to build the cross-project EADP
model, when software testers would like to obtain more accurate global
ranking of the predicted modules according to the number of defects
(i.e., higher P𝑜𝑝𝑡@module value) and find more bugs when inspecting
top 20% modules (i.e., higher PofB@20%module value).

(2) When LOC is considered as effort, ManualUp, OneWay and some
classification algorithms using the first and second definitions of defect
density (e.g., LogR_1, RF_1, SMO_2) should be avoided for EADP in
practice, although the algorithms achieve the highest PofB@20%LOC,
Recall@20%LOC and P𝑜𝑝𝑡@LOC values. The reason is that many highly
ranked modules given by the algorithms are false alarms under the
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cross-release and cross-project settings, which negatively impacts prac-
titioners’ patience and confidence. LTR-linear is recommended to build
the cross-release EADP model, and Ranking SVM is recommended to
build the cross-project EADP model, when software testers would like
to encounter lower false alarms, obtain more accurate global ranking
of the predicted modules according to the defect density (i.e., higher
P𝑜𝑝𝑡@LOC value), and find more bugs when inspecting top 20% LOC
i.e., higher PofB@20%LOC value).
(3) Some previous EADP empirical studies should be revis-

ted. Yang et al. [67] and Ma et al. [84] proposed that slice-based
ohesion features and network measures were useful when using lo-
istic regression to build EADP models considering LOC as effort.
u et al. [85] proposed that using k-core decomposition on class
ependency networks to analyze software bug distribution can improve
he performance when using logistic regression and random forest to
uild EADP models considering LOC as effort. However, our experi-
ental results show that logistic regression and random forest with

he first or second definitions of defect density need to inspect signifi-
antly more modules than other algorithms. In addition, many highly
anked modules produced by the algorithms are false alarms under
he crossni’fa-release and cross-project settings, which make software
esters unwilling to use the algorithms to build the prediction models.
herefore, these prior studies should be revisited to determine whether
heir findings are impacted when using better L2R algorithms to build
ADP models.

.3. Threats to validity

We use 49 module-level datasets from three repositories (i.e.,
ROMISE, AEEEM, and Eclipse), each of which provides different soft-
are features and different granularity of modules (e.g., file, package).
ince the software features and granularity of modules vary, this is
point of variation between the studied datasets that may impact

ur results. In order to investigate the effect of different features and
ranularity, we separately analyze the experimental results on datasets
hat have the same set of software features, and find that our findings
argely remain the same. Therefore, we conclude that the variation of
oftware features and granularity of modules does not pose a threat
o our study. On the other hand, the variety of software features and
ranularity of modules also strengthen the generalization of our results,
.e., our findings are not bound to one specific set of software features.

We investigate the performance of all L2R algorithms studied in the
4 previous EADP works, except PR, NBR, ZINBR, ZIPR, HNBR, HPR,
he proposed segmented model [86], ROCPDP, (Bagging/AdaBoost/
otation Forest/Random Subspace)+(LMT/NB/SL/SMO/C4.5), PCR,
amargoCruz09-DT, Turhan09-DT, Menzies11-RF, Watanabe08-DT,
ost sensitive Ranking SVM, top-dev. The reasons are as follows.

(1) We used R packages to implement PR, NBR, ZINBR, ZIPR, HNBR,
nd HPR. Similar to Yang et al. [5], we also found these algorithms
annot produce a result for some datasets.

(2) The segmented model [86] used the software features that are
omputed on the sub-dependence graph of functions. Since our used
atasets do not contain the feature information, we do not investigate
he performance of the segmented model.

(3) You et al. [20] proposed the ROCPDP algorithm, which is
ctually the Ridge Regression (RR) algorithm.

(4) Yan et al. [9] and Yang et al. [69] investigated the perfor-
ances of some ensemble learning methods (i.e., Bagging, AdaBoost,
otation Forest and Random Subspace). Because the four ensemble

earning methods can combine 11 base classification-based L2R algo-
ithms (except RF) and 11 regression-based L2R algorithms (except
FR) investigated in our study, there are 88(=4 × 22) combinations. It

s impractical to investigate all the combinations. Therefore, our study
ocuses on investigating which base algorithm has the best performance
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or EADP.
(5) The difference between PCR and LR is that PCR builds a linear
egression model based on the principal components, and LR builds the
odel based on the original software features. Since our study focuses

n investigating which base algorithm has the best performance for
ADP, we do not consider the impact of software features. In addition,
he works on feature selection for EADP have been limited. Only Yang
t al. [5] applied information gain to investigate the effectiveness of
ifferent features for EADP, and Yang et al. [12] investigated PCR
or EADP. These studies found that information gain and PCA did not
ignificantly improve the performance of EADP models. Therefore, we
o not investigate the performance of PCR for EADP.

(6) Yu et al. [87] proposed a cost sensitive Ranking SVM algorithm
o rank modules according to the number of defects. The algorithm
mploys the cost sensitive learning approach to learns from imbalanced
efect data for module-level EADP. Since the algorithms studied in
ur work do not consider the data imbalance problem, we do not
nvestigate the cost sensitive Ranking SVM algorithm to ensure a fair
omparison.

(7) Ni et al. [13] compared EASC and the four cross-project defect
rediction algorithms (i.e., CamargoCruz09-DT, Turhan09-DT,
enzies11-RF, and Watanabe08-DT), and found that EASC outper-

ormed them for cross-project EADP. In addition, the algorithms stud-
ed in our work do not consider the different data distribution be-
ween within-project and cross-project datasets. Therefore, we do not
nvestigate the algorithms to ensure a fair comparison.

(8) Qu et al. [88] proposed an unsupervised algorithm and a su-
ervised equation both named top-dev, which need the information
f the number of developer working on a software modules. Since
ur experimental datasets do not contain the information, we do not
nvestigate top-dev.

. Related work

.1. Literature review

To understand the progress in EADP studies, we conducted a search
f the related articles published between 2010 and December 2022.2

To the best of our knowledge, the first two EADP articles were pub-
lished by Mende et al. [3] and Kamei et al. [4] in 2010, and thus
we set the starting year of the search to 2010. Then, we followed
Zhou et al.’s approach [89] to conduct a forward snowballing search.
Specifically, we first searched the articles having cited the Mende
et al.’s [3] and Kamei et al.’s [4] articles through Google Scholar,
then filtered out the unrelated articles. Next, we repeated this pro-
cess on all the reserved articles. Finally, the search process found
24 module-level EADP articles. Table 5 provides an overview of the
studies, and the last column lists the ranking criterions. ‘‘Bugs(m)’’
represents ranking modules based on the predicted number of de-
fects, and ‘‘Bugs(m)/LOC(m)’’ represents ranking modules based on
the predicted defect density. Since classification algorithms can only
predict the probability of the module being defective or the class
label, we regard ‘‘P(m)’’ as ranking modules based on the number of
defects, and regard ‘‘Label(m)/LOC(m)’’, ‘‘P(m)/LOC(m)’’, ‘‘P(m)×(1-
LOC(m)/LOC𝑚𝑎𝑥)’’, ‘‘[P(m)×coreness(m)]/LOC(m)’’, and [P(m) × core-
ness𝑔 (m)]/LOC(m) as ranking software modules based on the defect
density.

The studies can be broadly classified into two categories: those
that propose novel algorithms and those that empirically evaluate the
performance of different algorithms to determine the best ones. In these
empirical studies, Nguyen et al. [6], Bennin et al. [7,8], Mthukumaran
et al. [92], Yan et al. [9], Wang et al. [10], Miletić et al. [11],
Yang et al. [12] and Ni et al. [13] investigated the performance of
different L2R algorithms for module-level EADP. Nguyen et al. [6]

2 The search was conducted in December 2022.
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Table 5
Literature overview of module-level EADP.

Study Datasets used L2R algorithms Evaluation measures Ranking criteriona

Jiang et al. [90] 2008 8 NASA datasets NB (Naïve Bayes), LogR (Logistic Regression),
KNN (K-Nearest Neighbors), C4.5, Bagging

CLC (Cumulative Lift
Chart)

P(m)

Mende et al. [91] 2009 13 NASA datasets NB, LogR, CART (Classification and Regression
Tree), Bagging, RF (Random Forest)

cost effective, P𝑜𝑝𝑡 P(m)/LOC(m)

Mende et al. [3] 2010 12 NASA datasets,
3 Eclipse datasets

RF cost effective P(m) ×
(1-LOC(m)/LOC𝑚𝑎𝑥),
Label (m)/LOC(m)

Kamei et al. [4] 2010 3 Eclipse datasets LR (Linear Regression), CART, RF P𝑜𝑝𝑡 Label(m)/LOC(m)

Yang et al. [67] 2014 6 open source datasets LogR cost effective, effort
reduction

P(m)/LOC(m)

Yang et al. [5] 2014 6 Eclipse data sets,
5 AEEEM datasets

LTR (Learning-to-Rank), RFR (Random Forest
Regression), NBR (Negative Binomial
Regression), DTR (Decision Tree Regression),
ZINBR (Zero-Inflated Negative Binomial
Regression), ZIPR (Zero-Inflated Poisson
Regression), HNBR (Hurdle Negative Binomial
Regression), HPR (Hurdle Poisson Regression)

FPA(Fault-Percentile-
Average)

Bugs(m)

Nguyen et al. [6] 2014 5 Eclipse datasets KNR (K-Nearest neighbor Regression), LR,
MARS (Multivariate Adaptive Regression
Splines), Ranking SVM, RankBoost

SRCC (Spearman Rank
Correlation Coefficient)

Bugs(m)

Mthukumaran et al.
[92] 2016

3 open source datasets LR cost effective, CLC Bugs(m),
Bugs(m)/LOC(m)

Panichella et al. [53]
2016

20 PROMISE datasets LR, CART, LRM-GA (Linear Regression Model
with Genetic Algorithm)

P𝑜𝑝𝑡 Bugs(m)/LOC(m)

Ma et al. [84] 2016 11 PROMISE datasets LogR cost effective, effort
reduction

P(m)/LOC(m)

Yang et al. [86] 2016 5 open source datasets a segmented model cost effective, effort
reduction

Label(m)/LOC(m)

Bennin et al. [7] 2016 25 open source
datasets

LR, LAR (Least Angle Regression), RVM
(Relevance Vector Machine), KNR, K*, NNR
(Neural Network Regression), SVR (Support
Vector Regression), DTR (Decision Tree
Regression), RFR

P𝑜𝑝𝑡 Label(m)/LOC(m)

Bennin et al. [8] 2016 10 open source
datasets

LR, LAR, RVM, KNR, K*, NNR, SVR, DTR, RFR P𝑜𝑝𝑡 Label(m)/LOC(m)

You et al. [20] 2016 5 AEEEEM datasets, 34
PROMISE datasets

ROCPDP (Ranking-Oriented Cross-Project
Defect Prediction), LR, RFR, GBR, DTR, SVR,
Ranking SVM, RankBoost, GP (Genetic
Programming)

Spearman, Kendall,
Accuracy

Bugs(m)

Mthukumaran et al.
[92] 2016

3 open source datasets LR cost effective, CLC Bugs(m),
Bugs(m)/LOC(m)

Yan et al. [9] 2017 10 PROMISE datasets LR, SL, LogR, RBFNet, SMO, KNN, Ripper,
Ridor, NB, C4.5, LMT, RF,
(Bagging/AdaBoost/Rotation Forest/Random
Subspace)+(LMT/NB/SL/SMO/C4.5)b ,
ManualUp

cost effective, P𝑜𝑝𝑡 Label (m)/LOC(m)

Wang et al. [10] 2018 34 PROMISE datasets RFR, RankNet, LambdaRank, ListNet,
Coordinate Ascent

NDCG Bugs(m)

Miletić et al. [11]
2018

2 Eclipse datasets RF, LogR, NB, C4.5, ManualUp AUC (Area Under
Curve), GM (Geometric
Mean), P𝑜𝑝𝑡

Label(m)/LOC(m)

Yang et al. [12] 2018 41 PROMISE datasets LAR, RR (Ridge Regression), NBR, PCR
(Principal Component Regression), RFR, LTR

CLC, FPA Bugs(m)

Qu et al. [85] 2019 18 Java Software
datasets

RF, LogR P𝑜𝑝𝑡 [P(m) × coreness(m)]/
LOC(m)

Ni et al. [13] 2020 12 NASA datasets, 5
AEEEM datasets, 3
RELINK datasets, and
65 PROMISE datasets

CamargoCruz09-DT, Turhan09-DT,
Menzies11-RF, Watanabe08-DT, ManualUp,
ManualDown, EASC (Effort-Aware Supervised
Cross-project defect prediction)

F1-score, PF
(Probability of False
alarm), AUC, IFA,
PMI@20%LOC
(Proportion of Modules
Inspected), CostEffort,
P𝑜𝑝𝑡

P(m) /LOC(m)

Yu et al. [87] 2020 41 PROMISE datasets Cost-sensitive Ranking SVM, DTR, LR, RR,
Ranking SVM, LTR

Recall@20%module,
PofB@20%module, FPA

Bugs(m)

Qu et al. [88] 2021 9 open source Java
datasets

top-dev, ManualUp, CBS+ PMI@20%LOC, P𝑜𝑝𝑡 Label(m)/LOC(m),
P(m)/LOC(m), P(m)×(1-
LOC(m)/LOC𝑚𝑎𝑥)

Rao et al. [93] 2021 41 PROMISE datasets LTR, CBS+, EASC, LR PofB@20%LOC,
PMI@20%LOC,
Recall@20%LOC,
Precision@20%LOC,
IFA, P𝑜𝑝𝑡

Bugs(m) /LOC(m)

Du et al. [94] 2022 18 open source Java
datasets

LogR P𝑜𝑝𝑡 [P(m) × coreness𝑔
(m)]/LOC(m), [P(m) ×
coreness(m)]/LOC(m),
P(m) /LOC(m)

aBugs(m) is the predicted number of defects of the module m, P(m) is the probability of the module being defective, Label(m) is the class label of the module, LOC(m) is the line of codes of the module,
LOC𝑚𝑎𝑥 is the maximum value of the lines of codes of all predicted modules, and coreness(m) is the coreness of the module in the class dependency network [85].
b(Bagging/AdaBoost/Rotation Forest/Random Subspace)+(LMT/NB/SL/SMO/C4.5) represents that Yan et al. [9] investigated the performance of four ensemble learning methods (i.e., Bagging, AdaBoost,
Rotation Forest and Random Subspace) using LMT, NB, SL, SMO and C4.5 as the base learners.
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discovered that RankBoost had more stable prediction performance
than LR, MARS, KNN, Ranking SVM. Bennin et al. [7,8] found that DTR
performed the best in terms of P𝑜𝑝𝑡 when using the cross-release setup.
Wang et al. [10] found that RankNet performed the best in terms of
NDCG in the scenario of cross-project EADP. Miletić et al. [11] found
that LogR gained the best results in the scenario of cross-release EADP.
Yang et al. [12] found that RR can achieve better results than LR and
NBR, slightly better results than LAR, PCR and LTR [5], and slightly
worse results than RFR under cross-release setting. Yan et al. [9] found
that ManualUp did not perform statistically significantly better than
some classification models and LR under within-project setting, and can
perform statistically significantly better than them under cross-project
setting. Ni et al. [13] found that EASC can statistically significantly out-
perform ManualUp for cross-project EADP. Based on these experimental
results observed in these studies, the ranking instability problem exists,
i.e., different researchers offer inconsistent rankings of L2R algorithms
as to what is best. Such inconsistent findings make it hard to provide
guidance about which L2R algorithms should be used to build module-
level EADP models. The main reason of the ranking instability problem
in EADP are as follows:

(1) Comparing few L2R algorithms with a small number of datasets.
For example, Nguyen et al. [6] investigated five algorithms on five open
source software projects. Miletić et al. [11] investigated five algorithms
on two Eclipse software projects.

(2) Using datasets without indicating the number of defects. Some
studies (e.g., Bennin et al. [7,8], Yan et al. [9], and Ni et al. [13]) used
the class label rather than the number of defects of modules to build
EADP models, which may impact the prediction accuracy, because the
L2R algorithms use the actual number of defects or defect density as
the target variable to build EADP models.

(3) Using improper or few evaluation measures. Nguyen et al. [6]
and Wang et al. [10] employed Spearman rank correlation coefficient
and normalized discounted cumulative gain as the evaluation measure,
which is usually used to measure the ranking quality of web search
engine algorithms. Bennin et al. [7,8], Mthukumaran et al. [92], Yan
et al. [9] and Miletić et al. [11] employed cost effective or P𝑜𝑝𝑡 to eval-
uate how many defective modules can be inspected when inspecting
top 20% LOC and how accurate the global ranking of the predicted
modules according to the predicted defect density is. But the number
of inspected modules when inspecting top 20% LOC should also be
considered as an important evaluation measure, because inspecting
many modules would frequently switch between different modules,
and this may increase the actual time and effort spent [54]. Yang
et al. [12] employed CLC(Cumulative Lift Chart) and FPA to evaluate
how accurate the global ranking of the predicted modules according to
the predicted number of defect is, but the found bugs and the number
of inspected LOC when inspecting top 20% modules should also be
evaluated.

6.2. Comparison with recent studies

We discuss the difference of the conclusions between our study and
the three recent studies [9,12,13].

(1) Yan et al. [9] investigated the performance of some classification
algorithms, LR (Linear Regression), and ManualUp for EADP on 10
PROMISE datasets when LOC is used as effort, and found that Man-
ualUp can perform statistically significantly better than them under
cross-project setting in terms of Recall@20%LOC and P𝑜𝑝𝑡@LOC, but
ManualUp needed to inspect many modules. As shown in Table 4,
when LOC is used as effort, ManualUp achieves the highest median
Recall@20%LOC and P𝑜𝑝𝑡@LOC values under cross-project setting, and
ManualUp needs to inspect many modules when inspecting 20% LOC.
Therefore, we can find that our finding in terms of Recall@20%LOC,
P𝑜𝑝𝑡@LOC, and PMI@20%LOC is consistent with that of Yan et al. [9].
However, Yan et al. [9] only employed Recall@20%LOC, P𝑜𝑝𝑡@LOC,
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and PMI@20%LOC as the evaluation measures, and the scope of the
study limited to one type of L2R algorithm (i.e., pointwise L2R algo-
rithm). Therefore, they did not find that ManualUp performed badly
in terms of Precision@20%LOC and IFA@20%LOC, and LTR-linear
performed well under cross-release setting and Ranking SVM performed
well under cross-project setting.

(2) Yang et al. [12] investigated the performance of LAR, RR, NBR,
PCR, RFR, LTR-linear for EADP on 41 PROMISE datasets when module
is used as effort, and found that RFR performs the best in terms of
CLC and FPA under cross-release setting. As shown in Table 3, only
RFR and ManualDown belong to the first rank in terms of P𝑜𝑝𝑡@module
under cross-release setting. Therefore, we can find that our finding is
consistent with that of Yang et al. [12]. However, Yang et al. [12] only
employed CLC and FPA as the evaluation measures, and the scope of
the study limited to some regression algorithms and one listwise L2R
algorithm (i.e., LTR-linear). Therefore, they did not find that Manual-
Down can achieve higher median P𝑜𝑝𝑡@module and PofB@20%module
values than RFR, but require to inspect more LOC.

(3) Ni et al. [13] proposed the EASC algorithm for cross-project
module-level EADP. The core idea of EASC is that all the predicted
modules are divided into two lists: the first list sorts the predicted de-
fective modules in descending order of the predicted defect density, and
the second list sorts the predicted non-defective modules in descending
order of the predicted defect density. Software testers first inspect the
modules in the first list, and then inspect the modules in the second
list. The predicted defective modules by naive Bayes contain very large
modules, since larger modules are more likely to be defective. The very
large modules require a lot of effort cost. When inspecting top 20%
LOC, software testers can only inspect a small number of modules.
Therefore, the PofB@20%LOC and P𝑜𝑝𝑡@LOC values of EASC are low.
In other words, EASC can reduce the false alarms, but the downside
is reducing the ability to find bugs and obtaining the accurate global
ranking of the predicted modules, which are measured in terms of
PofB@20%LOC and P𝑜𝑝𝑡@LOC. Because the scope of Ni et al.’s [13]
study limited to some classification algorithms, they did not find that
Ranking SVM outperformed EASC for cross-project EADP. Since LTR-
linear under cross-release setting and Ranking SVM under cross-project
setting have acceptable Precision@20%LOC and IFA@20%LOC values,
different from Ni et al.’s conclusion [13], we recommend these
algorithms rather than EASC to build EADP models when LOC is
used as effort.

7. Conclusion

In this paper, we investigate the ranking stability of learning to rank
(L2R) algorithms for EADP, motivated by inconsistent performance
results in the literature. Compared with existing studies, we perform
more comprehensive experiments by evaluating 34 algorithms, using a
greater number of datasets (i.e., 49 module-level datasets), a greater
number of performance measures (i.e., Precision, Recall, IFA, PMI,
PLI, PofB, PofB/PMI, PofB/PLI, and P𝑜𝑝𝑡), and a more robust statistical
method (i.e., the Scott-Knott ESD test) under cross-release and cross-
project settings. This comprehensive procedure allows us to find a
stable ranking on the relative performance of L2R algorithms in dif-
ferent situations. Experimental results show that: (1) If software testers
want to find more bugs and are insensitive to the number of inspected
LOC, ManualDown is more desirable for EADP; otherwise, RFR per-
forms better for cross-release EADP model, and LR is recommended for
cross-project EADP model when module is used as effort. (2) LTR-linear
is recommended for cross-release EADP model, and Ranking SVM is
recommended for cross-project EADP model when LOC is considered
as effort.
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