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Summary
Given the increasing complexity and volume of Self-Admitted Technical Debts
(SATDs), how to efficiently detect them becomes critical in software engineer-
ing practice for improving code quality and project efficiency. Although current
deep learning methods have achieved good performance in detecting SATDs in
code comments, they lack explanation. Large language models such as Chat-
GPT are increasingly being applied to text classification tasks due to their ability
to provide explanations for classification results, but it is unclear how effective
ChatGPT is for SATD classification. As the first in-depth study of ChatGPT for
SATD detection, we evaluate ChatGPT’s effectiveness, compare it with small
deep learning models, and find that ChatGPT performs better on Recall, while
small models perform better on Precision. Furthermore, to enhance the perfor-
mance of these approaches, we propose a novel fusion approach named FSATD
which combines ChatGPT with small models for SATD detection so as to provide
reliable explanations. Through extensive experiments on 62,276 comments from
10 open-source projects, we show that FSATD outperforms existing methods in
performance of F1-score in cross-project scenarios. Additionally, FSATD allows
for flexible adjustment of fusion strategies, adapting to different requirements
of various application scenarios, and can achieve the best Precision, Recall, or
F1-score.

K E Y W O R D S

ChatGPT, fusion, performance and interpretability, self-admitted technical debt, small deep
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1 INTRODUCTION

Technical debt is a concept in the field of software engineering, introduced by Cunningham, to describe “not quite right
code.”1 It is used metaphorically to represent the shortcuts taken by developers in opting for suboptimal solutions, which
facilitate quicker delivery during the development process. The concept of technical debt parallels financial debt in that
taking a shortcut now can lead to increased costs later, just as taking a loan incurs interest. Typical examples of tech-
nical debt, such as duplicated code blocks or functions in the codebase, deferring the refactoring of complex code, and
using hard-coded values instead of configurable parameters, are often introduced intentionally or unintentionally by
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developers during the development process. These practices, while offering short-term benefits like faster delivery or
simpler immediate solutions, can lead to long-term drawbacks.2–7 They increase the maintenance burden, reduce code
quality, and can make future changes more time-consuming and costly, which require interest repayment.8–12 As time pro-
gresses, some intentionally introduced technical debts, due to lack of documentation, may be forgotten by developers and
not addressed in a timely manner, thereby further compounding the difficulties in software development.13,14 To mitigate
this issue, developers often document these intentional technical debts in their code through comments. For instance,
the code comment in the Apache Ant project like “// FIXME formatters are not thread-safe”* indicates an acknowledged
issue in the code that needs to be addressed. This kind of documented technical debts recorded by code comments are
commonly referred to as Self-Admitted Technical Debts (SATDs), a concept first introduced by Potdar and Shihab.15

Detecting SATDs plays a crucial role in software development and maintenance for several reasons.10,16–18 It can help
improve code quality, reduce future maintenance costs, prevent potential bugs and failures, and facilitate better project
management. Due to vast quantity and diverse variety of SATDs, developing automatical methods of detecting SATDs has
become a prominent subject of interest in the realm of software engineering.19–21

With the widespread application of deep learning technology in both artificial intelligence and software engineering
fields,22–27 many recent methods based on deep learning have also been proposed for detecting SATDs in code com-
ments,28–31 but these methods typically only provide classification results and lack explanations for why a particular
instance is classified as SATD. In the absence of explanation, developers may not easily understand why the model marks
certain comments as SATDs, which may affect their willingness to accept and trust automated detection systems. Instead,
providing an explanation can help developers quickly catch the problems that technical debts imply and pay them back.
With the growing popularity of Large Language Models (LLMs) like ChatGPT,† it has been extended across various
domains in artificial intelligence and software engineering to provide explanations for classification results.32–35 However,
it is still unclear to what extent ChatGPT can accurately perform binary classification of SATD and whether its explana-
tion is accurate. As the first in-depth study of ChatGPT for SATD detection, this paper explores their potential by focusing
on two research questions:

• RQ1: Can ChatGPT be used for SATD detection, and how effective is ChatGPT in classification compared with small
deep learning models?

• RQ2: Can we make better use of ChatGPT with existing small deep learning models?

For the first question, we explore the effectiveness of ChatGPT, respectively, equipped with BM25-based36 few-shot37

prompting and few-shot Chain-of-Thought (CoT) prompting33 for SATD detection, which are two best-performing
prompting strategies at the moment. In addition, we compare the effectiveness of ChatGPT with the effectiveness of small
models. Experimental results show that few-shot CoT prompting strategy is superior to the other in both validity and
interpretability because it can provide analysis and explanation for why a comment instance is classified as SATD, and
ChatGPT performs quite better on the recall metric while small models perform better on the precision metric.

For the second question, our objective is to develop a better solution that combines the strength of ChatGPT with
small deep learing models. We propose a novel approach called FSATD that fuses the results of ChatGPT and three basic
small models including Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and Transformer, to
detect SATDs in open-source software projects and provide reasonable and reliable explanations. Specifically, we first use
few-shot CoT prompts to guide ChatGPT to conduct analyze and classification for given comment texts. Then, we employ
three small deep learning models that have been trained on the specific dataset to classify the identical given comment
text, and obtain the full-voting result of these three classification results. Finally, we fuse the full-voting result with the
classification result of ChatGPT to obtain the final classification result through a series of fusion steps. If the full-voting
result of three small models exists which indicates they reach a consensus on classification, we choose to believe it as
the final fusion result; Otherwise, we choose to believe ChatGPT’s result. If the final fusion result is inconsistent with
ChatGPT’s result, we will guide ChatGPT to correct the original result and provide a reasonable explanation for the final
fusion result.

Through extensive experiments on 62,276 comments from 10 open-source projects provided by Maldonado,38 results
show that, in cross-project scenario, the average values of Precision, Recall, and F1-score obtained by FSATD are

*https://github.com/maldonado/tse.satd.data.
†https://chat.openai.com.
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0.8591, 0.8697, and 0.8661, respectively. Compared with the three small models, the values of Precision, Recall, and
F1-score, respectively, improve by 13.01%, 27.50%, and 19.68% on average. Compared with the state-of-the-art approaches,
GGSATD30 and HATD,29 FSATD has an average improvement of 6.31% on Recall and 10.31% on F1-score. Although
FSATD does not surpass GGSATD on Precision, it still demonstrated competitive performance. It can provide reason-
able and reliable explanations for the classification of SATD. In addition, we explore the performance of different fusion
strategies by changing voting mechanisms and find that different fusion strategies tend to improve the performance on
different evaluation metrics, so they can be flexibly selected for different application scenarios.

The contributions of this paper are as follows:

• We are the first to explore the capabilities of ChatGPT for SATD detection and to compare it with small models. Our
findings reveal that ChatGPT performs better on Recall metric, while small models perform better on Precision metric.

• We propose a novel approach, FSATD, which can not only make accurate classification but also provide reasonable and
reliable explanations. Our method is the first to propose a fusion of ChatGPT with small models for SATD detection.

The remainder of the paper is organized as follows. Section 2 introduces the relevant background knowledge of small
models and ChatGPT. Section 3 presents the experimental setup. Section 4 shows the results of ChatGPT and small
models. Section 5 introduces our approach. Section 6 demonstrates the results of our approach. Section 7 discusses our
approach. Section 8 introduces the related work. Section 9 concludes the paper.

2 PRELIMINARY: SMALL MODELS VERSUS CHATGPT

In this section, we outline the characteristics and capabilities of small models and ChatGPT to help enhance our
understanding of the distinct characteristics of various deep learning approaches.

2.1 Small models

In essence, the distinction between large and small models in artificial intelligence is often based on the number of
parameters. Large models typically have tens even hundreds of billions of parameters, while small models have 10 billion
parameters or less.39

With the rise of the deep learning, some small deep learning models have achieved advanced results in many text
classification tasks.40,41 We explore the capabilities of three basic small models, which are CNN, LSTM, and Transformer
respectively, for the main reason that the existing deep learning approaches used to detect SATDs are based on these
small models29–31,42 whose capabilities and tendency to feature extraction are different. Therefore, in our study, we select
these three small models widely used in text classification tasks to detect SATD and provide an overview of their feature
extraction capabilities:

• CNN43 is composed of layers of convolutions, pooling, and fully connected layers. The convolution layers use filters or
kernels to capture local patterns in the input data. In text classification, CNN applies convolutional layers to the text,
where filters slide over word embeddings to capture and detect local features like phrases or key terms. Pooling layers
then reduce the dimensionality of the data, retaining only the most significant features. These features are then passed
through fully connected layers for classification.

• LSTM,44 a type of recurrent neural network, designed to remember information over long periods, consists of a series
of input gates, output gates, and forget gates, which control the flow of information. The gates in LSTM allow it to
remember important information and forget the irrelevant, making them adept at capturing long-term dependencies
in text data, crucial for understanding the overall meaning and context of sentences.

• Transformer45 is built on self-attention mechanisms and feed-forward neural networks. The self-attention mecha-
nism weighs the significance of different parts of the input data, and the model does not process data sequentially. The
self-attention mechanism enables the model to consider the relevance of all words in a sentence, regardless of their
position, leading to a more nuanced understanding of the text. This comprehensive approach makes Transformers
particularly effective for complex text classification tasks.
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6 LI et al.

Each of these models has distinct mechanisms for capturing and interpreting text features, making them suitable for
various aspects of text classification. CNN is great for capturing local and positional features,46–48 LSTM excels in under-
standing sequential data and long-term dependencies,49,50 and Transformer is good at capturing dependencies between
any two positions in a sequence through self-attention mechanisms and provides a comprehensive understanding of text
context.51–54 However, their interpretability is relatively poor and they can not provide sentence-level natural language
analysis and explanation for text classification tasks.42,55

2.2 ChatGPT

With the popularity of Transformer, pretrained large language models based on Transformer architecture emerge one after
another. For example, GPT-3,37 based on the structure of Transformer, have achieved remarkable accomplishments in the
field of Natural Language Processing (NLP). Leveraging their formidable capabilities in understanding and generating
natural language,56 researchers have found that these models can perform impressively well in few-shot or even zero-shot
scenarios across a series of NLP tasks.

ChatGPT is an advanced language model developed by OpenAI,‡ based on the GPT (Generative Pretrained Trans-
former) architecture. It is designed to generate human-like text and engage in conversational interactions. Through its
question-and-answer format, ChatGPT can assist in addressing a wide range of issues, drawing on its powerful capabilities
in understanding and generating natural language. This enables it to address complex questions and provide informative,
contextually relevant answers, making it a versatile tool for various applications in the field of NLP.

SATD detection is essentially a text classification task at the intersection of software engineering and NLP. It involves
understanding code comments to determine whether they contain SATDs. However, there has been no research exploring
the application of ChatGPT specifically to the detection of SATD.

With the popularity of ChatGPT, many researchers have focused on studying and improving ChatGPT’s capabilities.
Gao et al.57 compare the performance of different retrieval-based methods including BM25,36 SBERT,58 UniXcoder59 and
CoCoSoDa60 for software engineering tasks. Results demonstrate that the simple BM25 method can achieve compara-
ble or even better performance than other methods on demonstration selection. In addition, Zhong et al.35 investigate
the synergistic potential of ChatGPT with advanced prompting strategies in a popular benchmark of text classification,
GLUE,61 and the manual few-shot CoT33 prompting strategy yields the best performance. We present the two advanced
prompting strategies:

• Few-shot-BM25, building upon the foundation of in-context learning, utilizes the sparse retrieval method BM2536

to find demonstration examples with the highest relevance scores for each test sample.62 In SATD detection, we rank
samples in the source set based on their relevance scores with given target sample by utilizing BM25, which selects
top-n relevant instances from the source set as demonstrations. In Figure 1A, we use BM25 to retrieve relevant instances
for the test comment “// FIXME: ugly cast to ContactModel” and search out relevant comments such as “// FIXME
check if the id is a correct filename!.” These examples are then used to construct prompts following the template
designed.

• Few-shot-CoT, proposed by Wei et al.,33 involves providing manual intermediate reasoning demonstrations to guide
the model through a step-by-step analysis, leading to the final output. In SATD detection, we manually select several
samples from source set as demonstrations. Each demonstration involves a question about the comment, as well as
an answer containing multistep analyze and result for the question. Then we concatenate these demonstrations with
target comment to construct a valid prompt according to the CoT template which is illustrated in Figure 1B.

3 EXPERIMENTAL SETUP

In this section, we introduce our experimental setup from four aspects: dataset description, evaluation metrics, parame-
ters, and experimental process in detail.

‡https://openai.com.
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LI et al. 7

Q: For the developer comment: "// FIXME check if the id is a correct file name! ",
does it contain self-admitted technical debts?
A: Yes.

......

Q: For the developer comment: "// FIXME: ugly cast to ContactModel", does it
contain self-admitted technical debts?
A:

Yes.

(A)

Q: For the developer comment: "// FIXME formatters are not thread-safe", does it
contain self-admitted technical debts?
A: First, understand what the comment describes and developer sentiment. (...)
Second, look for keywords or phrases. (...) Third, examine the comment for any
mention of issues or discussions. (...) Fourth, investigate if the comment contains
any proposed solutions or suggestions. (...) Answer(Yes or No): Yes.

......

Q: For the developer comment: "// TODO: This should only be building list up to
'index'", does it contain self-admitted technical debts?
A:

First, understand what the comment describes and developer sentiment. The
comment indicates that the current implementation is building a list, but it should
only be building the list up to a certain index. Second, look for keywords or
phrases. The comment has the keyword 'TODO' that indicates something needs to
be done. Third, examine the comment for any mention of issues or discussions.
The comment mentions that the current behavior is incorrect and needs to be
fixed. Fourth, investigate if the comment contains any proposed solutions or
suggestions. The comment suggests that the list-building should be limited to a
specific index. Answer(Yes or No): Yes.

(B)

F I G U R E 1 The examples of Few-shot-BM2537 prompting strategy and Few-shot-CoT33 prompting strategy. (A) Few-shot-BM25, (B)
Few-shot-CoT.

T A B L E 1 The statistics of these 10 projects.

Project Description Release Contributions Comments SATD %of SATD

Apache Ant Java library and command-line tool 1.7.0 74 4098 131 3.19

ArgoUML UML modeling tool 0.34 87 9542 1413 14.81

Columba E-mail client 1.4 9 6468 204 3.15

EMF Eclipse model-driven architecture 2.4.1 30 4390 104 2.37

Hibernate ORM framework 3.3.2 226 2968 472 15.90

JEdit Text editor 4.2 57 10, 322 256 2.48

JFreeChart Char library 1.0.19 19 4408 209 4.74

JMeter Performance tester 2.10 33 8057 374 4.64

JRuby Ruby interpreter 1.4.0 328 4897 622 12.70

SQuirrel SQL client 3.0.3 46 7215 286 3.96

Average 91 6228 407 6.54

Abbreviation: SATD, self-admitted technical debts.

3.1 Dataset description

To conduct our experiments, we utilize the dataset provided by Maldonado.38 The steps to build this dataset are as fol-
lows: First, they use an Eclipse plug-in to extract developer comments from 10 open-source projects. Second, they use
five heuristic filtering methods to remove comments that have little to do with SATD classification. Subsequently, they
remove the duplicate comments, resulting in 62,276 comments that need to be manually annotated. Finally, they manually
analyze each comment and label it SATD or non-SATD.

The detailed descriptions related to the dataset are shown in Table 1. This dataset contains categorized comments from
10 open-source Java projects, including Apache Ant, ArgoUML, Columba, EMF, Hibernate, JEdit, JFreeChart, JMeter,
JRuby, and SQuirrel. These 10 projects come from different application fields, and they have varying numbers of con-
tributors and comments. The number and proportion of comments identified as SATD also differ among them. We can
observe that in each project, only a small ratio of the comments are identified as SATD.

Due to the dataset’s extensive project coverage, the richness of its comment types, and the diversity of its SATD
samples, it has been widely used in researches for SATD detection.29,30,38,42,63
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8 LI et al.

3.2 Evaluation metrics

To evaluate the performance of different approaches, we employ three commonly used evaluation metrics following the
previous studies,29,30,42 namely Precision, Recall, and F1-score.

Precison represents the proportion of comments that are correctly classified as SATD among all comments classified
as SATD.

Precision = TP
TP+FP

. (1)

Recall represents the proportion of comments that are correctly classified as SATD among all SATD comments.

Recall = TP
TP+FN

. (2)

F1-score represents a harmonic mean of precision and recall, providing a balance between the two, which is especially
useful when the ratio of SATD and non-SATD samples in the dataset is uneven.

F1-score = 2 × Precision × Recall
Precision + Recall

. (3)

Here, TP (true positive) represents the number of SATD comments that are classified as SATD; FP (false positive) repre-
sents the number of non-SATD comments that are classified as SATD; and FN (false negative) represents the number of
SATD comments that are classified as non-SATD.

3.3 Parameters

Regarding the use of the ChatGPT model, we choose the “gpt-3.5-turbo” version provided by OpenAI. There are some
reasons why we do not adopt GPT-4. Recent reports and research64–67 suggest that GPT-4 manifests indications of incon-
sistency and imprecision, possibly attributable to its radical redesign. In addition, using GPT-4 will greatly increase the
cost of the experiment. In contrast, the GPT-3.5 series has consistently shown dependable outcomes, leading to its broad
adoption. In this configuration, we set the “temperature” parameter to 0 to ensure complete determinism and consistency
in the generated results. All other parameters are maintained at their default values.

As for these small models, as suggested by Ren et al.,42 we set the sizes of the convolutional kernels as (2,3,4,5) and
the number of kernels as 128 in the CNN model. Based on some related studied,68,69 we use a Bi-LSTM with two network
layers and 256 units in the hidden layer for the LSTM model and implement the Transformer model with the hidden layer
of 1024, two encoders and five multihead attentions. The learning rate is set as 0.001.

Considering the unbalanced distribution of SATD and non-SATD comments, we introduce a weighted cross-entropy
loss as the loss function for small models training. During the experiment, we calculate the weights based on the number
of two categories in the training data. For example, assuming there are n SATD comments and m non-SATD comments in
the training data, the weight for SATD is n∕(n +m) and the weight for non-SATD is m∕(n +m). These weights can then
be used as parameters for the cross-entropy loss function.

We execute small-model training and inference procedures on a Linux operating system (Ubuntu 16.04 LTS), which
is configured with 64GB RAM and a RTX2080Ti GPU. Our code implementation is based on the Pytorch§ framework.

3.4 Experimental process

We employ the cross-project scenario for SATD detection. In this scenario, we use nine projects as the source set and the
other one project as the target set each time. In our work, we do not explore performance in within-project scenario for
several reasons as follows: First, in the work of Ren et al.,42 they focus on explore the performance under the cross-project

§https://pytorch.org/.
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LI et al. 9

scenario instead of within-project scenario. Second, in real-world applications, it is difficult and costly to label the existing
comments of a project as the training set and it is not practical to constantly train the model every time we detect SATDs for
an unknown project. Most importantly, improving the generalization performance in cross-project scenarios can improve
the performance in within-project scenarios to a certain extent. Therefore, we focus on the study on cross-project scenario,
using existing labeled data sets as training sets to improve the generalization performance of our approach for other
unknown projects.

In cross-project scenario, we conduct our experiments in ten rounds, with one project tested in each round. For small
models, we select 10% of the source set as the validation set every time, and the remainder as the training set; for ChatGPT,
studies have show that more demonstration examples in the prompt generally lead to better performance.57 Considering
the limitations on ChatGPT’s input tokens, we choose the maximum number of demonstrations from the source set to
construct Few-shot-CoT prompt for the target comment from target set. We calculate the values of Precision, Recall, and
F1-score across the 10 project experiments to evaluate the performance of different approaches.

The Wilcoxon signed-rank test70 with Benjamini-Hochberg71 (BH) correction and Cliff’s 𝛿72 are utilized to evaluate
the significance of performance difference between two different approaches. Both of them are nonparametric statistical
methods used to assess the degree of difference between two sets of data. If BH-corrected p-value< 0.05 and 𝛿 > 0.147,70,73

it indicates a significant performance difference between the two approaches.

4 RESULTS OF CHATGPT AND SMALL MODELS

To answer the first research question, we further the following two subresearch questions to evaluate the performance of
ChatGPT and three small models, respectively.

• RQ1.1: Can ChatGPT be used for SATD detection and which prompting strategy is more effective?
• RQ1.2: How effective is ChatGPT in classification compared with small deep learning models and what are their

respective advantages?

4.1 Effectiveness of ChatGPT

4.1.1 Motivations

To explore whether ChatGPT can be used for SATD detection, we utilize ChatGPT with with Few-shot-BM25 and
Few-shot-CoT prompting strategies and compare them to choose the one with better performance. To better highlight the
advantages of the advanced prompt strategy, we introduce Zero-shot prompts as a control group. Considering the time
and economic costs of using model API provided by OpenAI, we randomly select 500 samples from each project, ensur-
ing that the ratios of SATD and non-SATD samples remain the same as the original distribution, to minimize the impact
that differing ratios of positive and negative samples may have on the results. It is worth stating that the number 500 is
greater than the number calculated statistically at the 95% confidence level and 5% confidence interval.

4.1.2 Methods

We analyze the performance results of ChatGPT on these three prompting strategies in cross-project scenario with 10
projects. Table 2 presents the detailed values of Precision, Recall, and F1-score metrics on each project. The best results
are highlighted in bold and the worst results are underlined.

4.1.3 Results

The results show that the performance of these two prompting strategies in the Precision metric is quite poor, and the gap
between different projects is significant. However, they perform quite well on the Recall metric with best values of 1.0000
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10 LI et al.

T A B L E 2 The classification results of ChatGPT on these prompting strategies.

Zero-shot Few-shot-BM25 Few-shot-CoT

Project Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

Apache Ant 0.0850 0.8125 0.1538 0.1290 1.0000 0.2286 0.2586 0.9375 0.4054

ArgoUML 0.5036 0.9333 0.6541 0.5441 0.9868 0.7014 0.6066 0.9867 0.7513

Columba 0.1414 0.8750 0.2435 0.2133 1.0000 0.3516 0.2745 0.8750 0.4179

EMF 0.0991 0.9167 0.1787 0.1250 0.9167 0.2200 0.2895 0.9167 0.4400

Hibernate 0.3333 0.9000 0.4865 0.3596 0.9125 0.5159 0.5515 0.9375 0.6944

JEdit 0.1447 0.8462 0.2472 0.2000 0.9231 0.3288 0.5000 0.8462 0.6286

JFreeChart 0.2556 0.9593 0.4035 0.3333 0.9583 0.4956 0.3117 1.0000 0.4752

JMeter 0.1774 0.9167 0.2973 0.2759 1.0000 0.4324 0.3898 0.9583 0.5542

JRuby 0.3735 0.9686 0.5391 0.4354 1.0000 0.6066 0.5833 0.9844 0.7326

SQuirrel 0.1224 0.9000 0.2156 0.1638 0.9500 0.2794 0.2817 1.0000 0.4396

Average 0.2236 0.9028 0.3419 0.2779 0.9647 0.4160 0.4047 0.9442 0.5539

and an average value of 0.9647 and 0.9442, respectively. Compared to the results from the Zero-shot prompting strategy,
the performance of these two advanced strategies has improved to some extent, with the performance of Few-shot-CoT
being more notable. Comparing these two prompting strategies, we find that Few-shot-CoT strategy performs better
than Few-shot-BM25 strategy on Precision and F1-score metrics, and there is little performance difference on Recall
metric between the two strategies. Significantly, they both tend to predict the instances as SATD instead of non-SATD to
different degrees.

Additionally, the Few-shot-CoT prompting strategy offers natural language analysis and explanation for the detection
of technical debt, which is an advantage over the BM25-based few-shot prompting strategy. For instance, in Figure 2, in
the first example, with the true label of “Yes,” the outputs of ChatGPT with Few-shot-BM25 prompting or Few-shot-CoT
prompting are both Yes, but the latter provides a correct explanation. In the second example, with the true label of “No,”
the output of ChatGPT with Few-shot-BM25 prompting is “Yes” which is incorrect, while the output of ChatGPT with
Few-shot-CoT prompting is “No” which is correct and also provide correct analysis and explanation. In terms of inter-
pretability, the latter strategy has more advantages than the former strategy. Therefore, in the experiment section below,
we use ChatGPT with Few-shot-CoT prompting strategy.

In addition to the mentioned studies, we conduct an experiment to explore the effectiveness of ChatGPT’s explanations
for SATD instances. For this, we randomly select 500 true positive samples, 50 from each project, and then we invite five
experienced developers engaged in software development to discuss and evaluate the correctness of the explanations pro-
vided by ChatGPT. Their average age is 28 years, including two students and three professional developers, with an average
of 7 years of experience. It is worth stating that the number 500 is greater than the number calculated statistically at the 95%
confidence level and 5% confidence interval. The outcome of this experiment is quite revealing. The findings indicate that
all the explanations provided by ChatGPT are well founded and logical. This unanimous agreement among experienced
developers suggests that ChatGPT’s explanations for true positive SATD instances are highly effective and reliable.

Answer to RQ1.1: The Few-shot-CoT prompting is superior to the Few-shot BM25 in both validity and inter-
pretability. Both of them perform very well on recall metric, but very poorly on precision metric. Therefore, the
challenge lies in how to improve Precision of ChatGPT approach.

4.2 Effectiveness of small models

4.2.1 Motivations

To explore the effectiveness of small models and the characteristic of them, we implement these three small models (CNN,
LSTM, and Transformer) and compare the results with results of ChatGPT.
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LI et al. 11

Q: For the developer comment: "//TODO: should fire its own event and ProjectBrowser //should register a listener", does it contain self-admitted technical debts?
A: (Ground Truth: Yes)

First, understand what the comment describes and developer sentiment. The
comment suggests that there is a need for a particular event to be fired and
for the ProjectBrowser to register a listener for that event. Second, look for
keywords or phrases. The comment has the keyword 'TODO' that indicates
something needs to be done. Third, examine the comment for any mention of
issues or discussions. The comment doesn't explicitly mention any issues, but
it implies that there is a missing functionality or a potential problem with the
current implementation. Fourth, investigate if the comment contains any
proposed solutions or suggestions. The comment suggests that the missing
event and listener registration should be implemented. Answer(Yes or No):
Yes.

Yes.

Few-shot-BM25 Few-shot-CoT

Q: For the developer comment: "// If we have a currentAct object that means have reached the end // of the lifeline with a call or a create not returned. // Add the
activation to the list after setting its height to end // at the end of the lifeline.", does it contain self-admitted technical debts?
A: (Ground Truth: No)

First, understand what the comment describes and developer sentiment. The
comment explains a specific behavior related to the end of a lifeline in a
system. It mentions the presence of a "currentAct" object and describes the
action of adding an activation to a list and setting its height. Second, look for
keywords or phrases. The comment doesn't contain explicit indicators.
Third, examine the comment for any mention of issues or discussions. The
comment doesn't mention any issues or discussions. Fourth, investigate if the
comment contains any proposed solutions or suggestions. The comment
describes the current behavior and the steps taken to handle the end of a
lifeline. It doesn't suggest that there are any problems or that changes are
needed. Answer(Yes or No): No.

Yes.

Few-shot-BM25 Few-shot-CoT

F I G U R E 2 The Illustrations of different outputs of ChatGPT with Few-shot-BM25 prompting or Few-shot-CoT prompting.

T A B L E 3 The classification results of three small models in cross-project scenario.

CNN LSTM Transformer

Project Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

Apache Ant 0.5354 0.5191 0.5271 0.4793 0.6183 0.5400 0.4810 0.5802 0.5260

ArgoUML 0.8696 0.9038 0.8705 0.8290 0.9130 0.8690 0.8491 0.8882 0.8682

Columba 0.7820 0.8088 0.7952 0.8017 0.9118 0.8532 0.9282 0.8873 0.9073

EMF 0.7761 0.5000 0.6082 0.6600 0.6346 0.6471 0.7067 0.5096 0.5921

Hibernate 0.8753 0.7881 0.8294 0.8540 0.8178 0.8355 0.9060 0.7966 0.8478

JEdit 0.6352 0.6055 0.6200 0.5709 0.6133 0.5913 0.7600 0.3711 0.4987

JFreeChart 0.8374 0.4928 0.6205 0.7192 0.5024 0.5915 0.6687 0.5215 0.5860

JMeter 0.9038 0.7032 0.7910 0.7840 0.7861 0.7850 0.8057 0.7540 0.7790

JRuby 0.7879 0.8778 0.8304 0.8376 0.8875 0.8618 0.8968 0.9084 0.9026

SQuirrel 0.7946 0.6224 0.6980 0.6851 0.7378 0.7104 0.8267 0.6503 0.7280

Average 0.7767 0.6822 0.7190 0.7221 0.7423 0.7285 0.7829 0.6867 0.7236

Abbreviations: CNN, convolutional neural network; LSTM, long-short term memory.

4.2.2 Methods

We analyze the performance results of these three small models in cross-project scenario with 10 projects. Table 3 presents
the results of these three small approaches for SATD detection. The best results are highlighted in bold and the worst
results are underlined.
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12 LI et al.

4.2.3 Results

We can find that the three models show similar performance for SATD detection, and LSTM achieves the best performance
with the Precision, Recall, F1-score metrics, respectively, reaching 0.7221, 0.7423, and 0.7285. The average values of these
three approaches also achieve impressive performance, respectively reaching 0.7606, 0.7037, and 0.7237 on three metrics.
Compared with the performance of ChatGPT with Few-shot-CoT prompting strategy with the results of 0.4047, 0.9442,
and 0.5539, respectively, on these metrics, small deep learning approaches are significantly superior in terms of Precision,
while somewhat less effective on Recall.

This comparison highlights the varying strengths of different approaches in the SATD detection domain, with small
deep learning models excelling in achieving higher Precision but lower Recall, whereas the ChatGPT with few-shot-CoT
strategy shows a strong capacity in achieving a higher Recall but a lower Precision.

Therefore, it is conceivable to leverage the strengths of small models to enhance the Precision of the ChatGPT
approach. By integrating the high Precision capabilities of small deep learning models with the comprehensive recall
ability of the ChatGPT with Few-shot-CoT prompting strategy, we could potentially create a more balanced and effec-
tive approach for SATD detection. This synergy could lead to an approach that not only maintain high Recall but also
improves Precision, offering a more robust solution in the field. Such an idea motivates us to propose the fusion approach
introduced in the next section.

Answer to RQ1.2: Small models perform better on Precision metric, but relatively poorer on Recall metric com-
pared with ChatGPT. Therefore, the challenge lies in how small deep learning models can be utilized to enhance
the Precision of ChatGPT.

5 OUR APPROACH

We propose a fusion approach combining ChatGPT with several small deep learning models, allowing the voting result
of small models to be fused with the result of ChatGPT to improve performance on SATD detection task.

Algorithm 1 lists the detailed fusion steps of our approach FSATD. Firstly (Lines 1–4), given a target comment text xt
from test data set St, we follow the template of the few-shot-CoT prompting strategy to form a final valid prompt pt and
invoke ChatGPT model to generate the corresponding interpretation AG and prediction result rG (Yes or No, respectively
representing SATD or non-SATD). Secondly (Lines 5–15), we input this comment text xt into trained three small models
to deduce the prediction results rC, rL, rT . These results will then be combined through a full-voting ticket mechanism
and lead to a voting result. Specifically, if the prediction results of the three small models are all SATDs (non-SATDs),
the full-voting result rv is SATD (non-SATD); otherwise, the full-voting result rv is None (not valid). Most importantly
(Lines 16-21), after obtaining the prediction result of ChatGPT rG and the full-voting result rv, we fuse the voting result
rv with the result of ChatGPT rG to get the final fusion result. Due to the different capabilities and tendency to feature
extraction of these three small models, we believe in the full-voting result of them when they reach a consensus about
SATD classification to a great extent. Figure 3 illustrates the detailed fusion steps, which are as follows:

• If the full-voting result rv of three small models exists, we choose to believe it as the final fusion result rf .
• Otherwise, we choose to believe ChatGPT’s result rG as the final fusion result rf .

If the final fusion result is inconsistent with ChatGPT’s result, we will guide ChatGPT to correct the original result
and provide a reasonable explanation for the fusion result.

6 RESULTS OF OUR APPROACH

In this section, we further the following two sub research questions to measure the performance of our approach and
answer RQ2.
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LI et al. 13

Algorithm 1. FSATD

Input : A comment text xt from test dataset St
Output: A fusion result rf

1 Construct the valid prompt pt for xt using few-shot-CoT prompt template:
2 pt = constructPropmpt(xt)
3 Input pt into ChatGPT to generate analyze AG and prediction result rG:
4 AG, rG = invoke(“gpt-3.5-turbo,” pt)
5 Input xt into trained CNN, LSTM, Transformer to, respectively, get prediction results rC, rL, rT :
6 rC = CNN(xt)
7 rL = LSTM(xt)
8 rT = Transformer(xt)
9 Get the full-voting result rv from rC, rL, rT :

10 if rC and rL and rT then
11 rv = 1 #representing SATD

12 if !(rC or rL or rT) then
13 rv = 0#representing non-SATD

14 else
15 rv = None

16 Fuse rG with rv to get the fusion result rf :
17 if rv==0 or rv==1 then
18 rf =rv

19 else
20 rf =rG

21 return the fusion result rf

Full-votingCNN LSTM Transformer

Yes Yes Yes

No No No

Yes Yes No

No No Yes

Yes Yes/No

No Yes/No

None Yes/No

Yes/NoNone

Yes/No

Final result

No

Yes

Yes/No

Code
comment

F I G U R E 3 The fusion steps of our approach for self-admitted technical debts (SATD) detection. Given a target comment text, we
obtain the final fusion result by fusing the result of ChatGPT with the full-voting result of three small models.
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14 LI et al.

• RQ2.1: Does our proposed approach outperform other existing methods for SATD detection?
• RQ2.2: How effective are the different fusion strategies?

6.1 Answer to RQ2.1: performance comparison with other existing approaches for
SATD detection

6.1.1 Motivations

We propose the fusion approach FSATD, which fuses the result of ChatGPT with the full-voting result of three small
models to get the final fusion result. To verify the effectiveness of FSATD, we compare it with seven existing approaches,
which are introduced as follows:

• GGSATD is proposed by Yu et al.,30 which utilizes the gated graph neural network to iteratively update node represen-
tation and employs the representation layer incorporating multilayer perceptrons and pooling mechanisms to obtain
the graph level representation to detect SATDs.

• HATD is proposed by Wang et al.,29 which combines a two-layer Bi-LSTM with single-head attention to form a
single-head attention encoder, and uses positional encoding plus multihead attention for a multihead attention
encoder. Then representations of two encoders are merged to detect SATD. GGSATD and HATD are the current
state-of-the-art approaches.

• Majority_voting (M_v), a decision-making method, is often employed in collective decision-making or classification
tasks. In the context of SATD detection, three small models classify the same data point, and the final category is
determined through majority voting.

• CNN, LSTM, Transformer, and Few-shot-CoT are already introduced in Section 2.

6.1.2 Methods

We analyze the performance results of FSATD and other existing methods in cross-project scenario with 10 projects and
the significance of differences between FSATD and other methods. Table 4 presents the Precision, Recall, and F1-score
values from several different methods in cross-project scenario, respectively, as well as p-value after BH correction and
Cliff’s 𝛿 between FSATD and other methods. The best results are highlighted in bold. Additionally, by repeating experi-
ments multiple times, we calculate and summarize the standard deviation, denoted as 𝜎, of FSATD on three evaluation
metrics.

Results: From Table 4, the average values of the ten projects of our approach FSATD on three metrics reach 0.8591 for
Precision, 0.8697 for Recall, and 0.8661 for F1-score. Compared with the performance of ChatGPT, which demonstrates
high Recall but low Precision, our approach achieves a very balanced performance. In addition, regarding the results of
our approach FSATD on each individual project, we find that the gap between the values of different projects is narrow,
which demonstrates the excellent stability of FSATD across various projects. This balance and the consistency in achieving
relatively uniform results across different projects are crucial in the context of software engineering, especially for SATD
detection, as it ensures that our approach not only accurately identifies relevant instances (high Precision) but also covers
a broad range of applicable cases (high Recall) in different projects, leading to a comprehensive and reliable detection
capability and demonstrating the effectiveness of our approach across diverse software projects.

From Table 4a, our approach FSATD achieves the highest Precision value in two projects, with an overall average value
of 0.8591 in 10 projects which is slightly lower than GGSATD of 0.879. Compared to other approaches such as HATD, CNN,
LSTM, Transformer, and Majority_voting, our approach shows an improvement of 19.49%, 10.61%, 18.97%, 9.73%, and
0.02%, respectively. When compared specifically to the small model components including CNN, LSTM, and Transformer,
our approach shows an average improvement of 13.01%. Against the ChatGPT with Few-shot-CoT prompting strategy,
there is a substantial improvement of 114.50%. The integration of small model components has significantly enhances
the Precision of the ChatGPT with Few-shot-CoT prompting strategy. This substantial improvement in Precision vividly
demonstrates the effectiveness of FSATD. By leveraging the strengths of both the small models and the advanced prompt-
ing capabilities of ChatGPT, our approach effectively addresses one of the key limitations—low Precision—previously
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LI et al. 15

T A B L E 4 The evaluation results of our approach and other existing approaches in cross-project scenario.

(A) Precision(𝝈)

Project FSATD GGSATD HATD CNN LSTM Transformer M_v Few-shot-CoT
Apache Ant 0.7161(0.0161) 0.806 0.657 0.5354 0.4793 0.4810 0.7426 0.2546

ArgoUML 0.8644(0.0223) 0.909 0.818 0.8396 0.8290 0.8491 0.8564 0.6001

Columba 0.9000(0.0195) 0.936 0.794 0.7820 0.8017 0.9282 0.8916 0.3019

EMF 0.8316(0.0334) 0.823 0.664 0.7761 0.6600 0.7067 0.8710 0.2578

Hibernate 0.9231(0.0265) 0.927 0.756 0.8753 0.8540 0.9060 0.9126 0.6046

JEdit 0.9420(0.0272) 0.864 0.699 0.6352 0.5709 0.7600 0.7512 0.4442

JFreeChart 0.7608(0.0235) 0.831 0.678 0.8374 0.7192 0.6687 0.8750 0.3169

JMeter 0.8528(0.0116) 0.905 0.701 0.9038 0.7840 0.8057 0.9276 0.3784

JRuby 0.8987(0.0254) 0.938 0.758 0.7879 0.8376 0.8968 0.8835 0.5652

SQuirrel 0.9018(0.0134) 0.851 0.671 0.7946 0.6851 0.8267 0.8610 0.2814

Average 0.8591(0.0219) 0.879 0.719 0.7767 0.7221 0.7829 0.8573 0.4005

p-Value — 0.3760 0.0137 0.0684 0.0137 0.0239 1.0000 0.0137

𝛿 — −0.12 0.88 0.46 0.72 0.40 0.06 1.00

(B) Recall(𝝈)

Project FSATD GGSATD HATD CNN LSTM Transformer M_v Few-shot-CoT
Apache Ant 0.8473(0.0182) 0.818 0.780 0.5191 0.6183 0.5802 0.5725 0.9542

ArgoUML 0.9837(0.0271) 0.946 0.925 0.9038 0.9130 0.8882 0.9200 0.9887

Columba 0.9706(0.0253) 0.942 0.956 0.8088 0.9118 0.8873 0.8873 0.9412

EMF 0.7596(0.0255) 0.786 0.785 0.5000 0.6346 0.5096 0.5192 0.8750

Hibernate 0.8321(0.0146) 0.894 0.839 0.7881 0.8178 0.7966 0.7966 0.9428

JEdit 0.7617(0.0126) 0.720 0.713 0.6055 0.6133 0.3711 0.5898 0.9023

JFreeChart 0.7608(0.0254) 0.753 0.748 0.4928 0.5024 0.5215 0.4689 0.9856

JMeter 0.8984(0.0192) 0.899 0.871 0.7032 0.7861 0.7540 0.7540 0.9278

JRuby 0.9839(0.0195) 0.914 0.913 0.8778 0.8875 0.9084 0.9019 0.9759

SQuirrel 0.8986(0.0169) 0.820 0.851 0.6224 0.7378 0.6503 0.6713 0.9720

Average 0.8967(0.0204) 0.849 0.838 0.6822 0.7426 0.6867 0.7082 0.9466

P-value - 0.1309 0.0273 0.0137 0.0137 0.0137 0.0137 0.0273

𝛿 - 0.16 0.18 0.64 0.50 0.60 0.56 -0.52

(C) F1-score(𝝈)

Project FSATD GGSATD HATD CNN LSTM Transformer M_v Few-shot-CoT
Apache Ant 0.7762(0.0161) 0.811 0.713 0.5271 0.5400 0.5260 0.6465 0.4019

ArgoUML 0.9202(0.0182) 0.926 0.855 0.8705 0.8690 0.8682 0.8871 0.7469

Columba 0.9340(0.0229) 0.939 0.848 0.7952 0.8532 0.9073 0.8994 0.4571

EMF 0.7940(0.0295) 0.802 0.669 0.6082 0.6471 0.5921 0.6506 0.3982

Hibernate 0.9191(0.0224) 0.909 0.776 0.8294 0.8355 0.8478 0.8507 0.7368

JEdit 0.8423(0.0176) 0.782 0.671 0.6200 0.5913 0.4987 0.6608 0.5954

JFreeChart 0.7608(0.0246) 0.786 0.703 0.6205 0.5915 0.5860 0.6106 0.4796

JMeter 0.8750(0.0117) 0.902 0.747 0.7910 0.7850 0.7790 0.8319 0.5376

JRuby 0.9394(0.0225) 0.926 0.798 0.8304 0.8618 0.9026 0.8926 0.7158

SQuirrel 0.9002(0.0157) 0.834 0.707 0.6980 0.7104 0.7280 0.7544 0.4364

Average 0.8661(0.0201) 0.862 0.749 0.7190 0.7285 0.7236 0.7685 0.5506

P-value - 1.0000 0.0137 0.0137 0.0137 0.0137 0.0137 0.0137

𝛿 - 0.00 0.76 0.70 0.66 0.56 0.56 1.01

Abbreviations: CNN, convolution neural network; LSTM, long short-term memory.
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16 LI et al.

observed in the ChatGPT with Few-shot-CoT strategy. In addition, from p-value after BH correction and 𝛿, it indicates
that FSATD has significant performance differences with HATD, LSTM, Transformer and Few-shot-CoT approaches on
Precision metric. Although FSATD is slightly lower than GGSATD on Precision, it still achieves excellent performance
and does not have significant differences with GGSATD.

From Table 4b, our approach FSATD achieves the best Recall in two projects, with an overall average value of 0.8967 in
10 projects, which presents a slight decrease compared to the ChatGPT with Few-shot-CoT prompting strategy. However,
when compared to the state-of-the-art approaches, GGSATD and HATD, our approach shows an increase of 5.62% and
7.00%, respectively. Relative to other approaches such as CNN, LSTM, Transformer, and Majority_voting, our approach
shows an increase of 31.44%, 20.75%, 30.58%, and 26.62%, respectively. When specifically compared to small model com-
ponents like CNN, LSTM, and Transformer, our approach shows an average improvement of 27.5%. These results indicate
that while our approach slightly trails the ChatGPT with Few-shot-CoT prompting strategy in terms of Recall, it sig-
nificantly outperforms other current approaches, including the state-of-the-art approaches, GGSATD and HATD. The
substantial improvement highlights the strength of our approach in maintaining a high level of Recall, which is essen-
tial for ensuring comprehensive coverage in SATD detection. This balance of high Recall with the previously noted
improvement in Precision demonstrates the overall effectiveness and robustness of our approach, making it a valuable
contribution to the field. In addition, from p-value after BH correction and 𝛿, it indicates that FSATD has significant
performance differences with all the other approaches on Recall metric.

From Table 4c, our approach FSATD achieves the best F1-score in four projects, with an overall average value of
0.8967 in 10 projects, surpassing all existing approaches. Compared to the state-of-the-art approaches, GGSATD and
HATD, our approach shows an increase of 0.5% and 15.63%, respectively. Relative to other approaches such as CNN,
LSTM, Transformer, and Majority_voting, our approach demonstrates an improvement of 20.46%, 18.89%, 19.69%, and
12.70%, respectively. When compared specifically to small model components such as CNN, LSTM, and Transformer,
there is an average improvement of 19.68%. Against the ChatGPT with Few-shot-CoT prompting strategy, our approach
shows a substantial increase of 57.06%. These results highlight the significant impact of our approach in improving the
overall F1-score, a crucial metric that combines Precision and Recall, indicating a well-balanced and effective approach.
Achieving the best F1-score in multiple projects and outperforming both small models and ChatGPT with advanced
Few-shot-CoT prompting strategy confirms the superiority of our approach in providing a comprehensive solution
for SATD detection. This high level of performance across diverse projects showcases the robustness and applicabil-
ity of our approach in various software engineering contexts. In addition, from p-value after BH correction and 𝛿, it
indicates that FSATD has significant performance differences with other approaches apart from GGSATD on F1-score
metric.

From the overall results, the performance of FSATD on some projects, such as Apache Ant and JFreeChart, is not
ideal. This could be due to several possible reasons: On one hand, the language features of the comments in these projects
are not commonly seen in other projects. After training on other projects, the small models may struggle to capture the
linguistic characteristics of these comments, potentially leading to entirely incorrect predictions by the smaller models
and subsequently erroneous results when fused with the result of ChatGPT. On the other hand, ChatGPT tends to predict
non-SATD instances as SATD, resulting in extremely low precision and thus suboptimal fusion results.

The error could potentially come from two aspects: the training and inference process of small models, and the infer-
ence process of the large model. In the training process of the small model, we initialize it with a fixed random seed and
save the best model weights from 100 epochs for inference. After repeating experiments multiple times, the inference
results remain stable and consistent, thus not contributing significantly to the error. However, the inference process of
the large model has greater randomness, though we set the “temperature” parameter to 0 to ensure as much determinism
and stability in the inference results as possible. Therefore, we repeat inference experiments of ChatGPT three times, cal-
culate the average values, and present the SD 𝜎. From the values of 𝜎, we can see that results of all projects are not very
volatile.

Answer to RQ2.1: Our approach can achieve a balanced performance with the best F1-score compared with
existing approaches.
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LI et al. 17

6.2 Answer to RQ2.2: effectiveness of the different fusion strategies

6.2.1 Motivations

To explore the effectiveness of different fusion strategies, we set up four different fusion strategies as follows, which cover
all combinations of voting mechanisms. The detailed fusion steps are presented in Figure 4 and described as follows:

• Strategy 1: utilized in our approach and presented in Figure 3.
• Strategy 2: If the majority-voting result of three small models is No, we choose to believe it as the fusion result; if

the full-voting result of three small models is Yes, we choose to believe it as the fusion result; otherwise, we choose
to believe ChatGPT’s result as the fusion result.

• Strategy 3: If the full-voting result of small models is No, we choose to believe it as the fusion result; if the
majority-voting result of three small models is Yes, we choose to believe it as the fusion result; otherwise, we choose
to believe ChatGPT’s result as the fusion result.

• Strategy 4: We always believe in the majority-voting result of three small models as the final fusion result.

6.2.2 Methods

We analyze the performance results of four different fusion strategies in cross-project scenario with 10 projects and the
significance of differences between Strategy 1 and other strategies. Table 5 presents the Precision, Recall, and F1-score
values from four different fusion strategies in cross-project scenario as well as p-value after BH correction and Cliff’s 𝛿
between Strategy 1 and the other strategies. The best results are highlighted in bold.

6.2.3 Results

From Table 5a, Strategy 2 achieves the highest Precision with 10 projects, with an overall average of 0.9795; this is nearly
12 percentage points higher than our employed Strategy 1. From Table 5b, it is evident that Strategy 3 attains the best

CNN L
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F I G U R E 4 The fusion steps of the other three fusion strategies. (A) Strategy 2, (B) Strategy 3, (C) Strategy 4.
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18 LI et al.

T A B L E 5 The evaluation results of four different fusion strategies.

(a) Precision

Project Strategy 1 Strategy 2 Strategy 3 Strategy 4
Apache Ant 0.7161 0.9733 0.6243 0.7426

ArgoUML 0.8644 0.9707 0.7791 0.8564

Columba 0.9000 0.9835 0.8299 0.8916

EMF 0.8316 0.9808 0.7810 0.8710

Hibernate 0.9231 0.9917 0.8673 0.9126

JEdit 0.9420 0.9797 0.7731 0.7512

JFreeChart 0.7608 0.9703 0.7228 0.8750

JMeter 0.8528 0.9891 0.8184 0.9276

JRuby 0.8987 0.9772 0.8260 0.8835

SQuirrel 0.9018 0.9791 0.8265 0.8610

Average 0.8591 0.9795 0.7848 0.8573

p-Value — 0.0059 0.0059 1.0000

𝛿 — −1.0 0.6 0.06

(b) Recall

Project Strategy 1 Strategy 2 Strategy 3 Strategy 4
Apache Ant 0.8473 0.5573 0.8626 0.5725

ArgoUML 0.9837 0.9130 0.9908 0.9200

Columba 0.9706 0.8775 0.9804 0.8873

EMF 0.7596 0.4904 0.7885 0.5192

Hibernate 0.8321 0.7564 0.9555 0.7966

JEdit 0.7617 0.5664 0.7852 0.5898

JFreeChart 0.7608 0.4689 0.7608 0.4689

JMeter 0.8984 0.7246 0.9278 0.7540

JRuby 0.9839 0.8939 0.9920 0.9019

SQuirrel 0.8986 0.6538 0.9161 0.6713

Average 0.8697 0.6902 0.8960 0.7082

p-Value - 0.0059 0.0077 0.0059

𝛿 - 0.66 -0.23 0.56

(c) F1-score

Project Strategy 1 Strategy 2 Strategy 3 Strategy 4
Apache Ant 0.7762 0.7087 0.7244 0.6465

ArgoUML 0.9202 0.9410 0.8723 0.8871

Columba 0.9340 0.9275 0.8989 0.8994

EMF 0.7940 0.6538 0.7847 0.6506

Hibernate 0.9191 0.8582 0.9093 0.8507

JEdit 0.8423 0.7178 0.7791 0.6608

JFreeChart 0.7608 0.6323 0.7413 0.6106

JMeter 0.8750 0.8364 0.8697 0.8319

JRuby 0.9394 0.9337 0.9014 0.8926

SQuirrel 0.9002 0.7841 0.8690 0.7544

Average 0.8661 0.7994 0.8350 0.7685

p-Value - 0.0098 0.0020 0.0020

𝛿 - 0.30 0.34 0.56
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LI et al. 19

Recall in 10 projects, with an overall average of 0.8960; this is slightly over 2.6 percentage points higher than Strategy 1.
Finally, from Table 5c, we find that Strategy 1 achieves the best F1-score in nine projects, with an overall average of 0.8661.
From p-value after BH correction and 𝛿, it indicates that Strategy 1 has significant performance differences with other
strategies on Recall and F1-score metrics, while Strategy 1 has significant performance differences with other strategies
apart from Strategy 4 on Precision metric.

These results highlight the differing impacts of various fusion strategies on the performance metrics in a cross-project
scenario. Strategy 2’s significant lead in Precision suggests its effectiveness in accurately identifying relevant cases, while
Strategy 3’s superior performance in Recall indicates its strength in covering a wide range of applicable cases. Our cho-
sen Strategy 1, while not leading in individual metrics of Precision or Recall, demonstrates a well-balanced approach,
as evidenced by its leading performance in F1-score across the majority of projects. This balance is critical in practical
applications where false alarm rates (Precision) and comprehensiveness (Recall) are important. The high F1-score of
Strategy 1 underscores its effectiveness as a comprehensive and reliable approach for SATD detection in varied project
contexts. Actually in different application scenarios, facing varying requirements, we can indeed adopt different fusion
strategies. This flexibility is crucial as it allows for the tailoring of approaches to meet specific objectives or constraints of
each scenario.

Answer to RQ2.2: Strategy 1 achieves the best F1-score; Strategy 2 achieves the best Precision; Strategy 3 achieves
the best Recall. In summary, different fusion strategies indeed possess distinct advantages and the choice of fusion
strategy can be flexibly made based on the specific requirements of different application scenarios.

7 DISCUSSION

7.1 Why does our approach work?

The full-voting results of the small model are reliable and the advantages of ChatGPT and small models can be effectively
combined. To explore the synergy of predictions from small models and to understand the rationale behind fusing the
voting results of these models, we create Venn diagrams depicting the sets of correctly predicted results by the three small
models for samples with ground truth labels of “non-SATD” and “SATD,” respectively. Each Venn diagram contains seven
sections, representing that (1) only CNN, (2) only LSTM, (3) only Transformer, (4) both CNN and LSTM, (5) both CNN
and Transformer, (6) both LSTM and Transformer, and (7) all three models correctly predict instances in the dataset to
be SATDs or non-SATDs. The diagrams display the number of instances in each of these seven sections.

Figure 5 presents the Venn diagrams of the sets of correctly predicted results by CNN, LSTM, and Transformer with
groundtruth labels of “non-SATD.” It is evident that the section where three models reach a full-voting consensus occu-
pies the majority of the Venn diagram, which indicates that when the groundtruth label is “non-SATD,” the three small
models tend to predict “non-SATD” simultaneously, demonstrating a high accuracy rate for this category of labels. In
addition, from the two numbers inside the parentheses in Figure 5, the number of non-SATD predicted by the three
small models is almost equal to the number of non-SATD in the dataset, indicating that the small models rarely miss
identifying non-SATD samples. For example, in dataset Apache Ant, Columba, EMF, Hibernate, and JFreeChart, these
three small models even do not miss identifying any non-SATD instances. This observation suggests a strong consensus
among the small models and a high coverage for identification of non-SATD instances in dataset, implying that their
full-voting results are particularly reliable for identifying non-SATD instances which can help enhance the Precision for
SATD classification.

Figure 6 presents the Venn diagrams of the sets of correctly predicted results by CNN, LSTM, and Transformer with
groundtruth labels of “SATD.” From this diagram, we observe that the synergy among the three small models is not as
pronounced, which suggests that their synergetic effectiveness in accurately identifying SATD instances is not as high and
they tend to miss identifying SATD instances in datasets. In these cases where the small models do not reach a full-voting
consensus, we choose to believe ChatGPT’s results. From Section 4, we find that ChatGPT has the advantages of achieving
a very high Recall which indicates that it has very strong ability to correctly identify SATD instances. These advantages
of ChatGPT can compensate for the low consistency and high underreporting rate of small models for identifying SATD
samples, which reinforces the reliability of our approach to fuse ChatGPT with small models.
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20 LI et al.

(A) (B) (C) (D)

(E) (F) (G) (H)

(I) (J)

F I G U R E 5 The Venn diagrams of the sets of correctly predicted results by convolutional neural network (CNN), long short-term
memory (LSTM), and Transformer with the ground truth of “non-SATD.” Blue represents “only CNN,” yellow-green represents “only
LSTM,” pink represents “only Transformer,” and so forth. The two numbers in parentheses respectively indicate the number of non-SATD
samples correctly predicted by small models and the number of non-SATD samples included in the dataset. (A) Apache Ant (3967 / 3967), (B)
ArgoUML (8020 / 8039), (C) Columba (6264 / 6264), (D) EMF (4286 / 4286), (E) Hibernate (2496 / 2496), (F) JEdit (10065 / 10066), (G)
JFreeChart (4199 / 4199), (H) JMeter (7682 / 7683), (I) JRuby (4272 / 4275), (J) SQuirrel (6828 / 6929).

Instances of correct fusion are much more numerous than instances of false fusion, and occupy a much larger pro-
portion. To quantitatively analyze the effectiveness of our fusion strategy, we compile data on the number of successes
and failures for two different cases of Strategy 1. Table 6 presents four possible fusion scenarios. Why are there these four
fusion scenarios? On one hand, there are two cases in which ChatGPT’s result is inconsistent with the full-voting result
of small models. On the other hand, there are two different groundtruths. By permutation and combination, we can get
these four fusion scenarios. Table 7 presents the number of instances of four fusion scenarios in 10 projects. By analyzing
the number of instances, we can intuitively see a significant difference between correct fusion and false fusion.

From Table 7, we observe that in the 10 projects, the number of correct fusion instances in Scenario 1 and Scenario
2 achieved by our strategy is 38 and 4229, which is significantly higher than the number of false fusion instances in
Scenario 3 and Scenario 4, respectively 188 and 8, totaling 196. Significantly, it is evident that instances of correct fusion
occupy a large proportion of all instances in Scenario 2, which can greatly enhance the Precision in SATD classification.
By contrast, instances of false fusion in Scenario 3 are rare, which slightly reduce the Recall in SATD classification. In
addition, instances in Scenarios 1 and 4 are rarer, which have little impact on the performance of our approach.
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LI et al. 21

(A) (B) (C) (D)

(E) (F) (G) (H)

(I) (J)

F I G U R E 6 The Venn diagrams of the sets of correctly predicted results by convolutional neural network (CNN), long short-term
memory (LSTM), and Transformer with ground truth of self-admitted technical debts (“SATD”). Blue represents “only CNN,” yellow-green
represents “only LSTM,” pink represents “only Transformer,” and so forth. The two numbers in parentheses, respectively, indicate the
number of SATD samples correctly predicted by small models and the number of SATD samples included in the dataset. (A) Apache Ant
(114/131), (b) ArgoUML (1400/1413), (C) Columba (201/204), (D) EMF (83/104), (E) Hibernate (454/472), (F) JEdit (205/256), (G)
JFreeChart (159/209), (H) JMeter (352/374), (I) JRuby (618/622), (J) SQuirrel (264/286).

T A B L E 6 Four possible fusion scenarios in Strategy 1.

Prediction

Groundtruth ChatGPT CNN LSTM Transformer Fusion result

Scenario (1) Yes No Yes Yes Yes Yes (✓)

Scenario (2) No Yes No No No No (✓)

Scenario (3) Yes Yes No No No No (×)

Scenario (4) No No Yes Yes Yes Yes (×)

Notes: “Yes” represents “SATD” and “No” represents “non-SATD.” (✓) represents correct fusion in this scenario, and (×) represents false fusion in this scenario.
Abbreviations: CNN, convolution neural network; LSTM, long short-term memory.

 1097024x, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3360 by W

uhan U
niversity, W

iley O
nline L

ibrary on [12/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



22 LI et al.

T A B L E 7 The number of instances of four fusion scenarios in 10 projects.

Scenario

Project (1) (✓) (2) (✓) (3) (×) (4) (×)

Apache Ant 0 (6) 322 (366) 14 0

ArgoUML 5 (16) 720 (931) 12 7

Columba 8 (12) 422 (444) 2 0

EMF 5 (13) 246 (262) 17 0

Hibernate 1 (27) 255 (291) 14 0

JEdit 4 (25) 277 (289) 40 0

JFreeChart 0 (3) 394 (444) 47 0

JMeter 5 (27) 512 (570) 16 0

JRuby 9 (15) 398 (467) 4 0

SQuirrel 1 (8) 683 (710) 22 1

Total 38 (152) 4229 (4774) 188 8

Notes: (✓) represents correct fusion in this scenario, and (×) represents false fusion in this scenario. The numbers in parentheses represent the number of
instances that meet the GroundTruth and ChatGPT predictions in this scenario.

This significant difference between correct and false fusion instances highlights several key points:

• High effectiveness of the fusion strategy: The dominance of correct fusions indicates that the strategy is highly effective
for most instances, successfully leveraging the strengths of the combined models.

• Reliability across different projects: The consistency of this trend across 10 different projects suggests that the strategy
is robust and reliable, capable of performing well in diverse scenarios.

• Validation of the fusion: The overwhelming success of the fusion strategy validates the concept of fusing models to
enhance performance, especially in complex tasks like SATD detection.

7.2 Some inaccurate labeled data

During the course of our experiments, we identify some instances that appear to be mislabeled. Figure 7 shows two
comment examples containing the keywords “Fixme” and “TODO,” and both of two explanations provided by ChatGPT
accurately refer to these key words that indicate SATD. Both comment instances are predicted as Yes by the ChatGPT with
few-shot-CoT prompting strategy, and the majority-voting results from the small models also indicate Yes. In addition,
five invited experienced developers have a secondary review of the analysis and explanation provided by ChatGPT and
find that ChatGPT’s explanations are logical and well-founded. Therefore, it is possible that these instances are incorrectly
labeled in the dataset. This finding indicates that ChatGPT can help improve the reliability of data labels, as human
reviewers can re-evaluate and verify labels using the explanations provided by AI models.

7.3 Threats of validity

7.3.1 Unbalanced data

An unbalanced dataset may bring a significant risk to our approach. To deal with the problem, we utilize a weights
cross-entropy loss as the loss function for small models training. It can improve the recognition ability of the model on
small-class instances, thereby improving the overall performance and fairness of the model. Therefore, our results are
still reliable.
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LI et al. 23

Q: For the developer comment: "// FIXME: JRUBY-3604", does it contain self-admitted
technical debts? (Ground Truth:No)
A:

First, understand what the comment describes and developer sentiment. The comment
refers to a specific issue or bug identified as "JRUBY-3604". Second, look for keywords
or phrases indicative of technical debt. The keyword "FIXME" indicates that there is a
known issue or problem that needs to be addressed. Third, examine the comment for any
mention of issues or discussions. The comment explicitly mentions the issue "JRUBY-
3604", indicating that it has been identified and tracked. Fourth, investigate if the
comment contains any proposed solutions or suggestions. The comment does not provide
a solution or suggestion, but it acknowledges the existence of the issue. Answer(Yes or
No): Yes.

CNN/LSTM/Transformer Prediction:Yes/No/Yes

(A)

Q: For the developer comment: "/* TODO: Check the name for validity. */", does it
contain self-admitted technical debts? (Ground Truth:No)
A:

First, understand what the comment describes and developer sentiment. The
comment indicates that there is a need to check the validity of a name, but it doesn't
provide any further context or details. Second, look for keywords or phrases. The
comment has the keyword 'TODO' that indicates something needs to be done.
Third, examine the comment for any mention of issues or discussions. The comment
mentions the need to check the name for validity, which implies that there might be
potential issues or concerns related to the name. Fourth, investigate if the comment
contains any proposed solutions or suggestions. The comment doesn't provide any
specific solution or suggestion for checking the name's validity. Answer(Yes or No):
Yes.

CNN/LSTM/Transformer Prediction:Yes/Yes/Yes

(B)

F I G U R E 7 Two incorrectly labeled instances containing keywords indicative of self-admitted technical debts (SATD). (A) Example
containing the keyword of “Fixme,” (B) Example containing the keyword of “TODO.”

7.3.2 Small models

We focus on selecting basic small models with wide applications rather than state-of-the-art models which are designed
elaborately to solve specific problems and may lead to overfitting. The small models we selected have distinct mechanisms
for capturing text features, such as capturing positional features, understanding long-term dependencies and providing
a comprehensive understanding of context, making them suitable for various aspects of text classification. Therefore, we
believe that our approach can generalize to more extensive text classification tasks.

7.3.3 Data leakage

Data leakage is a potential concern in our approach, due to utilizing ChatGPT, a large language model pretrained on
a vast corpus. Data leakage refers to the possibility that ChatGPT, due to its training on extensive and diverse datasets,
might have been exposed to specific content or patterns that it could later recognize during its application in SATD
detection. This recognition is not due to the model’s learning and generalizing capabilities but rather its prior exposure
to similar data. However, ChatGPT’s effectiveness in zero-shot setting is disastrous through preliminary experiment in
Section 4, which indicates ChatGPT fails to directly memorize these instances of the dataset. Therefore, our results are
still convincing.

7.3.4 Evaluation

The threats to validity also stem from the evaluation metrics system adopted in the experiment. In our work, we uti-
lize three widely used evaluation metrics, namely Precision, Recall, and F1-score. Additionally, we employ statistical
methods, the Wilcoxon signed-rank test70 with Benjamini–Hochberg71 (BH) correction and Cliff’s 𝛿, to assess the sig-
nificance of the differences between our approach and others, providing a comprehensive evaluation of our approach’s
performance.

7.3.5 The language of open projects

Our experiment is conducted on a dataset provided by Maldonado,38 which includes 10 open-source projects developed
in the Java programming language. However, whatever the develop language of projects is, the developer comments are
in natural language form. SATD detection essentially involves classifying comments provided by developers, which is a
task of natural language understanding and classification. Therefore, the results of our approach to classifying natural
language comments provided by developers remains convincing, which can be generalized to projects developed with
other languages.
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24 LI et al.

8 RELATED WORK

8.1 SATD detection

SATD, as a specific form of technical debt, has garnered considerable attention from researchers.21,74–76 In recent years,
researchers have made considerable efforts to solve the problem of SATD detection in the field of software engineer-
ing.38,77–79 Various methods have been proposed to detect SATD, which can be broadly categorized into two main types:
pattern-based methods and machine learning-based methods.30

Potdar and Shihab conducted a manual analysis of Java project comments and pinpointed 62 distinct patterns for
SATD detection.15 Huang et al.80 developed a method based on text mining to identify SATDs. They employed feature
selection techniques to pinpoint useful characteristics for training classifiers. Furthermore, they amalgamated multiple
classifiers, each derived from different source projects, to create a composite classifier. This composite classifier was then
utilized for the detection of SATD annotations within target projects. Yan et al.81 concentrated on detecting SATDs at the
change-level by utilizing features of software changes. They first identified technical debt from the source code comments
found in all versions of the source files. Then, they marked the changes that first introduceed SATD annotations as the
changes introducing technical debt. Following this, they constructed a determination model by extracting 25 features
from software changes. Flisar et al.74 employed pretrained word embedding models to refine and enhance the original
features in SATD identification to improve the identification of SATDs. Although these methods achieve good results in
specific tasks, they have a common disadvantage, requiring a lot of manual operation.

Some SATD detection methods based on machine/deep learning are gradually proposed. Wattanakriengkrai et al.82

combined N-gram IDF and auto-sklearn machine learning to construct an automated model, which was then utilized
for the identification of SATDs. Ren et al.42 proposed a method based on CNNs for SATD detection, introducing a
weighted loss function to address data imbalance issues. Wang et al.29 proposed a hybrid attention-based SATD detection
method, featuring flexible switching word embedding techniques based on project uniqueness and comment features.
Yu et al.30 developed a SATD detection method using Gated Graph Neural Networks, representing the state-of-the-art
in this field. Although these deep learning methods are good at identifying and classifying SATD features, their inter-
pretability is really poor. They cannot provide sentence-level explanations. In addition, these methods are single deep
learning models that do not involve the fusion of large and small models and they do not use large models to improve
interpretability.

8.2 LLMs for software engineering

Large Language Models (LLMs), such as GPT,37 have gradually been applied to the field of software engineering due to
its strong capabilities of natural language generation and understanding. However, most of these studies utilize ChatGPT
for generation tasks, for example, code completion, program repair, test assertion generation, and so on. For example,
Surameery et al.83 explored the roles and limitations of ChatGPT in dealing with programming problems, and they
pointed that combining the benefits of ChatGPT with other debugging tools can better identify and correct bugs. Rah-
maniar et al.84 discussed ChatGPT’s capabilities for code relief in the field of software engineering, and they pointed
out a careful approach to integrating ChatGPT into software development paradigms. Furthermore, building upon stan-
dard few-shot prompting techniques, Nashid et al.62 proposed an approach for creating prompts based on embeddings
or frequency-based few-shot retrieval, and conducted empirical studies with ChatGPT in test assertion generation and
program repair tasks in the field of software engineering. Their results indicated that their method for prompt construc-
tion achieved better performance than fine-tuned models and specific-task models. Few studies have applied ChatGPT
to classification tasks in software engineering. Fu et al.85 utilized ChatGPT to study tasks such as vulnerability prediction
and vulnerability classification, but found that the performance was so poor. A possible reason is that the analysis of code
vulnerabilities is difficult for ChatGPT, whereas it excels at text analysis. Mastropaolo et al.9 utilized LLMs to automati-
cally pay back SATDs, but their work did not refer to SATD detction. Notably, neither of them combines large language
models and small models to apply to software engineering tasks. We are the first to propose the fusion of ChatGPT with
small deep learning models to identify and explain SATDs in the field of software engineering.
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LI et al. 25

8.3 LLMs for text classification

LLMs have also showed significant abilities across considerable natural language understanding tasks, especially text
classification tasks. Leveraging their robust generative abilities, they can provide detailed explanations for these tasks.
Brown et al.37 proposed an approach, In-Context Learning (ICL), which involved concatenating a few demonstrations
with the target input and providing context for the model to learn from. To address the low performance of LLMs in rea-
soning tasks, Wei et al.33 proposed a novel method, few-shot CoT, which represented a sequence of intermediate reasoning
steps in natural language, leading to the desired output. CoT is essentially an extension of the ICL method. Afterwards,
Kojima et al.32 provided a method called zero-shot CoT, successfully generating a plausible reasoning path in a zero-shot
manner and reached the correct answer in a problem where the standard zero-shot approach failed, by adding a sim-
ple prompt, “Let’s think step by step,” to facilitate step-by-step thinking before answering each question. These methods
have been widely applied and studied in text classification tasks. For example, in a series of studies, Zhong et al.35 found
that ChatGPT exhibits performance comparable to BERT in a series of text classification tasks. They investigated the syn-
ergistic potential of ChatGPT with advanced prompting strategies, such as standard few-shot prompts37 (also known as
ICL), few-Shot CoT prompts,33 and zero-Shot CoT prompts,32 with the few-Shot CoT yielding the best performance in
a popular benchmark, GLUE.61 In addition, Xu et al.34 proposed a method, SuperICL, which embeded the prediction
results and confidence levels of fine-tuned models into prompts. Then the prompts were fed into LLMs to boost their per-
formance. Experiments on benchmark GLUE showed that this method could improve performance beyond fine-tuned
models. SATD detection is essentially a text classification task in the field of software engineering. Although these meth-
ods have made good progress in text classification, there has been no research on fusing LLMs with small models to detect
SATDs. We are the first to propose the fusion of ChatGPT with small deep learning models for SATD detection.

9 CONCLUSION

This paper presents a pioneering effort in making full use of the capabilities of ChatGPT for the detection of SATD, set-
ting a precedent in the comparative study with small models. Through our novel FSATD approach, we have successfully
demonstrated the feasibility of fusing the strengths of ChatGPT with small deep learning models to not only accurately
recognize SATDs in open-source software projects but also to provide coherent and reliable explanations for these classi-
fications. Our extensive experiments conducted on a comprehensive dataset reveal that while FSATD shows comparable
performance to state-of-the-art methods in terms of Precision, Recall, and F1-score, it notably excels in offering valuable
insights through explanations, a feature largely absent in existing models. Furthermore, the exploration of various fusion
strategies underscores the adaptability of our approach to different application contexts, highlighting its potential as a
versatile tool in the realm of software engineering. This work not only contributes to the advancement of SATD detection
methodologies but also opens avenues for future research in effectively combining large language models with specialized
smaller models for enhanced performance across various domains in software engineering.
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