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A B S T R A C T

Context: Effort-Aware Defect Prediction (EADP) ranks software modules according to the defect density of
software modules, which allows testers to find more bugs while reviewing a certain amount of Lines Of Code
(LOC). Most existing methods regard the EADP task as a regression or classification problem. Optimizing the
regression loss or classification accuracy might result in poor effort-aware performance.
Objective: Therefore, we propose a method called EALTR to improve the EADP performance by directly
maximizing the Proportion of the found Bugs (PofB@20%) value when inspecting the top 20% LOC.
Method: EALTR uses the linear regression model to build the EADP model, and then employs the composite
differential evolution algorithm to generate a set of coefficient vectors for the linear regression model. Finally,
EALTR selects the coefficient vector that achieves the highest PofB@20% value on the training dataset to
construct the EADP model. To further reduce the Initial False Alarms (IFA) value of EALTR, we propose a
re-ranking strategy in the prediction phase.
Results: Our experimental results on eleven project datasets with 41 releases show that EALTR can find 5.83%–
54.47% more bugs than the baseline methods whose IFA values are less than 10 and the re-ranking strategy
significantly reduces the IFA value by 16.95%.
Conclusion: Our study verifies the effectiveness of directly optimizing the effort-aware metric (i.e., PofB@20%)
to build the EADP model. EALTR is recommended as an effective EADP method, since it can help software
testers find more bugs.
1. Introduction

Software Defect Prediction (SDP) has been concerned by more and
more researchers in recent years [1–9]. The SDP technique predicts
whether the new software modules are faulty or not based on some soft-
ware features, e.g., Lines Of Code (LOC) and code complexity. Accurate
SDP prediction results assist software testers in assigning limited testing
resources by focusing on the predicted faulty modules [10–13] and fault
localization [14–18]. However, the traditional binary classification-
based SDP models are not enough to offer a more practical guide
for software testing, since they cannot differentiate the modules with
different defect densities [19,20]. Obviously, software testers should
allocate different efforts to inspect the modules with different defect
densities. But the modules are considered the same and are assigned
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equal testing resources according to the binary classification-based SDP
models [21,22]. Hence, Mende et al. [23] proposed the Effort-Aware
Defect Prediction (EADP) model to sort software modules by their
defect density. It allows software testers to detect more bugs when
testing a certain number of LOC and allocate testing resources more
effectively [24,25].

1.1. Motivation

Researchers have proposed numerous EADP methods to rank new
software modules based on the defect density, which considers the
EADP task as a regression [26] or classification [19,27,28] problem.
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For example, Kamei et al. [26] proposed the EALR method, which used
the linear regression model to build the relationship between the defect
density and software features and employed the least square method
to minimize the total difference between the actual defect density and
the predicted density. However, the EALR model with higher prediction
accuracy might lead to a worse ranking [29].

Example 1. Assuming that a developed project includes the three
oftware modules, i.e., 𝑀1, 𝑀2, and 𝑀3, whose defect densities are
.3, 0.2, and 0, and LOC are 100, 150, and 50. The regression model A
redicts that the defect densities of the three modules are 0.3, 0.05, and
.1, whereas the regression model B predicts that their defect densities
re 0.6, 0.05, and 0.01. Although the model A achieves a smaller total
ifference between the actual defect density and the predicted density,
he ranking of the three modules according to the predicted densities
y the model B is what the software testers desire for EADP.

The recently proposed CBS+ [27] and EASC [28] methods firstly use
he classification algorithms (i.e., logistic regression and naive Bayes)
o predict the possibility of modules being defective. Then, the methods
uggest software testers first inspect the predicted defective modules in
rder according to the ratio of the predicted defective possibility to LOC
f each module. When there is the remaining testing effort, software
esters can inspect the predicted non-defective modules according to
he ratio of the predicted defective possibility to LOC of each module
ntil the testing resource runs out. In other words, CBS+ and EASC
ainly regard the EADP task as a classification problem.

xample 2. The classifier C predicts that the defective probabilities
f the three modules in Example 1 are 0.55, 0.9, and 0.1, whereas
he classifier D predicts that the defective probabilities are 0.55, 0.3,
nd 0.1. The classifier C achieves higher binary classification accuracy
i.e., predicting the class labels of all three modules correctly), and the
lassifier D wrongly predicts the defect-proneness of 𝑀2. When CBS+
nd EASC use the classifier C to predict the defective possibility of
odules, the predicted ranking of the three modules is 𝑀2, 𝑀1, and
3. But CBS+ and EASC embedding the classifier D can sort the three
odules correctly.

In summary, the existing EADP works considering the EADP task as
regression or classification problem might result in poor effort-aware
erformance.

.2. Our work and contributions

To address the problem, we propose a method called Effort-Aware
earning-To-Rank (EALTR), which regards the EADP task as a ranking
roblem and constructs the EADP model by directly maximizing the
roportion of the found Bugs (PofB@20%) when inspecting the top
0% LOC. Specifically, EALTR uses the linear regression model to
uild the relationship between the defect density and software features.
hen, it employs the composite differential evolution [30] algorithm to
enerate a set of coefficient vectors for the linear regression model by
aximizing the PofB@20% value. Finally, it selects the coefficient vec-

or that achieves the highest PofB@20% value on the training dataset
o construct the linear regression model. In the prediction phase, we
se the linear regression model to predict the defect density of new
oftware modules and sort the modules according to the predicted
alues.

To further reduce the false alarms of EALTR, we propose a re-
anking strategy in the prediction phase. We place the top-ranked
odules whose LOC are less than a threshold at the end of the ranking,

f the module ranked first is non-defective or the Precision@20% value
s less than 0.1 according to EALTR’s predicted results on the training
ataset. We call the EALTR method integrated with the re-ranking
trategy EALTR*.
2

We compare EALTR with the six state-of-the-art EADP methods,
.e., DEJIT [31], ManualUp [32], EALR [26], CBS+ [27], EASC [28],
nd EATT [19]. In addition, we replace Random Forest (RF) and Deep
orest (DF) [33] with their Logistic Regression (LR) and Naive Bayes
NB) classifiers embedded in CBS+ and EASC, and build the EADP
odels (called CBS+(RF) and CBS+(DF)), because RF and DF have

chieved a good SDP performance [27,28,34,35]. The results on 41
ersion datasets indicate that (1) The average IFA values of ManualUp
nd EATT are greater than 10, and software testers are reluctant to
se the EADP models. (2) EALTR improves the average PofB@20%
alues of DEJIT by 5.83%, of CBS+ by 32.97%, of EASC by 54.47%, of
BS+(RF) by 19.02%, of CBS+(DF) by 15.97%, and of EALR by 25.17%,
espectively. (3) The re-ranking strategy can reduce the average IFA
alue of EALTR by 16.95%.

We make the following main contributions:

• We propose the EALTR method to build the EADP model by
directly optimizing the PofB@20% value, which can help software
testers find more bugs when testing a certain amount of LOC.

• We propose the re-ranking strategy to further reduce initial false
alarms of EALTR.

.3. Our extensions

This article is an extended version of our previous work published
n QRS 2021 - Companion [36] by adding the following updates:

(1) We propose EALTR*, which is an extended version of EALTR.
he main difference is that we integrate a re-ranking strategy into
ALTR to reduce the IFA values of EALTR. The proposed strategy places
he top-ranked modules whose LOC are less than a threshold at the end
f the ranking, if the trained EALTR model may have poor performance
n the testing dataset in terms of IFA and Precision@20%. The results
ndicate that the re-ranking strategy can enhance the performance of
ALTR in terms of IFA and Precision@20%.

(2) We further discuss the application of genetic algorithms to SDP
n the related work.

(3) We perform a comprehensive comparison of EALTR against
ore baseline methods, including DEJIT, ManualUp, EALR, and EATT.

n our previous study, we compared EALTR with only two methods
i.e., CBS+ and EASC). In this article, we firstly compare EALTR with
EJIT, which also uses differential evolution algorithm, but its op-

imized metric is Density-Percentile-Average (DPA) [31]. Then, we
ompare it with EALR optimized by the least square method to validate
hether directly optimizing the PofB@20% value can build better
ADP models. After that, we compare it with CBS+, EASC, and EATT,
hich regard the EADP task as a classification task. Finally, we com-
are it with an unsupervised method ManualUp, which achieved the
est performance in terms of Recall@20% and PofB@20% in previous
tudies [37].

(4) We discuss the execution time of EALTR and EALTR*, since they
se the time-consuming genetic algorithm to construct the EADP model.
he results show that the time cost is acceptable.

(5) We investigate the performance of EATLR and EALTR* when
esting the top 10% LOC, since testing resources may be able to inspect
nly the first 10% LOC. The experimental results show that EALTR and
ALTR* still can find more bugs.

(6) We discuss the impact of two parameters on EALTR*.
(7) We further investigate and discuss the performance of EALTR

nd EALTR* in cross-project settings. The experimental results on 11
ross-project training and testing pairs still show that EALTR and
ALTR* outperform the baseline methods.
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Fig. 1. The process of the EALTR model.

1.4. Organization

The rest of this paper is organized as follows. In Section 2, we
describe our EALTR method and the re-ranking strategy. Sections 3 and
4 present the experimental setup and the experimental results, respec-
tively. Section 5 discusses the impact of parameters and experimental
scenario on EALTR and the potential threats to validity. Section 6
introduces the related work in EADP. Section 7 draws the conclusion.

2. The proposed approach

2.1. Overview

The EADP process contains the following five steps as displayed
in Fig. 1. In the first step, the software modules are extracted from
the historical software repository. The software features x 𝑖 and bug
number y 𝑖 are then extracted in the second step. Therefore, a software
moduleM 𝑖 could be denoted asM 𝑖 =(x 𝑖, y 𝑖). The whole training dataset
containing n modules could be denoted as

𝐷 =
{

𝑀1,𝑀2,… ,𝑀𝑛
}

. (1)

In the third step, the EALTR model is constructed based on D, which is
a mixed set of defective and non-defective modules. Since Weyukeret
et al. [38] indicated that linear models and additive models are good
and realistic for SDP, we also use the linear regression model to build
the EADP model:

𝑦 = 𝑓 (𝛼, 𝐱) =
𝑑
∑

𝑖=1
𝛼𝑗𝑥𝑗 , (2)

where x𝑗 is the 𝑗th software feature value of the software module
with d features, y is the predicted defect density, and the parameter
𝛼 are obtained from the training software modules with known defect
density. After we determine the parameter 𝛼, our EALTR model is
constructed and can be used for prediction. In the fourth step, we
extract the same features from new software modules. In the last step,
we employ the trained EALTR model to predict the defect densities
of the new software modules, then sort the modules according to the
predicted values. For example, the predicted defect densities of the
three new modules (i.e., M𝑎, M𝑏, and M 𝑐) are y𝑎, y𝑏, and y𝑐 , and y𝑏 >
y𝑎 > y𝑐 . Therefore, the final ranking is M𝑏, M𝑎, and M 𝑐 .

2.2. Model solving

To obtain the parameter 𝛼, researchers [38,39] usually use the least
square method to minimize the total difference between the actual
defect density and the predicted density. However, the trained EADP
model optimized by the least square method may not achieve a good
ranking evaluated by the EADP evaluation metrics (e.g., PofB@20%) as
shown in Example 1. Since the primary objective of EADP is to detect
more bugs when testing a certain number of LOC, we build the EALTR
model by directly optimizing the effort-aware metric (i.e., PofB@20%).
3

Since the effort-aware metrics of EADP models are usually non-
differentiable, we use the genetic algorithm to obtain the parameter
𝛼. In particular, we adopt the composite differential evolution algo-
rithm [30], which has been widely used in the software engineering
research area and shows good performance [29]. Algorithm 1 shows the
pseudocode of using the composite differential evolution algorithm to
obtain the parameter 𝛼 of the linear model. We firstly create m solutions
at random to compose 𝑃0, and calculate the PofB@20% value of each
solution in 𝑃0 (Lines 1–2). Then, we perform 𝑡𝑚𝑎𝑥 iterations to evolve
the population. In each iteration, we conduct the selection, crossover,
and mutation operations for each solution in the current population to
create the new population (Line 5). Next, we calculate the PofB@20%
value of each solution in the new population (Line 6). Finally, we return
the best solution 𝛼 that achieves the highest PofB@20% value (Line 9).
We set m = 100 and 𝑡𝑚𝑎𝑥 = 100, because preliminary experiments show
higher m and 𝑡𝑚𝑎𝑥 values do not significantly promote the performance
of EALTR.

Algorithm 1: Estimation of 𝛼
input: Training dataset, D

Objective function, PofB@20%
Number of solutions in a population, m
Number of maximal generation, 𝑡𝑚𝑎𝑥

output: 𝛼
1: 𝑃0=m generated solutions randomly;
2: Calculate the PofB@20% value of each solution in 𝑃0;
3: Set the generation number t=1;
4: while t<𝑡𝑚𝑎𝑥 do
5: For each solution in 𝑃𝑡−1, do selection, crossover, and
mutation to generate new population 𝑃𝑡;
6: Calculate the PofB@20% value of each solution in 𝑃𝑡;
7: t=t+1;
8: end while
9: return The best solution 𝛼;

2.3. Re-ranking

The experimental results in Section 4.1 show EALTR does not
achieve the best performance in terms of IFA. If the top-ranked mod-
ules recommended by the EADP model are all actually non-defective,
software testers would stop inspecting subsequent predicted defective
modules. Therefore, we propose a re-ranking strategy to further re-
duce the IFA value, and call the EALTR method integrated with the
re-ranking strategy EALTR*.

Specifically, we consider the trained EALTR model may have poor
performance on the testing dataset in terms of IFA, if the module
ranked first is non-defective or the Precision@20% value is less than
0.1 according to its predicted results on the training dataset. Then, we
sort the non-defective modules in the training dataset by LOC from
small to large, and then select the LOC of the module at the position of
proportion p as the threshold. Next, we use the trained EALTR model
to predict the ranking of the modules in the testing dataset. If the LOC
of the top-ranked q modules are less than the threshold, the modules
are considered to be non-defective. Finally, the modules are placed at
the end of the ranking.

We show a simple example in Fig. 2. Suppose the module ranked
first is non-defective or the Precision@20% value of the trained EALTR
model on the training dataset is less than 0.1, and p = 1/2, that is, the
median LOC value of all non-defective modules in the training dataset
(110) is set as the threshold. Therefore, M𝑔 and M 𝑒 in the testing
dataset are placed at the end of the ranking.
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Fig. 2. The example of the re-ranking strategy.

3. Experimental setup

3.1. Datasets

We employ the more practical cross-version validation to conduct
the experiments. In addition, since the EALTR method aims to find
more bugs, we only select the defect datasets with the information of
bug numbers. Therefore, we use 41 versions of 11 software projects
from the PROMISE repository [40]. The detailed information of the
datasets is displayed in Table 1, where #Modules is the number of
modules in the dataset, #Bugs is the total number of bugs, %Faulty
is the percentage of faulty modules, and Avg is the average number of
bugs. The datasets contain 20 software features. Due to the space limit,
please refer to [41] for detailed information.

3.2. Evaluation metrics

We restrict our effort to 20% of the total effort in our study,
i.e., inspecting 20% LOC. The number 20% is commonly used as a
cutoff value to set the effort required for the software testing [37,42–
44]. Suppose there is a dataset with M modules, N bugs, and P LOC.
Among the M modules, K modules are defective. When testing 20%
OC, we have inspected m modules containing n bugs. Among the m

modules, k modules are defective. In addition, when testers detect the
first actual defective module, they have inspected m’ modules. We use
the following evaluation metrics in the experiments, which are also
widely used in the fields of artificial intelligence [45–49] and software
engineering [21,50–54].

Recall@20% is the proportion of the inspected actual defective
modules among all the actual defective modules in the dataset. A higher
Recall@20% value denotes that more defective software modules could
be found.

𝑅𝑒𝑐𝑎𝑙𝑙@20% = 𝑘∕𝐾 (3)

PofB@20% is the Proportion of the found Bugs among all bugs
in the dataset. A higher PofB@20% value indicates that more bugs
could be detected. PofB@20% is equal to Recall@20%, when every
defective module only contains one bug. Previous studies [27,55] de-
noted PofB@20% as Recall@20%, since they regarded the class label
of modules as the number of defects.

𝑃𝑜𝑓𝐵@20% = 𝑛∕𝑁 (4)

Precision@20% is the proportion of the inspected actual defective
modules among all the inspected modules. A lower Precision@20%
value denotes that software testers will meet more false alarms, thus
affecting their confidence in the EADP model negatively [27].

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@20% = 𝑘∕𝑚 (5)

PMI@20% is the Proportion of Module Inspected. A higher
MI@20% value indicates that under the same number of LOC (i.e., 20%
OC) to inspect, software testers need to inspect more modules.

𝑀𝐼@20% = 𝑚∕𝑀 (6)
4

Table 1
The details of the experimental datasets.

Project Version Module #Bugs %Faulty Avg

Ant

1.3 125 33 16 1.65
1.4 178 47 22.5 1.18
1.5 293 35 10.9 1.09
1.6 351 184 26.2 2
1.7 745 338 22.3 2.04

Camel

1.0 339 14 3.8 1.08
1.2 608 522 35.5 2.42
1.4 872 335 16.6 2.31
1.6 965 500 19.5 2.66

Ivy
1.1 111 233 56.8 3.7
1.4 241 18 6.6 1.12
2.0 352 56 11.4 1.4

Jedit

3.2 372 382 33.1 4.24
4.0 306 226 24.5 3.01
4.1 312 217 25.3 2.75
4.2 367 106 13.1 2.21
4.3 492 12 2.2 1.09

Log4j
1.0 135 61 25.2 1.79
1.1 109 86 33.9 2.32
1.2 205 498 92.2 2.63

Lucene
2.0 195 268 46.7 2.95
2.2 247 414 58.3 2.88
2.4 340 632 59.7 3.11

Poi

1.5 237 342 59.5 2.43
2.0 314 39 11.8 1.05
2.5 385 496 64.4 2
3.0 442 500 63.6 1.78

Synapse
1.0 157 21 10.2 1.31
1.1 222 99 27 1.65
1.2 256 145 33.6 1.69

Velocity
1.4 196 210 75 1.43
1.5 214 331 66.4 2.33
1.6 229 190 34.1 2.44

Xalan

2.4 723 156 15.2 1.42
2.5 803 531 48.2 1.37
2.6 885 625 46.4 1.52
2.7 909 1213 98.8 1.35

Xerces

init 162 167 47.5 2.17
1.2 440 115 16.1 1.62
1.3 453 193 15.2 2.8
1.4 588 1596 74.3 3.65

IFA is the number of Initial False Alarms encountered before soft-
ware testers detect the first bug. A higher IFA value denotes that
software testers require to inspect more modules to find the first bug.

𝐼𝐹𝐴 = 𝑚′ (7)

Popt is based on the cumulative lift chart shown in Fig. 3. In the
chart, the x-axis is the cumulative percentage of LOC to inspect, and
the y-axis is the cumulative percentage of found bugs. There are three
curves in the chart, corresponding to the prediction model, the optimal
model, and the worst model. Software modules are ranked by the
decreasing predicted defect densities according to the prediction model,
software modules are ranked by the decreasing actual defect densities
according to the optimal model, and software modules are ranked by
the increasing actual defect densities according to the worst model. Popt
is computed as follows:

𝑃𝑜𝑝𝑡 =
Area(prediction) − Area(worst)

Area(optimal) − Area(worst) (8)

where Area() represents the area under the corresponding curve. A
larger Popt value denotes a smaller difference between the prediction
model and the optimal model. Different from the above evaluation
measures, Popt evaluates the global ranking of the predicted software

modules.



Information and Software Technology 165 (2024) 107250X. Yu et al.

3

f

e
I
t
b

d
m
n
a
m

d
s
a
e
C
p

t
t
n
c
w

a
o

t
l
t
m
p
w
E

3

e

Fig. 3. A cumulative lift chart.
B
s

4

f

4

E
t
C

m
5
o
i

.3. Baseline methods

To verify the effectiveness of EALTR, we compare it with the
ollowing state-of-the-art EADP methods.

(1) DEJIT [31]: It also uses a differential evolution algorithm but
mploys the DPA metric as the optimization metric for the algorithm.
n this paper, we use the same experimental conditions as EALTR
o implement DEJIT, in order to compare the differences in results
etween optimizing PofB@20% and DPA metrics.

(2) CBS+ [27]: It firstly identifies potentially defective and non-
efective software modules using the trained Logistic Regression (LR)
odel. Then, it separately sorts the predicted defective modules and
on-defective modules by the ratio between the predicted defect prob-
bility and LOC. Finally, it appends the sorted predicted non-defective
odules at the end of the sorted defective ones.

(3) EASC [28]: It has the same procedure as CBS+. The only
ifference is that EASC employs Naive Bayes (NB) to predict whether
oftware modules are defective, while CBS+ uses logistic regression. In
ddition, we replace RF and DF [33] with their LR and NB classifiers
mbedded in CBS+ and EASC, and construct EADP models (called
BS+(RF) and CBS+(DF)), because RF and DF have achieved good
erformance in SDP [28,34,56].

(4) EATT [19]: It firstly employs the tri-training method to train
hree classifiers. Then, it uses the majority voting strategy to calculate
he defect probability of a new software module. Finally, it ranks all
ew modules by the ratio between the defect probability and LOC. We
ompare EALTR with CBS+, EASC, CBS+(RF), CBS+(DF), and EATT,
hich regard the EADP task as a classification task.

(5) ManualUp [32]: It considers that the modules with fewer LOC
re more likely to be defective, so it sorts the modules in ascending
rder of LOC.

(6) EALR [26]: It assumes that there is a linear relationship between
he defect density and the feature values. Therefore, it builds the same
inear regression model as EALTR, but uses the least squares method
o obtain the parameter solution with the optimization objective of
inimizing the total difference between actual defect densities and
redicted defect densities. We compare EALTR with EALR to validate
hether directly optimizing the PofB@20% value can build better
ADP models.

.4. Experimental procedure

We employ the more practical cross-version validation [57] in the
xperiments. For example, we utilize Ant 1.3 as the training data and
5

o

Fig. 4. The boxplot of the Precision@20% values of the nine methods. (The red boxplot
indicates EALTR significantly outperforms the corresponding method, while the green
boxplot indicates EALTR significantly performs worse than the corresponding method.).

Ant 1.4 as the testing data. We run all EADP methods 20 times on
each training and testing pair and calculate the average value to avoid
sample biases.

The Wilcoxon signed-rank test [58] is used in our experiments to
analyze the significance of the difference between two different EADP
methods on all testing datasets. Because multiple comparisons with
EALTR are performed, the Benjamini–Hochberg (BH) [59] procedure
is also used to adjust p-values in the experiments. If the 𝑝-value after

H correction is less than 0.05, it indicates that there is a statistically
ignificant difference between the two methods.

. Experimental results

We evaluate the performance of our EALTR model by answering the
ollowing three Research Questions (RQs).

.1. RQ1: Does EALTR outperform state-of-the-art EADP methods?

Motivations: We propose the EALTR method, which constructs the
ADP model by directly optimizing the PofB@20% value. To verify
he superiority of EALTR, we compare it with DEJIT, CBS+, EASC,
BS+(RF), CBS+(DF), ManualUp, EALR, and EATT.
Methods: We analyze the performance results of the nine EADP

ethods in terms of the six evaluation metrics. Tables 2, 3, 4, and
present the detailed IFA, PofB@20%, Popt, and Recall@20% values

n each cross-version pair. The bold values in each row in the tables
ndicate that the corresponding method obtains the best performance
n the cross-version pair. The row W/D/L (Win/Draw/Loss) indicates
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Table 2
The IFA value of the nine methods on each cross-version experiment when inspecting the top 20% LOC.

Cross-version EALTR DEJIT CBS+ EASC CBS+(RF) CBS+(DF) ManualUp EALR EATT

Ant1.3–1.4 7.9 1.65 2 4 1.35 1.3 1 2 1.4
Ant1.4–1.5 10.1 17.15 3 47 22.45 16.65 39 71 43.2
Ant1.5–1.6 0.3 0 0 17 3.1 2.7 54 3 49.55
Ant1.6–1.7 0.6 0 5 8 5.75 4.8 59 0 55.8

Camel1.0–1.2 0 0 1 2 2.5 2.4 4 0 13.45
Camel1.2–1.4 0.75 8.7 3 5 15.5 11.15 71 0 8.55
Camel1.4–1.6 0 0 0 3 4.65 1.7 7 0 24

Ivy1.1–1.4 15.35 21.75 1 15 0.65 4.1 17 35 18.25
Ivy1.4–2.0 19.75 0.8 39 9 12.2 12.75 38 1 36.45

Jedit3.2–4.0 0.3 0.15 7 6 3.1 2.3 15 7 17.85
Jedit4.0–4.1 0.05 0.25 1 6 3 1.75 8 0 13.3
Jedit4.1–4.2 0.45 5.95 8 7 6.2 1.7 32 27 31.95
Jedit4.2–4.3 1.25 1.95 8 21 4.95 4.2 66 66 71.9

Log4j1.0–1.1 0 0 3 3 2.95 2.95 3 2 2.5
Log4j1.1–1.2 0 0 0 0 0 0 0 0 0

Lucene2.0–2.2 0.05 1 2 1 1 0.95 2 0 2.5
Lucene2.2–2.4 0 0 0 0 1.3 1.35 1 1 0.45

Poi1.5–2.0 11.05 16.45 3 5 13.25 11.95 23 2 25.4
Poi2.0–2.5 0.3 0 0 1 0.95 0.75 17 0 19
Poi2.5–3.0 4.2 1.4 3 2 2.05 0.5 1 17 7.4

Synapse1.0–1.1 1 4.05 1 4 2.4 0.75 1 0 1.3
Synapse1.1–1.2 0.15 0 4 0 3.9 4.4 9 5 9.55

Velocity1.4–1.5 0.05 0 0 0 0 0 0 0 2.05
Velocity1.5–1.6 6.4 10.75 0 1 10 10.15 13 13 17.15

Xalan2.4–2.5 1.55 0 0 1 0 0.15 4 0 7.7
Xalan2.5–2.6 7 20.15 11 2 3.6 3.7 6 2 11.9
Xalan2.6–2.7 0 0 0 0 0 0 0 0 0

Xerces init-1.2 8.1 1.4 1 10 1.55 1.45 2 0 1.55
Xerces1.2–1.3 14.45 9.75 1 3 6.75 11.9 0 8 18.8
Xerces1.3–1.4 0.6 0.05 0 0 0 0 3 0 0.25

Average 3.723 4.112 3.567 6.100 4.503 3.948 16.533 8.733 17.105
W/D/L 11/6/13 12/5/13 15/3/12 18/2/10 17/2/11 21/3/6 11/4/15 25/2/3
p-value 0.694 0.968 0.612 0.529 0.746 0.005 0.745 0.000
the number of cross-version pairs, on which EALTR achieves a better,
equal, or worse performance than other methods. Figs. 4 and 5 show
the distribution of the Precision@20% and PMI@20% values of the nine
methods across all cross-version pairs, and Table 6 presents the average
Precision@20% and PMI@20% values of the nine methods.

Results: From these tables and figures, we have the following
observations:

(1) As shown in Table 2, the average IFA values of ManualUp and
EATT are greater than 10, and it is generally not acceptable that the top
10 software modules recommended by EADP models are all actually
non-defective [27]. The adjusted p-values indicate there is a significant
difference between EALTR and ManualUp, EATT. Except for the above
two methods, EALTR obtains the second-best average performance
among the nine methods, and CBS+ achieves the best performance.
EALTR wins DEJIT, EASC, CBS+(RF), CBS+(DF), ManualUp, EALR and
EATT on 11, 15, 18, 17, 21, 11, and 25 datasets respectively.

(2) As shown in Table 3, except for ManualUp and EATT whose
IFA values are greater than 10, EALTR obtains the best average per-
formance in terms of PofB@20%. EALTR wins DEJIT, CBS+, EASC,
CBS+(RF), CBS+(DF), and EALR on 18, 23, 26, 22, 21, and 23 datasets,
respectively. EALTR improves the average PofB@20% values of DEJIT
by 5.83%, of CBS+ by 32.97%, of EASC by 54.47%, of CBS+(RF) by
19.02%, of CBS+(DF) by 15.97%, and of EALR by 25.17%, respectively.
According to the adjusted p-values, EALTR significantly outperforms
CBS+, EASC, CBS+(RF), CBS+(DF), and EALR. DEJIT employs the
same differential evolution algorithm but is with optimization of the
DPA metric, and there is no statistically significant difference between
it and EALTR. However, EALTR exhibits superior performance and
outperforms DEJIT on the majority of datasets.

(3) As shown in Table 4, except for ManualUp and EATT, EALTR
obtains the best average Popt value and wins the other six baseline
6

Fig. 5. The boxplot of the PMI@20% values of the nine methods. (The red boxplot
indicates EALTR significantly outperforms the corresponding method, while the green
boxplot indicates EALTR significantly performs worse than the corresponding method.).

methods on 17, 20, 26, 20, 21, and 21 datasets, respectively. EALTR
significantly performs better than CBS+, EASC, CBS+(RF), CBS+(DF),
and EALR according to the adjusted p-values, and can improve their
average value by 10.77%, 37.73%, 10.05%, 10.05%, and 12.60%,
respectively. Compared with DEJIT, EALTR also demonstrates superior
average values, exhibiting an enhancement of 2.26%.

(4) As shown in Table 5, except for ManualUp and EATT, DEJIT
obtains the best average value on Recall@20%, but there is no signifi-
cant difference between it and EALTR, with an average performance
difference of only 0.77%. In comparison to the other five baseline
methods, EALTR outperforms them on 20, 22, 19, 18, and 19 datasets,
respectively. EALTR improves the average Recall@20% value of CBS+
by 37.50%, of EASC by 59.75%, of CBS+(RF) by 21.84%, of CBS+(DF)
by 19.94%, of EALR by 27.91%, respectively. The adjusted p-values
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Table 3
The PofB@20% value of the nine methods on each cross-version experiment when inspecting the top 20% LOC.

Cross-version EALTR DEJIT CBS+ EASC CBS+(RF) CBS+(DF) ManualUp EALR EATT

Ant1.3–1.4 0.226 0.112 0.128 0.234 0.163 0.203 0.468 0.043 0.441
Ant1.4–1.5 0.280 0.277 0.314 0.229 0.254 0.309 0.286 0.343 0.254
Ant1.5–1.6 0.230 0.230 0.185 0.234 0.168 0.192 0.152 0.141 0.161
Ant1.6–1.7 0.242 0.243 0.254 0.195 0.243 0.245 0.175 0.281 0.186

Camel1.0–1.2 0.250 0.191 0.272 0.186 0.257 0.224 0.410 0.255 0.357
Camel1.2–1.4 0.329 0.320 0.236 0.263 0.465 0.455 0.331 0.301 0.326
Camel1.4–1.6 0.383 0.328 0.316 0.288 0.390 0.391 0.370 0.306 0.366

Ivy1.1–1.4 0.325 0.253 0.222 0.222 0.292 0.300 0.278 0.222 0.306
Ivy1.4–2.0 0.229 0.266 0.107 0.286 0.208 0.192 0.196 0.250 0.209

Jedit3.2–4.0 0.340 0.349 0.257 0.261 0.313 0.313 0.199 0.292 0.264
Jedit4.0–4.1 0.331 0.373 0.309 0.341 0.366 0.354 0.235 0.313 0.302
Jedit4.1–4.2 0.335 0.275 0.198 0.245 0.245 0.242 0.160 0.226 0.231
Jedit4.2–4.3 0.471 0.279 0.250 0.167 0.396 0.400 0.417 0.167 0.508

Log4j1.0–1.1 0.420 0.390 0.360 0.407 0.350 0.391 0.163 0.453 0.297
Log4j1.1–1.2 0.143 0.371 0.175 0.205 0.175 0.187 0.546 0.319 0.475

Lucene2.0–2.2 0.355 0.362 0.254 0.215 0.277 0.237 0.386 0.309 0.364
Lucene2.2–2.4 0.304 0.408 0.381 0.304 0.409 0.411 0.473 0.373 0.479

Poi1.5–2.0 0.377 0.269 0.231 0.205 0.264 0.286 0.462 0.359 0.301
Poi2.0–2.5 0.280 0.244 0.101 0.107 0.162 0.148 0.494 0.143 0.318
Poi2.5–3.0 0.404 0.322 0.392 0.174 0.345 0.347 0.422 0.306 0.387

Synapse1.0–1.1 0.247 0.253 0.253 0.232 0.246 0.276 0.273 0.202 0.307
Synapse1.1–1.2 0.307 0.361 0.228 0.186 0.234 0.219 0.310 0.303 0.274

Velocity1.4–1.5 0.512 0.461 0.535 0.492 0.519 0.524 0.480 0.181 0.503
Velocity1.5–1.6 0.467 0.401 0.426 0.237 0.409 0.383 0.458 0.284 0.459

Xalan2.4–2.5 0.514 0.429 0.171 0.147 0.161 0.172 0.539 0.405 0.541
Xalan2.5–2.6 0.427 0.433 0.317 0.269 0.397 0.387 0.474 0.307 0.469
Xalan2.6–2.7 0.583 0.553 0.261 0.203 0.341 0.334 0.635 0.378 0.620

Xerces init-1.2 0.693 0.695 0.652 0.148 0.682 0.636 0.730 0.591 0.787
Xerces1.2–1.3 0.436 0.399 0.176 0.166 0.220 0.418 0.466 0.326 0.463
Xerces1.3–1.4 0.409 0.432 0.215 0.216 0.213 0.213 0.451 0.327 0.464

Average 0.363 0.343 0.273 0.235 0.305 0.313 0.381 0.290 0.381
W/D/L 18/0/12 23/0/7 26/0/4 22/0/8 21/0/9 12/0/18 23/0/7 16/0/14
p-value 0.100 0.000 0.000 0.006 0.007 0.572 0.003 0.637
Table 4
The Popt value of the nine methods on each cross-version experiment.

Cross-version EALTR DEJIT CBS+ EASC CBS+(RF) CBS+(DF) ManualUp EALR EATT

Ant1.3–1.4 0.621 0.468 0.535 0.380 0.488 0.540 0.759 0.388 0.758
Ant1.4–1.5 0.587 0.594 0.696 0.604 0.629 0.663 0.559 0.624 0.573
Ant1.5–1.6 0.565 0.555 0.589 0.560 0.552 0.560 0.493 0.481 0.506
Ant1.6–1.7 0.563 0.589 0.609 0.537 0.592 0.588 0.452 0.607 0.464

Camel1.0–1.2 0.536 0.481 0.570 0.483 0.498 0.470 0.650 0.585 0.654
Camel1.2–1.4 0.564 0.589 0.601 0.542 0.749 0.742 0.568 0.546 0.585
Camel1.4–1.6 0.630 0.600 0.587 0.522 0.709 0.703 0.623 0.597 0.636

Ivy1.1–1.4 0.583 0.535 0.503 0.509 0.532 0.536 0.580 0.487 0.578
Ivy1.4–2.0 0.518 0.554 0.408 0.501 0.512 0.500 0.521 0.542 0.522

Jedit3.2–4.0 0.629 0.631 0.716 0.673 0.772 0.763 0.612 0.637 0.623
Jedit4.0–4.1 0.629 0.709 0.739 0.595 0.783 0.770 0.639 0.614 0.656
Jedit4.1–4.2 0.641 0.543 0.618 0.600 0.653 0.640 0.507 0.558 0.522
Jedit4.2–4.3 0.736 0.678 0.730 0.406 0.759 0.727 0.672 0.625 0.699

Log4j1.0–1.1 0.806 0.745 0.729 0.727 0.679 0.721 0.481 0.723 0.550
Log4j1.1–1.2 0.589 0.759 0.386 0.321 0.392 0.410 0.913 0.670 0.910

Lucene2.0–2.2 0.735 0.707 0.560 0.472 0.610 0.576 0.677 0.577 0.683
Lucene2.2–2.4 0.715 0.745 0.676 0.526 0.653 0.648 0.789 0.663 0.797

Poi1.5–2.0 0.654 0.592 0.503 0.382 0.515 0.493 0.669 0.657 0.643
Poi2.0–2.5 0.739 0.688 0.379 0.215 0.326 0.342 0.837 0.526 0.811
Poi2.5–3.0 0.729 0.673 0.666 0.389 0.648 0.656 0.750 0.638 0.752

Synapse1.0–1.1 0.543 0.565 0.567 0.568 0.521 0.580 0.542 0.550 0.559
Synapse1.1–1.2 0.651 0.664 0.537 0.445 0.579 0.577 0.593 0.605 0.608

Velocity1.4–1.5 0.872 0.853 0.884 0.877 0.885 0.884 0.886 0.408 0.882
Velocity1.5–1.6 0.763 0.689 0.736 0.398 0.730 0.694 0.784 0.450 0.786

Xalan2.4–2.5 0.811 0.759 0.683 0.266 0.545 0.579 0.832 0.726 0.836
Xalan2.5–2.6 0.762 0.767 0.574 0.675 0.662 0.646 0.793 0.666 0.795
Xalan2.6–2.7 0.934 0.921 0.392 0.257 0.491 0.483 0.970 0.762 0.969

(continued on next page)
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Table 4 (continued).
Cross-version EALTR DEJIT CBS+ EASC CBS+(RF) CBS+(DF) ManualUp EALR EATT

Xerces init-1.2 0.903 0.916 0.832 0.415 0.830 0.802 0.850 0.833 0.854
Xerces1.2–1.3 0.600 0.569 0.738 0.546 0.650 0.661 0.646 0.715 0.649
Xerces1.3–1.4 0.747 0.768 0.637 0.402 0.572 0.569 0.804 0.636 0.809

Average 0.679 0.664 0.613 0.493 0.617 0.617 0.682 0.603 0.689
W/D/L 17/0/13 20/0/10 26/0/4 20/0/10 21/0/9 13/0/17 21/0/9 12/0/18
p-value 0.115 0.049 0.000 0.051 0.051 0.688 0.006 0.463
Table 5
The Recall@20% value of the nine methods on each cross-version experiment when inspecting the top 20% LOC.

Cross-version EALTR DEJIT CBS+ EASC CBS+(RF) CBS+(DF) ManualUp EALR EATT

Ant1.3–1.4 0.244 0.079 0.100 0.200 0.175 0.188 0.525 0.050 0.476
Ant1.4–1.5 0.303 0.303 0.313 0.250 0.272 0.323 0.313 0.313 0.278
Ant1.5–1.6 0.229 0.236 0.185 0.283 0.140 0.158 0.261 0.120 0.257
Ant1.6–1.7 0.147 0.127 0.235 0.229 0.252 0.252 0.277 0.175 0.276

Camel1.0–1.2 0.242 0.137 0.366 0.148 0.236 0.236 0.602 0.194 0.485
Camel1.2–1.4 0.440 0.431 0.200 0.228 0.521 0.493 0.462 0.331 0.448
Camel1.4–1.6 0.501 0.358 0.303 0.176 0.252 0.274 0.537 0.298 0.505

Ivy1.1–1.4 0.366 0.284 0.250 0.250 0.328 0.338 0.313 0.250 0.344
Ivy1.4–2.0 0.263 0.280 0.125 0.200 0.226 0.211 0.250 0.300 0.260

Jedit3.2–4.0 0.325 0.488 0.347 0.373 0.457 0.455 0.427 0.347 0.485
Jedit4.0–4.1 0.188 0.308 0.329 0.342 0.398 0.365 0.380 0.266 0.441
Jedit4.1–4.2 0.358 0.392 0.333 0.354 0.398 0.382 0.271 0.313 0.348
Jedit4.2–4.3 0.432 0.255 0.273 0.182 0.341 0.368 0.455 0.182 0.477

Log4j1.0–1.1 0.268 0.247 0.324 0.351 0.331 0.347 0.243 0.324 0.338
Log4j1.1–1.2 0.119 0.399 0.148 0.175 0.157 0.147 0.614 0.354 0.533

Lucene2.0–2.2 0.292 0.478 0.319 0.257 0.344 0.293 0.597 0.319 0.562
Lucene2.2–2.4 0.265 0.468 0.443 0.261 0.444 0.451 0.616 0.429 0.595

Poi1.5–2.0 0.381 0.284 0.243 0.216 0.269 0.276 0.459 0.378 0.316
Poi2.0–2.5 0.326 0.270 0.040 0.073 0.104 0.084 0.569 0.137 0.405
Poi2.5–3.0 0.538 0.466 0.509 0.181 0.459 0.456 0.544 0.431 0.528

Synapse1.0–1.1 0.165 0.219 0.150 0.300 0.183 0.256 0.383 0.183 0.404
Synapse1.1–1.2 0.263 0.355 0.198 0.209 0.198 0.187 0.349 0.314 0.324

Velocity1.4–1.5 0.608 0.643 0.683 0.683 0.688 0.689 0.683 0.275 0.664
Velocity1.5–1.6 0.567 0.592 0.551 0.308 0.547 0.533 0.615 0.321 0.599

Xalan2.4–2.5 0.595 0.495 0.106 0.129 0.117 0.124 0.628 0.470 0.610
Xalan2.5–2.6 0.481 0.506 0.297 0.241 0.436 0.425 0.545 0.365 0.538
Xalan2.6–2.7 0.678 0.655 0.228 0.160 0.312 0.304 0.714 0.410 0.695

Xerces init-1.2 0.713 0.716 0.634 0.141 0.653 0.603 0.761 0.577 0.802
Xerces1.2–1.3 0.629 0.559 0.072 0.203 0.156 0.338 0.652 0.217 0.654
Xerces1.3–1.4 0.633 0.617 0.092 0.121 0.096 0.087 0.762 0.382 0.760

Average 0.385 0.388 0.280 0.241 0.316 0.321 0.494 0.301 0.480
W/D/L 15/1/14 20/0/10 22/0/8 19/0/11 18/0/12 4/0/26 19/0/11 6/0/24
p-value 0.888 0.020 0.009 0.181 0.162 0.001 0.016 0.000
Table 6
The average Precision@20% and PMI@20% values of the nine methods.

Metrics EALTR DEJIT CBS+ EASC CBS+(RF) CBS+(DF) ManualUp EALR EATT

Precision@20% 0.395 0.378 0.502 0.507 0.480 0.476 0.292 0.326 0.299
PMI@20% 0.428 0.459 0.245 0.170 0.246 0.263 0.687 0.350 0.643
indicate there is a significant difference between EALTR and CBS+,
EASC, and EALR.

(5) As shown in Figs. 4 and 5 and Table 6, EASC achieves the high-
est median Precision@20% value and the lowest median PMI@20%
alue. CBS+, EASC, CBS+(RF), and CBS+(DF) significantly perform
etter than EALTR in term of Precision@20%, while EALTR signifi-
antly outperforms ManualUp, EALR, and EATT. In addition, EALTR
equires software testers to inspect significantly more modules than
BS+, EASC, CBS+(RF), CBS+(DF), and EALR. But the Precision@20%
nd PMI@20% values of EALTR are acceptable.

(6) ManualUp and EATT perform the worst in terms of IFA, Pre-
ision@20%, and PMI@20%. ManualUp sorts the modules in the as-
ending order of LOC and EATT sorts the modules in the descending
rder of the ratio between the predicted defective probability and
OC. In other words, they are likely to put the modules with fewer
8

OC at the top of the ranking. Therefore, software testers need to test
more modules (higher PMI@20% value) when inspecting the top 20%
LOC. In addition, the modules with fewer LOC are likely to be non-
defective, so the IFA values of ManualUp and EATT are high, and the
Precision@20% values are low.

(7) Both DEJIT and EALTR employ the differential evolution algo-
rithm to construct linear models. The fundamental distinction between
the two lies in the optimization metrics utilized when searching for op-
timal model parameters. The EALTR model concentrates on identifying
a greater number of bugs within constrained resources and introduces
the PofB@20% metric. Conversely, DEJIT proposes the DPA metric,
which is based on the concept of Fault-Percentile-Average (FPA) [29]
as a global ranking criterion. In this experiment, upon examining
their experimental results across six metrics and 30 cross-version pairs
individually, with the exception of nearly identical performance in
Recall@20%, EALTR demonstrates more expressive average results

than DEJIT across all other metrics, particularly outperforming in 18
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and 17 cross-version pairs on PofB@20% and Popt respectively. Thus,
it can be stated that in practical defect detection scenarios, we advocate
for utilizing the EALTR method optimized for the PofB@20% metric.

(8) CBS+, EASC, CBS+(RF), and CBS+(DF) firstly use the classifi-
cation algorithms to predict the defective possibility of modules. Then,
the predicted defective modules are inspected firstly. Since the modules
with more LOC are likely to be predicted as defective ones, there are
fewer inspected modules when testing the top 20% LOC based on the
ranking results of the four methods. Therefore, although CBS+, EASC,
CBS+(RF), and CBS+(DF) achieve a high Precision@20% value and low
IFA value, the Recall@20% and PofB@20% values are low. In addition,
CBS+(RF) and CBS+(DF) perform better than CBS+ and EASC in terms
of PofB@20%, Popt, and Recall@20%, which shows that ensemble
algorithms are useful for constructing an EADP model.

(9) EALTR significantly performs better than EALR in terms of IFA,
PofB@20%, Popt, and Recall@20%. Therefore, directly optimizing the
PofB@20% value for the linear regression model is useful for building
better EADP models than using the least square method.

Answer to RQ1

Except for ManualUp and EATT whose IFA values are
greater than 10, EALTR improves the PofB@20% value by
5.83%–54.47% and the Popt value by 2.26%–37.73%.

4.2. RQ2: Can the re-ranking strategy improve the performance of EALTR
in terms of IFA and Precision@20%?

Motivations: The experiment results in RQ1 show that the average
IFA value of EALTR is 3.723, which is worse than that of CBS+. Soft-
ware testers would be frustrated and unlikely to keep up the inspection
of the predicted defective modules, if they could not obtain satisfactory
result within the first few inspected modules. Therefore, we propose a
re-ranking strategy to reduce the IFA value, and call the EALTR method
integrated with the re-ranking strategy EALTR*

Methods: We analyze the performance of EALTR* in terms of the
six evaluation metrics. Table 7 presents the Recall@20%, PofB@20%,
Precision@20%, PMI@20%, IFA, and Popt values on each cross-version
air. The row W/D/L indicates the number of cross-version pairs, on
hich EALTR* obtains a better, equal, or worse performance than
ALTR. The p-values indicate there is a significant difference between
ALTR and EALTR*.
Results: EALTR* significantly performs better than EATLR in terms

f IFA, and reduces the average IFA value of EALTR by 16.95% (from
.723 to 3.092). The row W/D/L shows that EALTR* wins and draws
ALTR on 14 and 16 datasets, respectively. In addition, the average
recision@20% value increases from 0.395 to 0.400 and the aver-
ge PMI@20% value reduces from 0.428 to 0.417. However, it is
nevitable to bring some sacrifice of PofB@20% (from 0.363 to 0.361),
ecall@20% (from 0.385 to 0.382), and Popt (from 0.679 to 0.676).

n summary, the re-ranking strategy can reduce the IFA value to a
arge degree with a little sacrifice of the found bugs. Therefore, we
ecommend to use the re-ranking strategy, if the predicted defective
odules are assigned to a few software testers and the negative impacts

f initial false alarms on software testers’ confidence on the EADP
ethod should be seriously considered.

Answer to RQ2

The re-ranking strategy can reduce the average IFA value by
16.95% and increase the average Precision@20%.
9

4.3. RQ3: What is the execution time for EALTR?

Motivations: EALTR utilizes the genetic algorithm to obtain the
optimal parameter of the linear regression model, which is a time-
consuming task. Hence, we explore the time efficiency of EALTR.

Methods: The experimental environment is a Windows 10 64-
bit personal computer with 8 GB RAM. Table 8 presents the average
training time and testing time of EALTR and the compared methods
over the 30 cross-version pairs.

Results: Since EALTR* integrates the re-ranking strategy in the
prediction phase, the training times of EALTR and EALTR* are the
same and the testing time of EALTR* is longer than that of EALTR.
As for DEJIT, since it optimizes the DPA metric which has a higher
computational complexity than PofB@20%, its training time is longer
and equivalent to 1.36 times that of EALTR. This is also one of the
relative drawbacks of using the DEJIT method. Since CBS+(DF) em-
ploys the deep ensemble learning algorithm (i.e., DF) as the underlying
classifier of CBS+, its training time is longer than those of CBS+, EASC,
and CBS+(RF). ManualUp is the unsupervised method, so its training
time is 0 s. EATT builds three classification models using a tri-training
strategy, so its training time is longer than those of CBS+ and EASC.
The training and testing times of EALTR are reasonable. We need an
average 119.2333 s to train the EADP model, and 0.0138 s to rank
software modules using the model. Notice that the model does not need
to be updated all the time. A trained model can be used to rank many
software modules. Therefore, the efficiency of EALTR is applicable in
practice.

Answer to RQ3

The training time and testing time of EALTR are reasonable in
practice.

5. Discussion

5.1. The impact of the percentage of inspected LOC

By default, we set the percentage of the inspected LOC as 20%.
When testing resources are fairly limited, software testers might assign
the testing resources to only the top 10% LOC. So we investigate the
performance of EALTR and the compared methods when testing the top
10% LOC. Table 9 presents the average PofB@10%, Recall@10%, Popt,
Precision@10%, IFA, and PMI@10% values of the ten methods across
30 cross-version pairs and Fig. 6 shows the distribution of their values
of the methods across all cross-version pairs.

Both EATLR and EALTR* outperform DEJIT on all metrics except
for Recall@10%, and still perform better than CBS+, EASC, CBS+(RF),
CBS+(DF), and EALR in terms of PofB@20%, Recall@20%, and Popt
when inspecting the top 10% LOC. Specifically, EALTR achieves a
2.25% improvement in Popt and a 10.05% improvement in Preci-
sion@10% while reducing IFA by 8.91% when compared to DEJIT. For
the remaining five methods, EALTR improves their average PofB@20%
values by 28.14%, 58.52%, 11.46%, 12.04%, and 30.49%, respectively,
their average Recall@20% values by 6.10%–51.68%, and their average
Popt values by 9.69%–37.73%. The adjusted p-values show that there is
a significant difference between EALTR and EALTR*, CBS+, EASC, and
EALR in terms of PofB@10%. ManualUp and EATT are significantly
performs better than EALTR in terms of PofB@10% and Recall@20%,
but their IFA values are larger than 10 and they significantly per-
form worse than EATLR and EALTR* in terms of Precision@10% and
PMI@10%. In summary, EALTR and EALTR* still can find more bugs

when inspecting the top 10% LOC.
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Table 7
The performance of EALTR* on each cross-version experiment.

Cross-version Recall@20% PofB@20% Precision@20% PMI@20% IFA Popt

Ant1.3–1.4 0.223 0.248 0.233 0.229 7.75 0.602
Ant1.4–1.5 0.306 0.283 0.070 0.496 6.250 0.587
Ant1.5–1.6 0.229 0.230 0.432 0.174 0.30 0.565
Ant1.6–1.7 0.147 0.242 0.569 0.068 0.60 0.563

Camel1.0–1.2 0.234 0.245 0.466 0.199 0 0.531
Camel1.2–1.4 0.440 0.329 0.127 0.578 0.40 0.564
Camel1.4–1.6 0.501 0.383 0.181 0.547 0 0.630

Ivy1.1–1.4 0.366 0.325 0.036 0.677 15.30 0.583
Ivy1.4–2.0 0.258 0.225 0.092 0.432 12.00 0.514

Jedit3.2–4.0 0.325 0.340 0.485 0.228 0.30 0.629
Jedit4.0–4.1 0.188 0.331 0.615 0.146 0.05 0.629
Jedit4.1–4.2 0.358 0.338 0.189 0.284 0.45 0.640
Jedit4.2–4.3 0.432 0.471 0.047 0.240 1.25 0.736

Log4j1.0–1.1 0.268 0.420 0.663 0.143 0 0.806
Log4j1.1–1.2 0.119 0.143 0.989 0.112 0 0.589

Lucene2.0–2.2 0.290 0.354 0.659 0.263 0.05 0.733
Lucene2.2–2.4 0.265 0.304 0.535 0.300 0 0.715

Poi1.5–2.0 0.381 0.377 0.090 0.510 8.75 0.654
Poi2.0–2.5 0.327 0.282 0.517 0.401 0 0.740
Poi2.5–3.0 0.538 0.404 0.579 0.590 3.40 0.729

Synapse1.0–1.1 0.158 0.243 0.478 0.093 0.65 0.536
Synapse1.1–1.2 0.258 0.303 0.295 0.313 0.15 0.646

Velocity1.4–1.5 0.608 0.512 0.620 0.654 0.05 0.872
Velocity1.5–1.6 0.567 0.467 0.284 0.681 6.40 0.763

Xalan2.4–2.5 0.575 0.499 0.432 0.641 0.85 0.791
Xalan2.5–2.6 0.480 0.426 0.330 0.676 6.85 0.761
Xalan2.6–2.7 0.672 0.579 0.982 0.675 0 0.926

Xerces init-1.2 0.706 0.685 0.153 0.744 8 0.893
Xerces1.2–1.3 0.623 0.433 0.124 0.765 12.85 0.597
Xerces1.3–1.4 0.626 0.405 0.717 0.649 0.10 0.741

Average 0.382 0.361 0.400 0.417 3.092 0.676
W/D/L 2/15/13 3/14/13 19/10/1 20/10/0 14/16/0 6/10/14
p-value 0.004 0.006 0.000 0.000 0.001 0.003
t
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Table 8
The average training time and testing time of the ten methods.

Method Training Time Testing Time

EALTR 119.2333 s 0.0138 s
EALTR* 119.2333 s 0.0176 s
DEJIT 162.1573 s 0.0137 s
CBS+ 0.0207 s 0.0007 s
EASC 0.0007 s 0.0008 s
CBS+(RF) 0.1233 s 0.0117 s
CBS+(DF) 1.7409 s 0.0636 s
ManualUp 0 s 0.0085 s
EALR 0.0037 s 0.0008 s
EATT 0.1054 s 0.0169 s

5.2. The impact of the number of re-ranking modules and LOC threshold

If the LOC of the top-ranked q modules are less than the LOC (as
he threshold) of the module located at a proportion p in the non-
efective modules (sorted in ascending order by their LOC size) in the
raining dataset, the modules are considered to be non-defective. Then,
e place the modules at the end of the ranking. In this subsection, we

nvestigate the effect of the number of re-ranking modules (q) and the
OC threshold. We change the values of q from 0 to 40 with an interval
f 5 and p from 1/8 to 7/8 with an interval of 1/8, and record the
verage performance of EALTR* across the 30 cross-version pairs in
ig. 7.

The average PofB@20%, Recall@20%, Popt, and PMI@20% values
ecrease, when we increase the values of q or p. The Precision@20%
alue increases along with the values of q or p. The detailed reasons
re as follows. Since the re-ranking strategy places the modules with
ewer LOC at the end of the ranking, the top-ranked modules tend
10

d

o contain more LOC. Therefore, the number of required inspected
odules (PMI@20%) decreases when inspecting the top 20% LOC.

ince software testers inspect fewer modules, the numbers of the found
efective modules (Recall@20%) and bugs (PofB@20%) decrease ac-
ordingly. The IFA value exhibits a downward trend as the value of
decreases or the value of q increases. As shown in Fig. 7(e), the
inimum value of IFA is achieved when using the combination of
= 40 and p = 1/8. The values of all performance metrics at this

ombination are also specifically indicated. The results show that at the
owest point of the IFA value, only a small sacrifice is made for other
etrics. Therefore, we suggest to use the combination of q = 40 and p
1/8 as the default setting to achieve the lowest IFA value.

.3. The performance under cross-project setup

Cross-project defect prediction [1,6,60–64] is a valuable and neces-
ary research area, primarily due to the difficulty in obtaining within-
roject data. Therefore, we conduct cross-project defect prediction
o validate the efficacy of our approach in this domain. To achieve
his, we utilize eleven software projects’ initial version datasets as our
xperimental datasets. Due to the difficulty of selecting a training set
o create a superior model, we opt to use one dataset for within-
roject testing and the remaining ten for cross-project training at each
teration. We run the procedure 20 times on each training and testing
air and calculate the average value to avoid sample biases. Our cross-
roject experimental setup is consistent with that of Huang et al.’s
tudy [27]. Table 10 presents the average of PofB@20%, Recall@20%,
opt, Precision@20%, IFA, and PMI@20% values achieved by the ten
ethods across eleven cross-project pairs and Fig. 8 illustrates the

istribution of these metrics.
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Table 9
The average PofB@10%, Recall@10%, Popt, Precision@10%, IFA, and PMI@10% values of the ten methods on cross-version experiment. (* indicates there is
significant difference between EALTR and the corresponding method, while + indicates there is significant difference between EALTR* and the corresponding
method.).

Metrics EALTR EALTR* DEJIT CBS+ EASC CBS+(RF) CBS+(DF) ManualUp EALR EATT

PofB@10% 0.214+ 0.212* 0.212 0.167*+ 0.135*+ 0.192 0.191 0.269*+ 0.164*+ 0.259*+
Recall@10% 0.226+ 0.223* 0.240 0.181 0.149 0.213 0.209 0.353*+ 0.171 0.337*+
Popt 0.679+ 0.676* 0.664 0.613* 0.493*+ 0.617 0.617 0.682 0.603*+ 0.689
Precision@10% 0.427+ 0.433* 0.388 0.481 0.469 0.467 0.463 0.271*+ 0.291*+ 0.274*+
IFA 3.723+ 3.092* 4.087 3.567 6.1 4.458 4.393 16.533*+ 8.033 17.313*+
PMI@10% 0.270+ 0.261* 0.311 0.169 0.120*+ 0.176* 0.182 0.542*+ 0.222 0.501*+
Fig. 6. The boxplot of the PofB@10%, Recall@10%, Popt, Precision@10%, IFA, and PMI@10% values of the ten methods on cross-version experiment.
5

r
v
d
a
t
c
o
o

Due to the limited number of cross-project pairs, no training dataset
atisfies the conditions for the re-ranking strategy. As a result, EALTR
nd EALTR* exhibit the same results. There are significant differences
etween DEJIT, ManulUp, and EATT compared with EALTR in terms
f the IFA, with values of 11.282, 10.909, and 8.409 respectively being
xcessively high and thus unacceptable. EALTR still outperforms CBS+,
ASC, CBS+(RF), CBS+(DF), and EALR on PofB@20%, Recall@20%,
nd Popt with improvements of 25.36%, 42.39%, 89.07%, 110.98%,
nd 74.75% on PofB@20%, 63.00%–174.07% on Recall@20%, and
2.44%–34.79% on Popt, respectively. The adjusted 𝑝-value shows
hat there are significant differences between EALTR and CBS+(RF)
nd CBS+(DF) methods in terms of PofB@20% and Recall@20%. In
ummary, the EALTR and EALTR* methods still outperform baseline
11

ethods under the cross-project scenario. e
.4. Threats to validity

(1) We select 41 versions of 11 software projects from the PROMISE
epository for the experiment, since we use the more practical cross-
ersion setup for EADP. The projects come from different application
omains, have a different number of modules and defective ratios,
nd are widely used in previous EADP studies [28], which contributes
o generalizing the experimental results to some degree. But we still
annot guarantee that EALTR and EALTR* can perform the best for
ther software projects. However, we provide a detailed description
f our method, which will help future researchers to replicate our

xperiment in their defect projects.
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Fig. 7. The average performance of EALTR* across the 30 cross-version pairs with different p and q values. (We have labeled the values for q = 40, p = 1/8.)
Table 10
The average PofB@20%, Recall@20%, Popt, Precision@20%, IFA, and PMI@20% values of the ten methods on cross-project experiment. (* indicates there is
significant difference between EALTR and the corresponding method, while + indicates there is significant difference between EALTR* and the corresponding
method.).

Metrics EALTR EALTR* DEJIT CBS+ EASC CBS+(RF) CBS+(DF) ManualUp EALR EATT

PofB@20% 0.346 0.346 0.344 0.276 0.243 0.183*+ 0.164*+ 0.324 0.198 0.363
Recall@20% 0.370 0.370 0.440*+ 0.227 0.204 0.190*+ 0.165*+ 0.430 0.135*+ 0.458*+
Popt 0.678 0.678 0.635 0.603 0.503 0.533 0.504*+ 0.631 0.524 0.646
Precision@20% 0.304 0.304 0.284 0.533*+ 0.555*+ 0.490*+ 0.500*+ 0.271*+ 0.546*+ 0.294
IFA 4.205 4.205 11.282*+ 1.818 3.545 2.718 5.341 10.909*+ 3.182 8.409*+
PMI@20% 0.462 0.462 0.602*+ 0.156*+ 0.099*+ 0.128*+ 0.126*+ 0.658*+ 0.087*+ 0.609*+
(2) We utilize a range of effort-aware metrics to evaluate the
efficacy of the models [27], namely Recall@20%, PofB@20%, Pre-
cision@20%, PMI@20%, Popt, and IFA. Since EADP model aims to
identify more defects and defective modules and establish an accu-
rate global ranking based on predicted defect density, we employ
PofB@20%, Recall@20%, and Popt. The inclusion of Precision@20%
is necessary, as it is commonly paired with Recall@20%. Moreover, we
employ PMI@20% to mitigate the additional effort costs incurred by
excessive module checking. To ensure that software testers’ confidence
is not unduly undermined, we also take into consideration the IFA
12
value, which has been shown in previous studies [27] to be a critical
determinant.

(3) The randomness of the genetic algorithm could affect the exper-
imental results of EALTR, so we repeat the cross-version experiments
20 times and obtain the average value of the 20 results as the final
result on each cross-version pair. In addition, the Wilcoxon signed-
rank test with the BH correctness is also used to ascertain the practical
performance significance between difference EADP methods.

(4) Although existing SDP studies have pointed out that some fea-
ture selection methods could improve the performance of classification-
based SDP models, little research has been designed to investigate the
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Fig. 8. The boxplot of the PofB@20%, Recall@20%, Popt, Precision@20%, IFA, and PMI@20% values of the ten methods on cross-project experiment.
impact of feature selection methods on EADP models. We are less aware
of the effectiveness of feature selection methods for EADP models. So
we do not apply the feature selection methods to the software datasets
like Ni et al.’s study [28]. In addition, we do not employ imbalanced
learning techniques [10,11,41,65–68] to address the data imbalance
problem, since the related imbalanced learning studies for EADP are
limited.

(5) We set the parameters of the baseline methods according to the
their works or using the default parameters. For example, we regard the
modules whose predicted defective probability is larger than or equal
to 0.5 as the defective ones for CBS+, EASC, CBS+(RF), and CBS+(DF).
We set the same classification threshold as Huang et al. [27] and Ni
et al. [28], and it is also a common practice. The best parameters
for different software projects may be different, which may lead to
somewhat different results.

(6) We utilize the linear regression model to construct the EADP
model, which might not be the best alternative. In the future, we will
try to employ some nonlinear models to construct the EADP model and
compare the performance differences.

6. Related work

6.1. EADP

Mende et al. [23] for the first time put forward the concept of
13

‘‘effort-aware’’ and proposed two ranking strategies. Kamei et al. [69]
further investigated linear models, regression trees, random forests,
and other classification algorithms for EADP. Subsequently, Kamei
et al. [26] proposed the EALR method for effort-aware Just-In-Time
(JIT) defect prediction, which used the linear regression algorithm to
predict the defect density of software code changes. Bennin et al. [70,
71] and Yu et al. [21] investigated which algorithm was the best-
performing one for EADP and assessed the impact of data re-sampling
methods for EADP. Yang et al. [37] found that the unsupervised Manu-
alUp method performed better than some simple supervised methods
for effort-aware JIT defect prediction. Yan et al. [72] also applied
ManualUp to file-level EADP and compared it with some supervised
algorithms. Huang et al. [27,73] reviewed Kamei et al.’s [26] and Yang
et al.’s [37] works and pointed out the shortcomings of ManualUp.
ManualUp leads to more required inspected modules than supervised
methods, and the IFA value is high. Therefore, they proposed the CBS+
algorithm, which required testers to test fewer code changes and could
significantly reduce the IFA value. Ni et al. [28] proposed a file-level
cross-project EADP method called EASC, which uses naive Bayes as the
underlying classifier. Subsequently, Ni et al. [74] verified the effective-
ness of CBS+ on JavaScript projects. Qiao et al. [75] proposed to utilize
neural networks and deep learning methods to construct effort-aware
JIT software defect prediction models. Li et al. [19] proposed the semi-
supervised method named Effort-Aware Tri-Training (EATT), which
used a greedy strategy to sort code changes. Qu et al. [76] and Du

et al. [77] proposed to utilize k-core decomposition on software class
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dependency networks to improve EADP in software systems. Subse-
quently, Qu et al. [78] employed the developer information to improve
the performance of EADP models. Xu et al. [44], Zhao et al. [53],
and Cheng et al. [54] proposed the effort-aware JIT defect prediction
methods for android apps. «arka et al. [24] conducted an empirical
study on the trends and effectiveness of effort-aware metrics in EADP.
Li et al. [12] investigated the impact of feature selection techniques on
the performance of CBS+.

However, the existing EADP studies mainly consider the EADP task
as a regression or classification problem and aim to optimize the regres-
sion loss or classification accuracy. But, the low regression loss or high
classification accuracy might result in poor effort-aware performance.
Therefore, we propose the EALTR method by directly optimizing the
PofB@20% value. Recently, Yang et al. [31] also proposed a EADP
model called DEJIT by directly optimizing the DPA metric, which is
a metric used to measure global ranking performance. However, the
primary objective of EADP is to detect more bugs within the top 20%
of LOC, thus directly optimizing PofB@20% is more effective than DPA.
Additionally, in contrast to the work by Yang et al. [31], we also pro-
pose a re-ranking strategy to reduce IFA and increase Precision@20%
values.

6.2. Genetic algorithms for SDP

Recently, some researchers have proposed using genetic algorithms
to train SDP models. For example, Shuai et al. [79] proposed a dynamic
support vector machine method for SDP, and used the genetic algorithm
to maximize the geometric classification accuracy. Arun et al. [80] pro-
posed an oversampling method to generate synthetic defective modules
using the genetic algorithm for SDP. Wahono et al. [81,82] applied
genetic algorithm to select representative features for SDP. Ryu et al.
proposed [83] a multi-objective naive Bayes algorithm for cross-project
SDP using the multi-objective genetic algorithm. Hosseini et al. [84]
proposed to utilize the Nearest Neighbor (NN) filter embedded in
the genetic algorithm to select the valuable cross-project modules.
Chen et al. [55] proposed a multi-objective optimization-based EADP
method call MULTI, which aimed to maximizing the number of found
defects and minimizing the inspected LOC. Since existing EADP studies
generally fix the inspected percentage of LOC as 20%, we optimize
only one objective (i.e., PofB@20%). Yang et al. [29] proposed an
SDP method named LTR to rank software modules based on the bug
numbers and aimed to find more bugs when inspecting a certain
number of modules. LTR used the genetic algorithm to directly optimize
the ranking performance (i.e., FPA) to construct the model. Inspired
by their work [29], we propose the EALTR method to build the EADP
model by directly maximizing the PofB@20% value.

7. Conclusion

This study proposes an EADP method called EALTR, that learns to
rank software modules by directly optimizing the effort-aware metric
(i.e., PofB@20%). The method employs the linear regression model to
build the relationship between the defect density and software features.
Different from Kamei et al.’s work [26], we use the composite differen-
tial evolution algorithm to solve the EADP model. The coefficient vector
of the linear regression that obtains the best PofB@20% value on the
training dataset is used to build the EADP model. Then, we propose
a re-ranking strategy to increase the Precision@20% value and reduce
the IFA value of EALTR. We evaluate the proposed EALTR method on
30 cross-version pairs and compare it with 8 baseline EADP methods.
The results show that EALTR can find more defective modules and bugs
with low IFA value, and the re-ranking strategy can reduce the false
14

alarms.
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