Check for
Updates

Practitioners’ Expectations on Automated Test Generation

Xiao Yu
Huawei
Hangzhou, China

Lei Liu
Faculty of Electronic and Information
Engineering, Xi’an Jiaotong

Xing Hu"
The State Key Laboratory of
Blockchain and Data Security,

yuxiao25@huawei.com University Zhejiang University
Xi’an, China Hangzhou, China
LeiLiu@stu.xjtu.edu.cn xinghu@zju.edu.cn
Jacky Keung Xin Xia David Lo
Department of Computer Science, Huawei Singapore Management University
City University of Hong Kong Hangzhou, China Singapore
Hong Kong, China xin.xia@acm.org davidlo@smu.edu.sg

jacky.keung@cityu.edu.hk
Abstract

Automated test generation can help developers craft high-quality
software tests while mitigating the manual effort needed for writ-
ing test code. Despite significant research efforts in automated
test generation for nearly 50 years, there is a lack of clarity about
what practitioners expect from automated test generation tools
and whether the existing research meets their needs. To address
this issue, we follow a mixed-methods approach to gain insights
into practitioners’ expectations of automated test generation. We
first conduct the qualitative analysis from semi-structured inter-
views with 13 professionals, followed by a quantitative survey of
339 practitioners from 46 countries across five continents. We then
conduct a literature review of premier venue papers from 2022 to
2024 (in the last three years) and compare current research findings
with practitioners’ expectations. From this comparison, we outline
future research directions for researchers to bridge the gap between
automated test generation research and practitioners’ expectations.

CCS Concepts

« Software and its engineering — Software maintenance tools.

Keywords

Test Generation, Empirical Study, Practitioners’ Expectations

ACM Reference Format:

Xiao Yu, Lei Liu, Xing Hu, Jacky Keung, Xin Xia, and David Lo. 2024. Prac-
titioners’ Expectations on Automated Test Generation. In Proceedings of
the 33rd ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA "24), September 16—20, 2024, Vienna, Austria. ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3650212.3680386

“Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ISSTA °24, September 16-20, 2024, Vienna, Austria

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0612-7/24/09

https://doi.org/10.1145/3650212.3680386

1618

1 Introduction

Crafting high-quality software tests manually is challenging and
time-consuming for developers [46, 71]. To alleviate the issue, re-
searchers have proposed numerous automated test generation tech-
niques or tools for nearly 50 years [55]. However, no prior studies
have investigated practitioners’ expectations of these techniques
or tools. There is a lack of clarity on whether practitioners appre-
ciate the current automated test generation techniques or tools,
what factors influence their decisions to adopt them, and what their
minimum thresholds for adoption are. Gaining insights from practi-
tioners is essential to uncover critical issues and guide researchers
in developing solutions that meet the needs of practitioners.

In this paper, we follow a mixed-methods approach to gain in-
sights into practitioners’ expectations of automated test generation.
We begin with semi-structured interviews with 13 professionals
with an average of 6.85 years of software programming experience.
Through these interviews, we explore whether the interviewees rely
on requirement descriptions or the code under test when crafting
testing code in practical software development, the state of auto-
mated test generation practices, issues faced by the interviewees
when using automated test generation tools, and their expectations
of automated test generation. We then conduct an exploratory sur-
vey with 339 software practitioners from 46 countries across five
continents to quantitatively validate practitioners’ expectations un-
covered in our interviews. Finally, we perform a literature review of
research papers published in premier venues from 2022 to 2024 (in
the last three years), comparing the techniques proposed against
the criteria that practitioners have for adoption. We address the
following five Research Questions (RQs):

RQ1: What aspect is primarily relied on when writing
testing code in software development practice? Most surveyed
practitioners (57%) tend to develop their test code primarily based
on requirement descriptions, while a smaller group (26%) bases their
test code primarily on the code under test. 17% of the surveyed
practitioners indicate that they do not partake in test code writing
during the software development process due to various reasons.

RQ2: What is the state of automated test generation tools,
and what are the issues? Among the surveyed practitioners,
28% report that they have used automated test generation tools,
with Large Language Model (LLM) tools like ChatGPT being the

https://orcid.org/0000-0002-4473-3068
https://orcid.org/0009-0009-9632-4678
https://orcid.org/0000-0003-0093-3292
https://orcid.org/0000-0002-3803-9600
https://orcid.org/0000-0002-6302-3256
https://orcid.org/0000-0002-4367-7201
https://doi.org/10.1145/3650212.3680386
https://doi.org/10.1145/3650212.3680386
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3650212.3680386&domain=pdf&date_stamp=2024-09-11

ISSTA °24, September 16-20, 2024, Vienna, Austria

most popular choice. Uncertainty about effectiveness and reliabil-
ity is the main reason that surveyed practitioners abstain from
using them. Over half of those with experience in the tools express
dissatisfaction and highlight “Struggling to handle complex or spe-
cific scenarios” and “Limited support for different programming
languages and products” as the most prominent issues.

RQ3: Are automated test generation tools important for
practitioners? 95% of surveyed practitioners consider such tools
to be worthwhile and essential for their software development.
Furthermore, over 81% agree that these tools can significantly boost
the efficiency of writing test code and aid in regression testing.

RQ4: What are practitioners’ expectations of automated
test generation tools? Practitioners prefer utilizing such tools
within the internal network to generate test cases for unit testing.
The correct rate (the proportion of test cases that accurately reflect
the requirements) and bug detection capability emerge as the most
critical evaluation metrics influencing practitioners’ acceptance of
these tools. Over half of them anticipate the correct rate and bug
detection rate (the percentage of bugs identified by the generated
test code) to exceed 80%. Additionally, most of them expect the
tools to handle at least 10,000 lines of code, with an installation,
configuration, and learning process taking under one hour. They
also prefer the generation of a single test code to take less than 10
seconds and favor concise test code, not exceeding 100 lines.

RQ5: How close are the current state-of-the-art automated
test generation studies to satisfying practitioners’ needs be-
fore adoption? We identify 83 papers in automated test generation
from 2022 to 2024. We find that 70% of studies primarily generate
tests based on the code under test, contradicting surveyed prac-
titioners’ preference for generating tests based on requirement
descriptions. No or very few recent studies propose automated test
generation techniques for regression testing, acceptance testing,
integration testing, load testing, and beta testing, which are areas of
concern for surveyed practitioners. While coverage is widely used
in the literature, surveyed practitioners prefer metrics that prioritize
the correct rate and bug detection capability. When faced with com-
plex real-world scenarios, the correct rate and bug detection rate
of most proposed automated test generation techniques satisfy at
most 47% of practitioners’ expectations. This indicates a significant
need for enhancements to align with practitioners’ demands. Addi-
tionally, current tools based on LLMs fall short of meeting surveyed
practitioners’ expectations in handling large-scale projects.

In summary, our paper makes the following contributions:

(1) We interview 13 professionals and survey 339 practitioners
from 46 countries to gain insights into their expectations. This
includes their perspectives on the current automated test generation
tools, the importance of automated test generation, their criteria
for adopting such tools, and the factors influencing their decisions.

(2) We conduct an extensive literature review of papers published
in the leading publications over the last three years. Then, we com-
pare the current state of research with practitioners’ expectations
and outline potential implications to align research efforts with
practitioners’ needs and demands.

The subsequent sections of our paper are structured as follows:
Section 2 outlines the methodology employed in our study. Section
3 presents the results obtained from our research. In Section 4,
we discuss the implications of our findings and address potential

1619

Xiao Yu, Lei Liu, Xing Hu, Jacky Keung, Xin Xia, and David Lo

threats to validity. Section 5 introduces related work in the field.
Finally, Section 6 concludes our paper and discusses future work.

2 Research Methodology

The research methodology employed in this study follows a mixed-
methods approach [39], as depicted in Figure 1 and comprises three
stages. Stage 1: Conduct interviews with professionals to explore
their practices in writing test code, their experiences and issues
encountered when using automated test generation tools, and their
expectations of such tools. Stage 2: Carry out an online survey
designed to validate and broaden the conclusions obtained from the
interviews regarding automated test generation. Stage 3: Perform
a comprehensive literature review to assess the extent to which
current state-of-the-art research fulfills practitioners’ needs and
expectations. Both the interviews and survey receive approval from
the relevant institutional review board.
Statements and Potential

F 2)

0 e =
848 — E o @-L%P] — B g [Z) — Ansverson Avomated
Interview Semi-structured Test Generation
Guide Interviews Nl

p%
'

Draft
Questionnaire|
Pilot Survey

Stage 1: Interview

Brainstorming Transcriptions Open Coding

(B
@ -E

Finalized
Questionnaire

Stage 2: Online Survey

'." N N
~atll | —
Data Analysis

A

b2
Stage 3: Literature Review

B

Paper
Collection

RQ3
Importance

Tool

RQI: Practice of Developing

Test Code RQS: Difference

B

RQ2: Practices and Issues of 4. practitioners’ R

Automated Test Generation h
Tools

Analyze the
= Capabilities of the

Proposed Techniques

Expectations ~ Pract

Figure 1: The overview of the research methodology.

2.1 Stage 1: Interview

Protocol: The first author conducts a series of face-to-face, in-depth,
semi-structured interviews to thoroughly explore the practitioners’
practices, issues, and expectations on automated test generation.
An interview guide is developed through a brainstorming process
to facilitate this exploration. Each interview consists of three parts.
In the first part, demographic questions are asked to gather infor-
mation about the interviewee’s background, such as their job role,
year of work experience, and team size. In the second part, the inter-
viewees are asked to discuss their test code writing practice. In the
third part, the concept of automated test generation is introduced
to ensure that the interviewees understand how these techniques
work and their potential benefits. Open-ended questions are then
posed to understand the interviewees’ experiences and expectations
regarding automated test generation techniques.

Interviewees: Professionals from various roles, such as develop-
ment, testing, and project management, are invited to participate
in the interviews via our networks in the software industry. A total
of 13 software practitioners from nine IT companies worldwide
participated in the interviews. Each interview lasts between 40-60
minutes. They have an average 6.85 years of professional experi-
ence in software development (minimum: 2, median: 7, maximum:
15, standard deviation: 3.98 years). At the end of the interviews, the
interviewees are thanked and briefly informed about our next plan.
Transcription and Open Coding: The first author transcribes
and analyzes the interviews, using NVivo qualitative analysis soft-
ware for open coding to generate opinion cards of the interview

Practitioners’ Expectations on Automated Test Generation

contents. The second author verifies the initial opinion cards cre-
ated by the first author and provides suggestions for improvement.
After incorporating these suggestions, the two authors separately
analyze the opinion cards and sort the generated cards into po-
tential statements and answers. The overall Cohen’s Kappa value
between the two authors is 0.81, indicating substantial agreement.
Disagreements are discussed to reach a common decision. To reduce
bias, both authors review and agree on the final set of statements.
Eventually, based on the results of the interviews, we identify one
test code development practice, eight issues with using automated
test generation tools and seven reasons for not using them, five
conclusions regarding the importance of automated test generation
tools, and eight aspects concerning expectations for automated test
generation tools.

2.2 Stage 2: Online Survey

Design: The survey consists of various question types, including
single-choice questions, multiple-choice questions, short answer
questions, and rating questions on a 5-point Likert scale, ranging
from “Strongly Disagree” to “Strongly Agree”. We also include
an “I don’t know” option for surveyed practitioners who do not
comprehend our descriptions or prefer not to answer. To minimize
bias due to surveyed practitioners’ unfamiliarity with automated
test generation, we provide a detailed explanation. Our description
covers typical usage scenarios and input/output aspects. The survey
consists of five sections:

(1) Demographics: This section gathers information about the
surveyed practitioners, including their country/area of residence,
primary job role, years of programming experience, and team size.

(2) Practice of Writing Test Code: This examines the aspects
(requirement descriptions or code under test) surveyed practitioners
rely on when writing test code in the development process.

(3) Automated Test Generation Tools: This section provides sur-
veyed practitioners with a brief description of automated test gen-
eration tools and explores whether they have used such tools for
software testing. It also asks about specific tools used and any issues
faced while using them. For those who have not used such tools,
we inquire about their primary reasons for not doing so.

(4) Tool Importance: In this section, surveyed practitioners are
asked to indicate how they perceive the importance of a tool that
meets their expectations using statements like Essential (I will use
this tool daily), Worthwhile (I will use this tool), Unimportant (I
will not use this tool), or Unwise (This tool will hinder my test code
writing productivity). Additionally, they are queried about their
main motivation for using or not using such tools.

(5) Practitioners’ Expectations: This section investigates sur-
veyed practitioners’ expectations regarding the usage scenarios
(i.e., generating test inputs, oracles, or cases), test levels and types
(e.g., unit testing, system testing, acceptance testing, and perfor-
mance testing), and network environments (i.e., public network,
internal network, and offline) for utilizing automated test gener-
ation tools. Then, the section explores the important factors in
determining their acceptance of using the tools, such as passing
rate (the proportion of generated test code that is syntactically cor-
rect, compliable, and runnable), coverage rate, correct rate, and bug
detection rate. Finally, the section explores the minimum adoption

1620

ISSTA °24, September 16-20, 2024, Vienna, Austria

criteria of such tools in terms of effectiveness (the required thresh-
olds of passing rate, coverage rate, correct rate, and bug detection
rate), efficiency (the time required to generate a single test code),
scalability (the capacity of tools to handle a specified number of
lines of code), and conciseness (the length of generated test code).
At the end of the survey, we allow surveyed practitioners to
provide free-text comments about automated test generation and
our survey. In particular, we inquire about their perspectives on
the potential opportunities and challenges that LLMs like ChatGPT
could present for automated test generation. Surveyed practition-
ers may or may not provide any final comments. Before launching
the survey, we conduct a pilot survey with four industrial experts
and two academics specializing in software testing research. These
individuals are not part of the interviewees or surveyed practition-
ers. We gather feedback on the survey length and the clarity and
understandability of terms. Based on this feedback, we make minor
adjustments to the draft survey and create a finalized version. To
accommodate an international audience, we provided an English
version of the survey on Google Forms. In addition, to support
practitioners from China, we translate the survey into Chinese and
made it available on the popular survey platform Wenjuanxing.

Table 1: The roles and working experiences of practitioners.

Role Population ‘ <ly 1-3y 3-5y 5-10y =10y
Development 218 17 52 35 70 44
Testing 42 3 9 10 15 5
Algorithm Design 27 4 10 11 2 0
Architect 19 0 1 5 5 8
Project Manager 18 0 2 5 7 4
Others 15 1 4 1 4 5
339 ‘ 25 78 67 103 66

Note: Other roles related to software development, testing, and
management include chief technology officer, software testing re-
searchers, software security analysts, software operations develop-
ers, and system architecture and cloud solution analysts.

Respondent Recruitment: To obtain an adequate number of sur-
veyed practitioners from diverse backgrounds, we first reach out to
professionals within our social and professional network who work
in IT companies and ask for their assistance in disseminating our
survey. Specifically, we send invitations to our contacts at Google,
Microsoft, Huawei, Tencent, ByteDance, Alibaba, and other compa-
nies, encouraging them to share our survey with their colleagues.
Then, we collect the public email addresses of contributors from
GitHub repositories. Our focus is on repositories hosting popu-
lar open-source projects, determined by the number of stars they
receive. We send emails containing a link to our survey to 6,554
potential developers. From these emails, we receive 415 automatic
replies indicating the absence of the recipients. Finally, we receive
363 survey responses, out of which two incomplete surveys and
15 responses with completion times of less than three minutes are
excluded. In addition, we exclude seven responses from individuals
with roles such as product manager and teaching professional, and
one with an unspecified role.

The data reported herein is based on the remaining 339 valid re-
sponses. These surveyed practitioners represent 46 countries across

ISSTA °24, September 16-20, 2024, Vienna, Austria

five continents. China, the United States, and Germany are the top
three countries with the most surveyed practitioners, comprising
63%, 8%, and 4% of the total respondents, respectively. Table 1 shows
the distribution of the surveyed practitioners in terms of roles and
work experience. Most surveyed practitioners are actively involved
in software development and testing and have more than three
years of experience.

Data Analysis: We analyze the survey results based on the types
of questions. For both single-choice and multiple-choice questions,
we provide the percentages of each option selected. We perform a
qualitative analysis of open-ended questions by carefully examining
the responses. To identify trends in the Likert-scale questions, we
create bar charts (many of which are presented throughout this
paper). We exclude “I don’t know” ratings as they constitute a
small minority (approximately 1%) of all ratings. To facilitate the
replication of this study, the interview guide and questionnaire are
available in the online link !. Due to the sensitive nature of the
project-related information provided by the practitioners, we are
unable to publicly release the results of our survey.

2.3 Stage 3: Literature Review

Research papers on automated test generation are typically pub-
lished in software engineering, system security, and artificial intel-
ligence. Therefore, we go through full research papers published in
ICSE, PLDI, ESEC/FSE, ASE, ISSTA, TSE, TOSEM, ASPLOS, USENIX
ATC, SP, CCS, USENIX Security, ACL, IJCAIL ICLR, NIPS, and AAAI
spanning from 2022 to 2024. These papers are renowned for their sig-
nificant contributions and represent the forefront of advancements
in automated test generation capabilities. We first use DBLP to
examine the titles for keywords like “generate”, “construct”, “build”,
“test case”, “test oracle”, “test input”, or “fuzz”, which aid in identify-
ing papers related to automated test generation. “Fuzz” is included
as a keyword because such papers may utilize fuzzing tests to
generate input data for bug detection. Subsequently, we apply the
snowballing method to ensure a thorough examination of the rel-
evant literature. From our initial search, we identify 123 papers.
After excluding 40 papers due to their irrelevance or their empiri-
cal focus, which did not introduce new automated test generation
techniques, we finalize a selection of 83 papers, with 18 from ICSE,
7 from ESEC/FSE, 12 from ASE, 7 from ISSTA, 18 from TSE, 7 from
TOSEM, 2 from ASPLOS, 4 from CCS, 3 from SP, 4 from USENIX
Security, and 1 from AAAL For each paper, the first two authors
read its content and analyze the capabilities of the proposed tech-
nique 2. For example, Zhao et al. [86] proposed the Avgust tool for
generating usage-based tests for mobile applications. Their exper-
iment demonstrated that 35 out of the generated 51 tests (68.6%)
successfully fulfilled the intended usage. We categorize this tech-
nique based on various factors: the aspect considered when writing
test code (requirement descriptions), the usage scenario (test input
generation), the testing level (system testing and function testing),
the access to service (available offline), and the passing rate (68.6%).
The first two authors discuss and verify differences in capability
analysis, and confirm the final results through further review of the

!https://figshare.com/s/c44a70a2af62120c66aa

20ur review does not aim to compare the performance of different types of automated
test generation techniques. Instead, it explores the optimal outcomes achievable with
current techniques to meet practitioners’ expectations.

1621

Xiao Yu, Lei Liu, Xing Hu, Jacky Keung, Xin Xia, and David Lo

papers. The Cohen’s Kappa value of 0.83 between the two authors
indicates a high level of consensus.

3 Results
3.1 RQ1: Practice of Developing Test Code

We investigate whether surveyed practitioners write test code in the
development process. If they do, we examine the aspects (require-
ment descriptions or code under test) that they mainly consider
when writing test code. As depicted in Figure 2, most surveyed prac-
titioners write their test code primarily based on the requirement
descriptions, with 14% completely relying on it and 43% mostly
relying on it. They commonly cite three reasons for this preference:
(& Because the goal of the tests is to make sure that the code is doing
what it was designed to do, and this is based on the requirements.
(€' Our project has excellent documentation, which allows to thor-
oughly study all features of the product being developed. This speeds
up the speed of writing tests, allows you to describe the steps of test
cases in as much detail as possible, and reduces the likelihood of errors.
(& When tests are directly linked to requirements, it becomes easier to
track testing progress and maintain them as the requirements evolve.
If requirements change, it’s clear which tests might need adjustment
or reevaluation.

22% of surveyed practitioners primarily write their test code
based on the code under test, with 4% solely relying on it. This
approach is generally driven by two factors: the lack of specific
requirement documentation and the difficulty for requirement doc-
uments to cover all testing scenarios. Some note:

(& I know that TDD (Test Driven Development) is best, but I am
working on a startup research project, and there is no one who perfectly
defines requirements in such a form that it is easy to test against.
(& Unit tests based on requirements are often difficult to cover all
cases and are prone to changes with the evolution of requirements.

Completely based on requirement
descriptions

Mostly based on requirement
descriptions

46 (14%)
146 (43%)
Mostly based on code 76 (22%)
Completely based on code 12 (4%)

Not writing the test code 59 (17%)

100 150 200

50

Surveyed practitioners

Figure 2: The aspects considered when writing test code.

Conversely, 17% of surveyed practitioners indicate that they do
not write test code during the software development process. The
reasons cited by these practitioners primarily include tight project
delivery deadlines, lack of requirement for test code by the company
or project, or the division of roles within the development team,
where developers focus solely on writing code while dedicated
testers handle the test code.

%

Finding 1. In practical software development, most surveyed
practitioners write their test code primarily based on require-
ment descriptions, while a minority write test code primarily
based on the code under test.

Practitioners’ Expectations on Automated Test Generation

ISSTA °24, September 16-20, 2024, Vienna, Austria

Table 2: The current issues with conventional and LLM-based automated test generation tools.

Issues | Distribution of conventional tools | Distribution of LLM tools

The tools are unsatisfying for me 5% 27% 4% 12% | 5% 28% 2% 9%
I; The installation and use of tools are difficult I 14% 31% 38% 10% | [H5%0 40% 23% 17%
I, Limited support for different languages and products 64% 26% [25% 47% 16%
I; Struggle to handle complex or specific scenarios 10% 67% 24% % 28% 54%
I; Require lots of time to generate test cases W2% 26% 48% 10% | 0% 25% 25% 27% 2%
Is The generated test code cannot find bugs effectively 5% 20% 42% 18% 0% 23% 23% 37%
Is Lots of incorrectly generated test cases (oracle) 10% 4a1% 33% Bs%n 25% 37% 16%
I; The generated test code have limited coverage R 12% 24% 3% 10% | § 15% 35% 33% 13%
I Poor readability and maintainability of generated code | IHIFI7%N 24% 40% 14% AN 2% 19% 30% [13%

M Strong Disagree Disagree Neutral Agree Strong Agree

3.2 RQ2: Practices and Issues of Automated Test
Generation Tools

Practices of Automated Test Generation Tools: The survey re-
sults reveal that of 339 responses, 96 (28%) surveyed practitioners
have used automated test generation tools. LLM tools like ChatGPT
are the most commonly used tools among them, being used by 56%
of surveyed practitioners who have utilized automated test genera-
tion tools. Additionally, some surveyed practitioners mention using
internally developed LLM tools within their companies for auto-
mated test generation. Following LLM tools, Testful, Pynguin, and
EvoSuite rank as the second, third, and fourth most commonly used
tools, with adoption rates of 22%, 21%, and 16% among surveyed
practitioners, respectively. Among the 339 responses, 243 (72%) sur-
veyed practitioners have not used automated test generation tools.
The survey findings shed light on the primary reasons for this lack
of adoption, including uncertainty about the effectiveness and reli-
ability of automated test generation tools (47%), a lack of technical
expertise (37%), unawareness of their existence (34%), compatibility
issues with project programming languages or technologies (22%),
security and compliance concerns (20%), a requirement for pay-
ment (14%), and installation and learning concerns (9%). Notably,
the percentages do not add up to 100% due to the multiple-choice
nature of the question.

%

Finding 2. 28% of surveyed practitioners report using auto-
mated test generation tools, with LLM tools like ChatGPT
being the most commonly used. The primary reason other
surveyed practitioners refrain from using such tools is un-
certainty about their effectiveness and reliability.

Issues of Automated Test Generation Tools: Table 2 displays
surveyed practitioners’ assessments of issues encountered when
using conventional automated test generation tools and LLM tools,
respectively. Among practitioners employing conventional tools,
56% express dissatisfaction, while 51% of those using LLM tools find
them unsatisfactory. Both groups identify “Struggling to handle
complex or specific scenarios” as the primary issue, with 91% and
82% agreement, respectively. Some practitioners share:

(&' They can carry the heavy load of writing boring tests, but you still
need a human that brings the creativity of writing extreme edge cases.
(&’ When using a tool like Evosuite, I went through a configuration and
debugging phase of about an hour to generate unit tests for simple
methods. However, to use it for more complex generation tasks, it
requires additional time and effort to learn and debug. Moreover, the

1622

development of large-scale projects rich in dependencies may not be
flexible enough. The cost of using it and the return on investment
makes us hesitant to utilize it.

(& Idid try using ChatGPT to generate a test before. It sometimes
works if the code is simple. But it usually gives strange and bizarre
results when given a more complex code to test. It usually fixes the test
code manually, which is probably slower than just writing it ourselves.

The second most significant challenge for both sets of practition-
ers is “Limited support for different programming languages and
products” Conventional tools indeed target specific languages like
Pynguin [47] for Python and EvoSuite [23] for Java, contributing to
this limitation. Additionally, some practitioners report LLMs gener-
ating inaccurate test cases for less common products and producing
test code inconsistent with the specific product’s coding style:

(& Copilot generated incorrect test cases for less popular frameworks,
necessitating manual adjustments to guide it towards generating
comprehensive test cases.

(&' LLM sometimes gives inconsistent test code (e.g., different test
framework or code style). And we have to change it to match our
codebase code style.

Surveyed practitioners widely agree on several other issues. How-
ever, regarding the difficulty of installing and using automated test
generation tools, only 23% find LLM tools challenging, while 48%
struggle with conventional tools. As one respondent points out:
(& I think GPT-based testing tools will dominate the testing market
(almost for sure). Conventional testing tools often have a learning
curve and may be hard to use. Compared to such old-and-complicated
tools, Copilot wins for sure.

%

Finding 3. Over half of the surveyed practitioners who used
automated test generation tools express dissatisfaction with
the current tools and consider “Struggling to handle complex
or specific scenarios” and “Limited support for different pro-
gramming languages and products” as the most significant
issues.

3.3

Table 3 displays the ratings for the importance of automated test
generation tools and practitioners’ primary motivations for using
these tools. About 95% of surveyed practitioners consider automated
test generation tools either “Essential” or “Worthwhile”. Specifically,
27% view them as “Essential” and intend to use them daily. The main
motivations for tool adoption are “Efficiency and time savings” and
“Assisting in regression testing”, with 85% and 81% of practitioners

RQ3: Tool Importance

ISSTA °24, September 16-20, 2024, Vienna, Austria

Table 3: The importance of the tool and the primary motiva-
tions for using automated test generation tools.

Motivations | Distribution

Importance ‘ 4% 68% 21%
M; Efficiency and Time Savings [113% 49% 36%
M, Bug detection B 23% 46% 27%
Mj Test coverage improvement I 17% 50% 29%
My Oracle correctness verification | B 25% 48% 24%
M; Regression test I 17% 46% 35%

Unwise Unimportant Worthwhile I Essential
I Strong Disagree Disagree Neutral Agree Strong Agree

expressing agreement, respectively. Some practitioners share their
perspectives:

(&' Tests occupy, on average, four times the amount of code as produc-
tion code. Automating this process would save a significant amount
of time, but the tool must be trustworthy and verifiable, even more so
than manually written tests.

(&' The automated test generation tool may generate test cases not
considered in manual testing scenarios. It can also save time for test
engineers, complementing manual testing.

(&' In some scenarios, the test cases generated by automated test gener-
ation tools may not help us detect bugs. In most cases, what is needed is
regression testing and smoke testing, which assist in verifying whether
existing functionality has been affected and improve the efficiency of
regression and smoke testing.

Though most practitioners value such tools, a minority (5%)

consider them unimportant due to doubts about their effectiveness.
(& The tool may not be simple enough, and developers may not be
willing to learn how to use it. In complex business scenarios, it may
not be able to generate useful test cases.
(& My job involves building UI on the web. While I can see an au-
tomated test generator could create some unit tests for logic-heavy
code, I can’t imagine how it could produce integration tests given the
intricacy of user needs and behaviors on the web.

% Finding 4. 95% of surveyed practitioners recognize the im-
portance of automated test generation tools in software de-
velopment. Most believe these tools can improve test code
writing efficiency and assist in regression testing.

34

Usage Scenarios: Figure 3 reveals that 86% and 53% of surveyed
practitioners anticipate using automated test generation tools for
generating test cases and oracles, respectively. Furthermore, 68%
of respondents expect these tools to handle input generation. One
respondent emphasizes the significance of test input generation,
stating, “I primarily use test data generation since many cases in our
practice demand a substantial amount of data to be useful”

Test Levels and Types: Unit testing emerges as the most antici-
pated application of automated test generation tools, with 87% of
surveyed practitioners indicating interest. This is closely followed
by functional, integration, and regression testing, each garnering
interest from over half of the surveyed practitioners (55%, 51%, and
51%, respectively).

Access to Service: The survey results show that 45% and 40% of
surveyed practitioners anticipate using tools within an internal

RQ4: Practitioners’ Expectations

1623

Xiao Yu, Lei Liu, Xing Hu, Jacky Keung, Xin Xia, and David Lo

Test case generation 293 (86%) Unit testing

Functional testing

96 (87%)

Test input generation 229 (68%)

Integration testing

Test oracle generation 179 (53%)

Regression testing

400 Performance testing 154 (45%)

200
Surveyed practitioners

System testing 109 (32%)

Internal Network 151 (45%) Load testing 101 (30%)

Offline 134 (40%) Acceptance testing 67 (20%)

Beta testing

Public Network Others |5a%)

54 (16%)

0
Surveyed practitioners

100 200

0
Surveyed practitioners

200 400

Figure 3: The usage scenarios, test levels and types, and access
to services that surveyed practitioners expect.

Table 4: The factors that affect practitioners’ acceptance of
using automated test generation tools.

Factors | Distribution

F; Coverage 114% 46% 34%
F, Correct rate | 40% 50%
F3 Bug detection N13% 46% 38%
F, Mutation score I 22% 43% 27%
Fs Passing rate 113% 40% 43%
Fs Understandability/maintainability | F1%743% 1%
F; Similarity A12% 19% 39% 21%
Fg Easy to use I 2% 38% 40%

B Not Important Somewhat Important Moderately Important Important Very Important

Table 5: Practitioners’ satisfaction rate with various capabil-
ity ranges in terms of the effectiveness factors. (We exclude
the mutation score and similarity because they are the least
preferred by practitioners.)

Effectiveness Metrics | Distribution

Minimum passing rate % 33% 49%
Minimum correct rate [39% 53%
Minimum bug detection rate I 41% 51%
Minimum code lines coverage rate I 21% 38% 31%
Minimum branch coverage rate I 21% 37% 32%
Minimum requirement coverage rate | IH15% 38% 40%

B 5%-20% 20%-40% 40%-60% 60%-80% 80%-100%

network or offline, respectively. In contrast, reliance on public
networks is less favored (15%). This preference is primarily driven
by the need to maintain the confidentiality of production code, as
highlighted by surveyed practitioners: “Due to the sensitivity of the
business code, security takes a higher priority over efficiency. Unless
there is an internal networked LLM, the testing tools for accessing
LLMs may only be used for small projects.” and “The main problem
is the security of the production code when using such tools.”
Evaluation Metrics: Table 4 shows the factors (i.e., evaluation
metrics) in determining their acceptance of using the tools. The
most preferred evaluation metric is the correct rate. As some prac-
titioners note: “A false positive result would lead to an increase in
our workload rather than improving efficiency.” and “I'd also add -
the bar for acceptability is very high. I won’t use a tool that’s not
completely accurate. Otherwise, it becomes a headache.” The second
most preferred metric is bug detection rate. As one practitioner
notes, “I think I would have a higher tolerance for unpredictable and
random outputs of LLMs if the bugs it does find are novel.”

Practitioners’ Expectations on Automated Test Generation

Tool installation, configuration,

. . 29%
and learning time costs :

M 15% 28% 16% 1% ‘

0% 20% 40% 60% 80% 100%
Percentage of Surveyed practitioners
<10min 10min-30min 30min-1hour Thour-3hour >3hour
Average single test generation { T . 5% 14% WEE
time costs
0% 20% 40% 60% 80% 100%
Percentage of Surveyed practitioners
0.1-3s 3-10s 10-20s 20-40s 40-120s
Maximum program size that the{ 3 1% % 8%
tool can handle [!
0% 20% 40% 60% 80% 100%
Percentage of Surveyed practitioners
<100 100-1,000 1,000-10,000 10,000-100,000 100,000-1,000,000

Maximum number of lines for a

. 21%
generated single test case .

40% 20%

0% 10%20% 30% 40% 50% 60% 70% 80% 90%]1 00%
Percentage of Surveyed practitioners

100-150 150-200 200-300

10% [9% ‘

1-50 50-100

Figure 4: Practitioners’ satisfaction rate with various capabil-
ity ranges in terms of efficiency, scalability, and conciseness.

Effectiveness: Table 5 shows the surveyed practitioners’ satisfac-
tion rate with various capability ranges of automated test gener-
ation tools in terms of effectiveness factors. Satisfaction rates for
each metric are distributed across five capability ranges, from less
than 20% to 80-100%. The surveyed practitioners prioritize the cor-
rect rate of test cases or oracles, with 53% expressing the desire for a
correct rate of 80-100% before considering the use of automated test
generation tools. The second-highest requirement among surveyed
practitioners is for the bug detection rate, with 51% hoping for a
bug detection rate of 80%-100%.

v

Finding 5. Correct rate and bug detection capability are
the most critical factors influencing surveyed practitioners’
acceptance of automated test generation tools. Over half of
the surveyed practitioners expect the correct rate and bug
detection rate to exceed 80%.

Efficiency: For tool installation, configuration, and learning time
cost (shown in Figure 4), surveyed practitioners are most satisfied
when these activities take 10-30 minutes, with 29% of surveyed
practitioners favoring this range. Satisfaction decreases as time cost
increases, with 28% satisfied with 30 minutes to an hour, 16% for
1-3 hours, and the least satisfaction at 11% for more than 3 hours.
Regarding the average single test generation time, 28% of surveyed
practitioners are satisfied when a test can be generated in 0.1-3
seconds. Satisfaction is highest (30%) for test generation times of
3-10 seconds, and it gradually decreases for longer times: 15% are
satisfied with 10-20 seconds and 14% with 20-40 seconds.
Scalability 3 and Conciseness: Only 5% of surveyed practitioners
are satisfied with tools that handle programs with less than 100
lines of code. Satisfaction substantially increases to 41% for tools
handling program sizes between 100-1,000 lines, and it peaks at
42% for sizes between 1,000-10,000 lines. The majority of surveyed
practitioners (40%) are satisfied with test cases comprising 50-100
lines of code. Satisfaction is lower, at 21%, for test cases with 1-50
lines, and it decreases further for test cases with more lines, with
20% satisfaction for 100-150 lines, 10% for 150-200 lines, and 9%

3The values of program sizes refer to Kochhar et al. [37], which explored the expectation
of the minimum detected lines of code of automated fault localization tools can handle.

1624

ISSTA °24, September 16-20, 2024, Vienna, Austria

for 200-300 lines, because overly long test cases might lead to poor
readability and maintainability of test code [26].

% Finding 6. More than half of the surveyed practitioners
expect automated test generation tools to handle at least
10,000 lines of code, with installation, configuration, and
learning time of less than 1 hour, single test code generation
time under 10 seconds, and generated test code length not
exceeding 100 lines of code.

3.5 RQ5: Difference Between the Current

Research and Practitioners’ Need

After our literature review process, we identify a total of 83 papers.
Due to space constraints, we provide a detailed overview of the
current automated test generation techniques in the online link.
Aspects considered when writing test code: In the 83 papers,
only a small portion of studies (25 papers, 30%) generate tests pri-
marily based on requirement descriptions, while most studies (58
papers, 70%) generate tests primarily based on the code under test.
Usage Scenarios: There are 40 papers (48%) focused on test case
generation, 37 papers (45%) on test input generation, and 6 papers
(7%) on test oracle generation.

Test levels and types: Across different testing levels and types,
there are 64 (77%), 64 (77%), 22 (27%), 2 (2%), 1 (1%), 1 (1%), 1 (1%)
papers respectively focusing on test generation for system testing,
functional testing, unit testing, regression testing, performance
testing, acceptance testing, and integration testing. Surprisingly,
no papers specifically address load testing and beta testing.
Access to service: Among the 83 papers, the majority (72 pa-
pers, 87%) focus on developing test generation tools that can be
accessed offline as standalone software, tool libraries, or IDE plug-
ins. Seven papers (8%) concentrate on internal network services and
use open-source LLMs that can be trained locally, e.g., Nie et al. [54]
introduced the CodeT5 model, while Mastropaolo et al. [50] utilized
the T5 model. The remaining five papers (6%) [15, 16, 40, 45, 58]
leverage public LLM services by employing OpenAI’s Codex or
GPT 3.5 models.

%

Finding 7. The majority (70%) of the studies generate tests
primarily based on the code under test, which contradicts
the surveyed practitioners’ preference of generating tests
based on requirement descriptions. No or few studies in re-
cent three years have proposed automated test generation
techniques for regression testing, acceptance testing, integra-
tion testing, load testing, and beta testing, which are areas
of concern for the surveyed practitioners.

Evaluation metrics: Among the surveyed 37 papers on test input
generation, bug detection (23 papers, 62%), coverage (21 papers,
56%), and passing rate (8 papers, 21%) are the primary metrics em-
ployed. Similarly, among the surveyed 46 papers on test case or
oracle generation, bug detection (25 papers, 54%), coverage (20 pa-
pers, 43%), and correct rate (12 papers, 26%) are the primary metrics
utilized. While coverage remains the commonly used metric, it
does not align with the preferences of surveyed practitioners. The
preference ranking shown in Table 4 underscores that surveyed
practitioners prioritize quality attributes such as correct rate, pass-
ing rate, and understandability and maintainability of the generated
test code, in addition to bug detection capability.

ISSTA °24, September 16-20, 2024, Vienna, Austria

Table 6: Practitioners’ capability expectations and the capabil-
ities of current research. Cap. Range represents the capability
range. Sat. Rate represents the satisfaction rate of surveyed
practitioners’ choices. (We exclude the mutation score and
similarity because they are the least preferred by practition-
ers.)

Cap. Sat.

Description Papers
19 Range Rate 12
80-100% 100% [25, 42, 45, 61, 62, 87]
Passing rate 60-80% 51% [4, 33, 86]
40-60% 18% -
Effectiveness <40% 7% [54, 76]
80-100% 100% [5, 8, 35, 59, 81, 83]
Correct rate 60-80% 47% [17,50]
40-60% 8% [58, 82]
<40% 3% [18, 46]
. 80-100% 100% [12, 30, 48, 53, 69]
Line
60-80% 69% [58, 84, 88]
coverage rate
40-60% 31% [16, 27, 32, 81]
<40% 10% [15, 41]
80-100% 100% [12, 53,77, 85]
Branch
60-80% 68% [48]
coverage rate
40-60% 30% [58, 78, 88]
<40% 9% [34, 38, 41, 44, 81]
) 80-100% | 100% [4]
Requirement
60-80% 60% -
coverage rate
40-60% 22% [81]
<40% 7% [63]
) 80-100% | 100% (14, 38, 59]
Bug detection
60-80% 37% [30, 51]
rate
40-60% 5% [5, 28]
<40% 1% [18, 46]
. 0.1-3s 100% [74, 80, 81, 85]
. Average single
Efficiency ; 3-10s 72% [65]
test generation
] 10-40s 42% [13, 28, 41, 62]
time costs
40-120s 13% [29, 35, 68]
R 100,000~
Program size 100% [10, 52, 56, 67, 77, 84]
. 1,000,000
Scalability that tools can
10,000~
handle 96% [78, 80]
100,000
1,000-
88% [54, 58]
10,000
<1,000 46% [15, 40, 59, 85]
Number of lines 1-50 100% [54, 62, 82, 86]
Conciseness for a single 50-100 79% -
generated 100-150 39% -
test case 150-300 19% [85]

9 Finding 8. While coverage is widely used in literature, there
is a clear preference among surveyed practitioners for quality
attribute metrics like correct rate, passing rate, and under-
standability and maintainability of generated test code.

Effectiveness: As shown in Table 6, regarding the passing rate,
an automated test generation technique supporting capabilities
in the ranges of 80-100%, 40-80%, 40-60%, and <40% satisfies at
least 100%, 51%, 18%, and 7% of the surveyed practitioners, respec-
tively. 11 papers utilize the passing rate metric, with six papers
[25, 42, 45, 61, 62, 87] achieving capabilitiy between 80%-100%,
meeting the requirements of 100% of practitioners. These stud-
ies primarily focus on generating test inputs based on parameter

Xiao Yu, Lei Liu, Xing Hu, Jacky Keung, Xin Xia, and David Lo

specifications, employing fuzzing techniques with some domain
information, or utilizing LLMs based on GUI context to generate
input. Consequently, they have achieved a high passing rate. For
instance, Sun et al. [62] introduced JUnitTestGen, capable of effec-
tively handling the proper initialization of API caller instances and
their parameters, ensuring that test cases are not only syntactically
correct but also set up the execution environment correctly before
conducting API tests. Liu et al. [45] utilized LLMs to generate text
inputs within the UI page, combined with context-aware input
prompt generation and prompt-based data tuning methods, effec-
tively integrating them with automated GUI testing tools. However,
two papers [54, 76] achieved very low passing rates. Nie et al. [54]
utilized deep learning techniques to generate complete test case
code (rather than just the test input) for 1,270 open-source Java
projects, generating 76.22% compilable code and 28.63% runnable
code. Xie et al. [76] analyzed API documentation to extract specific
input constraints for deep learning API functions. The ratio of pass-
ing inputs was low (33.4%), because the API documents are often
incomplete [76].

Regarding the correct rate, an automated test generation tech-
nique supporting capabilities in the ranges of 80-100%, 60-80%,
40-60%, and <40% satisfies at least 100%, 51%, 18%, and 7% of the
surveyed practitioners, respectively. Among the surveyed 83 pa-
pers, 12 (14%) papers report the correct rate. Of these, 6 papers
(50%) [5, 8, 35, 59, 81, 83] achieve a correct rate of 80%-100%, which
can satisfy 100% of our surveyed practitioners. However, their test
case or oracle generation scenarios or tasks are relatively simple,
not requiring complex analysis or inference of the functionality
of the code under test. For example, Alonso et al. [5] analyzed
previous API requests and their corresponding responses to gener-
ate invariants as test oracles. For instance, in a Java function that
receives an array and returns the same array with an additional
element, a generated invariant could specify that the returned ar-
ray always has a greater size than the array provided as input,
i.e., size(return.array(]) > size(input.array[]). This oracle generation
scenario is relatively simple, as it mainly involves observing and
analyzing existing data to generate invariants as test oracles rather
than generating functional test oracles for API. Zamprogno et al.
[83] directly executed test inputs and recorded the variable values
after execution to generate assert statements. Kim et al. [35] gen-
erated driving scenarios for autonomous driving systems, and the
oracles for these test scenarios only include three types: collisions,
infractions, and immobility. Su et al. [59] generated test cases for
smart contracts, and their oracles are six specific types of smart
contract vulnerabilities (e.g., ether leaking).

Additionally, 2 (17%), 2 (17%), and 2 (17%) papers meet the re-
quirements of at least 47%, 8%, and 3% of participants, respectively.
The lower correct rates observed in some studies are primarily due
to the complexity of the generation scenarios. For example, Liu
et al. [46] trained neural networks to generate functional test ora-
cles given the test input generated by EvoSuite [23]. Their results
on the Defects4] containing 17 real-world Java projects showed the
correct rate of generated oracles was less than 40%. Schafer et al.
[58] introduced TESTPILOT, which utilized GPT 3.5 to generate
unit tests for methods in the API of a given project. They evaluated
TESTPILOT on 25 npm packages encompassing a total of 1,684 API
functions. The generated tests, due to a large number of timeout

1625

Practitioners’ Expectations on Automated Test Generation

errors, assertion errors, and correctness errors, resulted in a median
correct rate of only 48%.

For the line coverage rate, an automated test generation tech-
nique supporting capabilities in the ranges of 80-100%, 60-80%,
40-60%, and < 40% coverage satisfies 100%, 69%, 31%, and 10% of sur-
veyed practitioners, respectively. For the branch coverage rate,
those numbers are slightly adjusted to 100%, 68%, 30%, and 9%.
When it comes to the requirement coverage rate, the satisfaction
levels change to 100%, 60%, 22%, and 7% for the same coverage
ranges, respectively. While certain automated test generation meth-
ods achieve relatively high line, branch, and requirement coverage
rates, it is because the methods primarily focus on optimizing for im-
proved coverage rates. For example, Alonso et al. [4] analyzed API
parameter specifications and extracted real test data from knowl-
edge bases like DBpedia for Web APIs. This method, relying on
extensive knowledge base searches, ensures that the generated test
inputs cover a wide range of scenarios, thus achieving high cover-
age. However, coverage rates still face challenges in more complex
projects. Specifically, 43% of the papers (6 out of 14), 62% of the
papers (8 out of 13), and 67% of the papers (2 out of 3) showed
performance below 60% in line coverage, branch coverage, and
requirement coverage, respectively, with at most 31% of surveyed
practitioners being satisfied. For example, Deng et al. [15] utilized
LLMs as zero-shot fuzzers to generate test inputs for deep learning
libraries. Despite its effectiveness in producing human-like code
snippets and enhancing test coverage through the automatic muta-
tion of diverse deep learning program inputs, it faced challenges
with mainstream libraries like TensorFlow and PyTorch, resulting
in a line coverage rate below 40%. Additionally, Kukucka et al. [38]
proposed to combine concolic execution and taint tracking with
fuzzing to automatically generate defect-revealing inputs. Their ex-
periment indicated that across five real large-scale projects (Apache
Ant, Maven, BCEL, Google Closure, and Mozilla Rhino) with vary-
ing branch counts (ranging from 5,858 to 49,602 branches), the
proposed method achieved branch coverage rates of 4% - 23%.

Regarding the bug detection rate, 3, 2, 2, and 2 automated test
generation technique with capabilities in the ranges of 80-100%,
60-80%, 40-60%, and <40% satisfies at least 100%, 37%, 5%, and 1%
of the surveyed practitioners, respectively. We find that the 48
papers that explore the bug detection capability of the generated
test code employ different evaluation metrics. For instance, Liu
et al. [46] measured the number of test cases required to examine
to find the first bug, Li et al. [41] counted the total number of
detected bugs in deep learning libraries, and Davis et al. [14] used
the bug detection rate. We have chosen the bug detection rate as
the metric in our survey, as it is a relative indicator that is easier
to evaluate the effectiveness of automated test generation tools
compared to absolute indicators such as those used in [14, 41]. 9
papers utilize the bug detection rate as the evaluation metric. Three
studies [14, 38, 59] achieve a bug detection rate of 80-100%. In the
study by Davis et al. [14], the six programs under test contain only 3-
57 lines of code, and the types of bugs included are relatively simple,
such as infinite loops, NaN outputs, and divide by zero errors. Su
et al. [59] also pointed out in their paper that some vulnerability
types in their experimental dataset are relatively easier to detect,
as they require simpler transaction sequences to trigger. Kukucka
et al. [38] achieved a bug detection rate of 100% on the Apache Ant

1626

ISSTA °24, September 16-20, 2024, Vienna, Austria

project (the version they used had only one bug), but only 29% on
a more complex Google Closure project. This suggests that when
generating test code for relatively simple software projects, the bug
detection rate of the test code is relatively higher. In contrast, the
remaining 6 (83%) papers [5, 18, 28, 30, 46, 51] report bug detection
rates below 80% on more realistic and complex programs, such as
the autonomous vehicle software system [28], and the Defects4]
dataset containing 835 bugs from 17 real-world Java projects [18, 46].
This indicates the bug detection capability of the proposed test
generation techniques on real-world and complex scenarios has
not met the needs of practitioners.

%

Finding 9. When confronted with complex real-world sce-
narios, the majority of proposed automated test generation
techniques achieve a correct rate and bug detection rate of less
than 80%, satisfying at most 47% of practitioners’ expectations.
This indicates a pressing need to enhance their capabilities to
meet the high thresholds for adoption (where over half of the
practitioners expect the correct rate and bug detection rate to
exceed 80%).

Efficiency: Regarding the installation, configuration, and learning
time costs, our survey results reveal that an automated test genera-
tion technique with capabilities in the ranges of <10min, 10-30min,
30min-1lhour, and >1hour satisfies at least 100%, 84%, 55%, and 27%
of the surveyed practitioners, respectively. As one surveyed practi-
tioner mentioned, “ I think ease of use and installation is a critical
factor. I’'m not going to bother with new technology if it is too complex
to quickly figure out.”. However, none of the reviewed papers utilize
this metric to evaluate tool efficiency. Regarding the time taken
to generate a single test, an automated test generation technique
with capabilities in the ranges of 0.1-3s, 3-10s, 10-40s, and 40-120s
satisfies at least 100%, 72%, 42%, and 13% of the surveyed practition-
ers, respectively. 12 papers report the test generation time costs
for evaluation. Of these, 4 (33%) papers can satisfy 100% of our
surveyed practitioners, while 1 (8%), 4 (33%), and 3 (25%) papers
can satisfy at least 72%, 42%, and 13% of our surveyed practitioners.
Scalability: When considering the size of programs that can be han-
dled, an automated test generation technique with capabilities in the
ranges of 100,000-1,000,000 lines, 10,000-100,000 lines, 1,000-10,000
lines, and <1,000 lines satisfies at least 100%, 96%, 88%, and 46% of
the surveyed practitioners, respectively. We determine the program
size a tool can handle based on the maximum number of lines of
software under test or experimental input settings mentioned in
the papers. For instance, Yandrapally et al. [78] showcased web
applications used in their evaluation, with the largest application
having 60K lines of code, falling into the 10,000-100,000 lines range.
When employing LLMs, Deng et al. [15] set the max_tokens = 256,
which we classify as the <1,000 lines range. 14 papers mention the
program size their tools can handle. Among them, 10 papers (71%)
can meet the needs of at least 88% of the surveyed practitioners,
while the remaining 4 papers (29%) can process programs with less
than 1,000 lines due to input capacity limitations based on LLMs.
Conciseness: In terms of the number of lines per generated test
case, an automated test generation technique with capabilities in the
ranges of 1-50, 50-100, 100-150, and 150-300 lines satisfies at least
100%, 79%, 39%, and 19% of the surveyed practitioners, respectively.
Among the 83 papers collected, only 5 papers specify the line of
the code for a single test case generated by the test generation tool,

ISSTA °24, September 16-20, 2024, Vienna, Austria

with 4 papers (80%) producing test cases under 50 lines and 1 paper
(20%) between 150 and 300 lines. These findings indicate that the
tools’ output sizes generally meet practitioners’ expectations.

% Finding 10. The majority of the automated test generation
techniques proposed in the surveyed papers can satisfy most
practitioners’ needs regarding test generation time, program
size handling, and test case generation size. However, LLMs may
fall short in meeting the demands of surveyed practitioners for
processing large-scale projects.

4 Discussion

4.1 Implications

Our results highlight some implications for research communities:

(1) Generating test code based on requirement descriptions
rather than code under test: While most surveyed practitioners
prefer writing test code based on requirement descriptions, ex-
isting research mainly focuses on generating test code from the
code under test. This indicates a need for building more automated
test generation tools that can generate test code from specified
requirement descriptions, ensuring effective validation of software
functionality. Some surveyed practitioners noted: “It’s unclear to me
how generating test cases based on the code under test is beneficial:
if the code does not implement the requirements correctly, testing
that this incorrect interpretation of the requirements is followed by
the code is of no benefit.”, “ I would like to see if LLM or copilot can
help engineer on writing good tests especially in TDD practice where
engineer can use the tool to write down test as specifications even
before writing the code/implementation.”.

(2) Implication on automated test generation tools: (a) The
majority of surveyed practitioners are not using automated test
generation tools due to doubts about their effectiveness and re-
liability. Moreover, those who have employed such tools express
dissatisfaction, highlighting “Struggling to handle complex or spe-
cific scenarios” and “Limited support for different programming
languages and products” as the most prominent issues. As one sur-
veyed practitioner pointed out, “The most important thing is that the
generated test code is consistent and reliable. My problem with such
LLM models is that they produce unsafe or generally ineffective code
most of the time.” In addition, Finding 9 demonstrates that when
confronted with more complex real-world testing scenarios, the
capabilities of most current automated test generation techniques
fall short in meeting practitioners’ expectations in terms of correct
rate and bug detection rate. Therefore, there is strong anticipation
among surveyed practitioners for advanced test generation tools
that can support complex scenarios, different programming lan-
guages, and products, and effectively assist developers in writing
reliable tests in real production environments. (b) Regarding the
test generation based on requirement descriptions, some surveyed
practitioners emphasize in their feedback: “There are few tools based
on requirements in practice. They usually need strict adherence to
detailed specs, are complex to learn, and can only create simple tests.
Once used, you likely won’t want to use them again.” Existing test
generation methods based on requirement descriptions, like Docter
[76], face limitations such as incomplete specifications, handling
complex constraints, and scalability issues [76]. (c) As revealed in
Finding 7, recent studies have overlooked proposing automated test
generation techniques for regression testing, acceptance testing,

1627

Xiao Yu, Lei Liu, Xing Hu, Jacky Keung, Xin Xia, and David Lo

integration testing, load testing, and beta testing, despite high de-
mand from practitioners. This discrepancy underscores the need
for future research to prioritize these areas.

Moreover, some surveyed practitioners provide suggestions re-
garding automated test generation at the end of the survey. Instead
of generating entirely new test code, they suggest refactoring ex-
isting test code or automatically updating the existing test code
based on source code or requirement changes. As some surveyed
practitioners mentioned, “Most automated test code generation tools
test only for functionality and not complexity or space requirements
or speed of the code under test. Some fields or industries require that
the code is fully optimized for speed or fully optimized not to take
up space.”, “I would like an automated test code generation tool that
generates test for functionality (most tools do this), complexity (mem-
ory space and execution time, I have never seen a good tool that does
this) and optimizations (finding ways to produce the same result with
fewer steps).”, “Frequent updates in the logic code make it challenging
to ensure that the corresponding test code is also kept up to date.”,
“The current issue is that the majority of requirements are constantly
changing, leading to the test code becoming easily outdated. This
results in high maintenance costs for automated testing, with returns
less than the investment.”

(3) Suggestions for LLM-based automated test generation:
LLM tools are increasingly popular for generating test code [70], but
over half of surveyed practitioners express dissatisfaction with their
performance. To address these concerns, many surveyed practition-
ers have voiced their opinions and suggestions at the end of the
survey. (a) Training LLMs with customized and high-quality
datasets: ‘T don’t believe that ChatGPT would be helpful in writing
test cases unless it was trained on our code and understood better
the requirements of test cases.”, I think the main problem with tools
based on LLMs is their training dataset. In most cases, these models are
trained on public GitHub repositories, and the issue is that many of
those repositories are of poor quality, serving as examples of how not
to write code. All this poor-quality code will be recommended by the
LLM of your choice, not because the technology behind LLMs is flawed,
but because of the dataset it uses for training.” (b) Addressing code
dependency challenges: “Using LLMs like ChatGPT to write test
code is an interesting idea. But the dependencies in the code are a
problem, and using external tools is always too cumbersome and takes
you away from the development environment.” (c) Emphasizing
output correctness (including oracle) of LLMs: “The ability of
large models to generate unit test cases is unquestionable, but when
it comes to complex interactive functionality testing, can it generate
the expected results after feeding all the code to it? How does it know
what the oracle should be?”, “It should have mutmut, codecov, or other
existing tools in the background to check ChatGPT’s output”

(4) Implication on evaluation metrics: While academic pa-
pers prioritize code coverage, surveyed practitioners perfer quality
attribute metrics like correct rate, passing rate, understandability,
and maintainability in the generated test code, in addition to bug
detection capability. As someone stated, “Code and branch coverage
for the sake of coverage stats alone is not useful outside of identifying
undefined behavior/crash bugs.”, “ Automated test generation tools
first need to accurately understand the logic of the code. The ability to
generate compilable test code that can verify the logic of the code is
the most basic requirement”. Prioritizing these metrics—correct rate,

Practitioners’ Expectations on Automated Test Generation

passing rate, understandability and maintainability, and bug de-
tection capability— will better align research efforts with industry
needs and ensure the effectiveness of such tools.

4.2 Threats to Validity

We survey 339 practitioners from 46 countries spanning 5 conti-
nents. Our surveyed practitioners include individuals working for
various companies, such as Google, Microsoft, Huawei, Tencent,
ByteDance, Alibaba, and many others, and those contributing to
open-source projects hosted on GitHub in diverse roles. However,
our findings may not fully capture the expectations of all software
engineers. For instance, our survey does not include practitioners
who are not proficient in either English or Chinese. We focus on
several factors that may influence the adoption of automated test
generation tools. Nevertheless, there could be other factors con-
tributing to adoption that have not been explored in our study. We
plan to examine these factors in future research. In addition, our
survey can only estimate practitioners’ willingness to adopt such
tools. The actual adoption process is complex, involving not only
individual perceived willingness but also factors such as organiza-
tional support (e.g., training and incentives) and social influence
(e.g., support from peers/colleagues) [73, 75]. These factors con-
tribute to the overall adoption of such techniques. Nevertheless,
individual attitudes play a significant role in influencing actual
adoption, and our survey specifically measures this aspect.

5 Related Work

Automated Test Generation. Automated test [6] generation can
be categorized into: test case generation [24], test input gener-
ation, and test oracle generation [70]. Various test case genera-
tion methods have been proposed, including: random-based [14,
72], search-based [11, 21, 40, 43, 60, 79, 88], symbolic execution-
based [31], machine/deep learning-based [8, 21, 69, 81, 86], and
LLM-based [9, 40, 54]. For example, Blasi et al. [8] utilized natural
language processing techniques to extract requirement descrip-
tions or specification information for generating test cases. Nie
et al. [54] fine-tuned the CodeT5 model to generate test cases. Test
input generation aims to automatically create input data for test
execution, particularly for system testing purposes [70]. There is a
growing interest in test input generation for various applications
such as deep learning libraries/systems [15, 41, 64], autonomous
driving software [29, 65, 68], web applications [48], and mobile
applications [19, 45]. For example, Deng et al. [15] used a genera-
tive LLM (Codex) and an infilling LLM (InCoder) to generate and
mutate input deep learning programs for fuzzing deep learning
libraries. Huai et al. [29] proposed a search-based test input gener-
ation technique called DoppelTest, which revealed software bugs
by generating scenarios containing multiple autonomous vehicles
that account for traffic control elements (e.g., traffic lights and stop
signs). Liu et al. [45] developed the QTypist method based on LLM,
which generated suitable text inputs for mobile GUI testing by
comprehending the contextual information of the application. Test
case generation methods often encounter the oracle problem [7]
and cannot generate test cases that effectively expose functional
bugs [46]. To address the issue, researchers [18, 46, 50, 82] have pro-
posed to automatically generate test oracles. For example, Dinella

1628

ISSTA °24, September 16-20, 2024, Vienna, Austria

et al. [18] proposed a Transformer-based approach named TOGA
to infer functional test oracles given the test input generated by
EvoSuite. Subsequently, Liu et al. [46] proposed several improve-
ments for TOGA to make the evaluation of TOGA more realistic
and applicable.

Studies on Software Testing Practice. Several recent studies in-
vestigated software testing practices via survey questionnaires or
interviews. For example, Ahmad et al. [1] investigated practitioners’
perceptions of test flakiness and how this varies between differ-
ent industries. They [2] also investigated the root causes of test
flakiness and mitigation strategies to understand how practitioners
perceive it. Eck et al. [20] examined the perceptions of software
developers about the nature, relevance, and challenges of flaky tests
and developers’ fixing strategies. Kochhar et al. [36] and Tran et al.
[66] investigated the issue of test case quality, including how prac-
titioners define test case quality and which aspects of test cases are
important for quality assessment. In exploring the gap between in-
dustry and academia, Santos et al. [57] investigated the differences
in interests between academic researchers and practitioners in soft-
ware testing. Martins et al. [49] investigated the software testing
practitioners’ perspectives to evaluate the acquisition of knowledge
about software testing in undergraduate courses. Fischbach et al.
[22] explored quality factors of test artifacts that have a positive or
negative impact on the activities of agile testers. Alégroth et al. [3]
explored the experts’ knowledge, best practices, and experiences
with model-based testing. However, there have been no previous
studies that delve into the practices, issues, and expectations of
practitioners regarding automated test generation techniques.

6 Conclusion and Future Work

We interview 13 professionals and survey 339 practitioners to ex-
plore their testing practices and their views on automated test
generation tools. Practitioners express dissatisfaction with existing
tools due to difficulties in handling complex scenarios and limited
support for different programming languages and products. The
correct rate and bug detection capability emerge as critical fac-
tors influencing their acceptance of these tools. We also compare
current research with practitioners’ expectations, identifying ar-
eas for improvement to better meet practitioners’ needs. Future
studies could prioritize generating test code based on requirement
descriptions to align with practitioners’ preferences for writing
test code. Additionally, studies could focus on refactoring existing
test code or automatically updating it based on source code or re-
quirement changes. LLM-based tools should utilize customized and
high-quality datasets for training and address code dependency
challenges to enhance their effectiveness.

Acknowledgments

We thank the interviewees and survey participants for their invalu-
able insights. This research is supported by the Ningbo Natural
Science Foundation (No. 2023]J292) and the National Research Foun-
dation, under its Investigatorship Grant (NRF-NRFI08-2022-0002).
Any opinions, findings and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do not reflect
the views of National Research Foundation, Singapore.

ISSTA °24, September 16-20, 2024, Vienna, Austria

References
[1] Azeem Ahmad, Ola Leifler, and Kristian Sandahl. 2019. Empirical analysis of

[2

[10

(11

[12

(13

[14

[15

[16

(7

(18

[19

[20

[21

[22

[

=

]

]

)

]

]

]

]

factors and their effect on test flakiness-practitioners’ perceptions. arXiv preprint
arXiv:1906.00673 (2019).

Azeem Ahmad, Ola Leifler, and Kristian Sandahl. 2021. Empirical analysis of
practitioners’ perceptions of test flakiness factors. Software Testing, Verification
and Reliability 31, 8 (2021), e1791.

Emil Alégroth, Kristian Karl, Helena Rosshagen, Tomas Helmfridsson, and Nils
Olsson. 2022. Practitioners’ best practices to Adopt, Use or Abandon Model-
based Testing with Graphical models for Software-intensive Systems. Empirical
Software Engineering 27, 5 (2022), 103.

Juan C Alonso, Alberto Martin-Lopez, Sergio Segura, Jose Maria Garcia, and
Antonio Ruiz-Cortes. 2023. ARTE: Automated Generation of Realistic Test Inputs
for Web APIs. IEEE Transactions on Software Engineering 49, 1 (2023), 348-363.
Juan C Alonso, Sergio Segura, and Antonio Ruiz-Cortés. 2023. AGORA: Au-
tomated Generation of Test Oracles for REST APIs. In the 32nd ACM SIGSOFT
International Symposium on Software Testing and Analysis. 1018-1030.

Mauricio Aniche, Christoph Treude, and Andy Zaidman. 2021. How developers
engineer test cases: An observational study. IEEE Transactions on Software
Engineering 48, 12 (2021), 4925-4946.

Earl T Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo. 2014.
The oracle problem in software testing: A survey. IEEE transactions on software
engineering 41, 5 (2014), 507-525.

Arianna Blasi, Alessandra Gorla, Michael D Ernst, and Mauro Pezzé. 2022. Call Me
Maybe: Using NLP to Automatically Generate Unit Test Cases Respecting Tem-
poral Constraints. In Proceedings of the 37th IEEE/ACM International Conference
on Automated Software Engineering. 1-11.

Carolin Brandt, Marco Castelluccio, Christian Holler, Jason Kratzer, Andy Zaid-
man, and Alberto Bacchelli. 2024. Mind the gap: What working with developers
on fuzz tests taught us about coverage gaps. In 46th International Conference on
Software Engineering: Software Engineering in Practice. 157-167.

Sicong Cao, Biao He, Xiaobing Sun, Yu Ouyang, Chao Zhang, Xiaoxue Wu,
Ting Su, Lili Bo, Bin Li, Chuanlei Ma, et al. 2023. Oddfuzz: Discovering java
deserialization vulnerabilities via structure-aware directed greybox fuzzing. In
2023 IEEE Symposium on Security and Privacy. IEEE, 2726-2743.

Junjie Chen, Chenyao Suo, Jiajun Jiang, Peiqi Chen, and Xingjian Li. 2023.
Compiler test-program generation via memoized configuration search. In 45th
IEEE/ACM International Conference on Software Engineering. IEEE, 2035-2047.
Peng Chen, Yuxuan Xie, Yunlong Lyu, Yuxiao Wang, and Hao Chen. 2023. Hop-
per: Interpretative fuzzing for libraries. In Proceedings of the 2023 ACM SIGSAC
Conference on Computer and Communications Security. 1600-1614.

Garrett Christian, Trey Woodlief, and Sebastian Elbaum. 2023. Generating Real-
istic and Diverse Tests for LIDAR-Based Perception Systems. In 2023 IEEE/ACM
45th International Conference on Software Engineering. IEEE, 2604-2616.
Matthew Davis, Sangheon Choi, Sam Estep, Brad Myers, and Joshua Sunshine.
2023. NaNofuzz: A Usable Tool for Automatic Test Generation. In Proceedings of
the 31st ACM Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. 1114-1126.

Yinlin Deng, Chunqiu Steven Xia, Haoran Peng, Chenyuan Yang, and Lingming
Zhang. 2023. Large language models are zero-shot fuzzers: Fuzzing deep-learning
libraries via large language models. In Proceedings of the 32nd ACM SIGSOFT
international symposium on software testing and analysis. 423-435.

Yinlin Deng, Chungiu Steven Xia, Chenyuan Yang, Shizhuo Dylan Zhang, Shu-
jing Yang, and Lingming Zhang. 2024. Large language models are edge-case
generators: Crafting unusual programs for fuzzing deep learning libraries. In
46th IEEE/ACM International Conference on Software Engineering. 1-13.

Yinlin Deng, Chenyuan Yang, Anjiang Wei, and Lingming Zhang. 2022. Fuzzing
deep-learning libraries via automated relational api inference. In Proceedings of
the 30th ACM Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. 44-56.

Elizabeth Dinella, Gabriel Ryan, Todd Mytkowicz, and Shuvendu K Lahiri. 2022.
Toga: A neural method for test oracle generation. In Proceedings of the 44th
International Conference on Software Engineering. 2130-2141.

Zhen Dong, Marcel Béhme, Lucia Cojocaru, and Abhik Roychoudhury. 2020.
Time-travel testing of android apps. In Proceedings of the ACM/IEEE 42nd Inter-
national Conference on Software Engineering. 481-492.

Moritz Eck, Fabio Palomba, Marco Castelluccio, and Alberto Bacchelli. 2019.
Understanding flaky tests: The developer’s perspective. In Proceedings of the
2019 27th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 830-840.

Patric Feldmeier and Gordon Fraser. 2022. Neuroevolution-based generation of
tests and oracles for games. In Proceedings of the 37th IEEE/ACM International
Conference on Automated Software Engineering. 72:1-72:13.

Jannik Fischbach, Henning Femmer, Daniel Mendez, Davide Fucci, and Andreas
Vogelsang. 2020. What Makes Agile Test Artifacts Useful? An Activity-Based
Quality Model from a Practitioners’ Perspective. In the 14th ACM/IEEE Interna-
tional Symposium on Empirical Software Engineering and Measurement. 1-10.

1629

[23

[24

[25

&
&

[27

[28

[29]

[31

[32

(37

(38]

[41

[42

[43]

[44

[45

Xiao Yu, Lei Liu, Xing Hu, Jacky Keung, Xin Xia, and David Lo

Gordon Fraser and Andrea Arcuri. 2011. Evosuite: automatic test suite generation
for object-oriented software. In Proceedings of the 19th ACM SIGSOFT symposium
and the 13th European conference on Foundations of software engineering. 416-419.
Gordon Fraser, Matt Staats, Phil McMinn, Andrea Arcuri, and Frank Padberg. 2015.
Does automated unit test generation really help software testers? a controlled
empirical study. ACM Transactions on Software Engineering and Methodology 24,
4(2015), 1-49.

Jingzhou Fu, Jie Liang, Zhiyong Wu, Mingzhe Wang, and Yu Jiang. 2022. Griffin:
Grammar-free DBMS fuzzing. In Proceedings of the 37th IEEE/ACM International
Conference on Automated Software Engineering. 1-12.

Giovanni Grano, Simone Scalabrino, Harald C Gall, and Rocco Oliveto. 2018. An
empirical investigation on the readability of manual and generated test cases. In
Proceedings of the 26th Conference on Program Comprehension. 348-351.

Jiazhen Gu, Xuchuan Luo, Yangfan Zhou, and Xin Wang. 2022. Muffin: Testing
deep learning libraries via neural architecture fuzzing. In Proceedings of the 44th
International Conference on Software Engineering. 1418-1430.

Yuqi Huai, Sumaya Almanee, Yuntianyi Chen, Xiafa Wu, Qi Alfred Chen, and
Joshua Garcia. 2023. sceno RITA: Generating Diverse, Fully-Mutable, Test Scenar-
ios for Autonomous Vehicle Planning. IEEE Transactions on Software Engineering
(2023).

Yuqi Huai, Yuntianyi Chen, Sumaya Almanee, Tuan Ngo, Xiang Liao, Ziwen
Wan, Qi Alfred Chen, and Joshua Garcia. 2023. Doppelgénger test generation
for revealing bugs in autonomous driving software. In 2023 IEEE/ACM 45th
International Conference on Software Engineering. IEEE, 2591-2603.

Ahmad Humayun, Miryung Kim, and Muhammad Ali Gulzar. 2023. Co-
dependence Aware Fuzzing for Dataflow-Based Big Data Analytics. In Proceedings
of the 31st ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 1050-1061.

Sungjae Hwang, Sungho Lee, Jihoon Kim, and Sukyoung Ryu. 2021. Justgen:
effective test generation for unspecified JNI behaviors on JVMs. In 2021 IEEE/ACM
43rd International Conference on Software Engineering. 1708-1718.

Bokdeuk Jeong, Joonun Jang, Hayoon Yi, Jiin Moon, Junsik Kim, Intae Jeon,
Taesoo Kim, WooChul Shim, and Yong Ho Hwang. 2023. Utopia: Automatic
generation of fuzz driver using unit tests. In 2023 IEEE Symposium on Security
and Privacy. IEEE, 2676-2692.

Zu-Ming Jiang, Jia-Ju Bai, and Zhendong Su. 2023. {DynSQL}: Stateful Fuzzing
for Database Management Systems with Complex and Valid {SQL} Query Gen-
eration. In 32nd USENIX Security Symposium. 4949-4965.

Jiwon Kim, Benjamin E Ujcich, and Dave Jing Tian. 2023. Intender: Fuzzing
Intent-Based Networking with Intent-State Transition Guidance. In 32nd USENIX
Security Symposium. 4463-4480.

Seulbae Kim, Major Liu, Junghwan" John" Rhee, Yuseok Jeon, Yonghwi Kwon,
and Chung Hwan Kim. 2022. Drivefuzz: Discovering autonomous driving bugs
through driving quality-guided fuzzing. In Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security. 1753-1767.

Pavneet Singh Kochhar, Xin Xia, and David Lo. 2019. Practitioners’ views on
good software testing practices. In 2019 IEEE/ACM 41st International Conference
on Software Engineering: Software Engineering in Practice. 61-70.

Pavneet Singh Kochhar, Xin Xia, David Lo, and Shanping Li. 2016. Practitioners’
expectations on automated fault localization. In Proceedings of the 25th interna-
tional symposium on software testing and analysis. 165-176.

James Kukucka, Luis Pina, Paul Ammann, and Jonathan Bell. 2022. Confetti:
Amplifying concolic guidance for fuzzers. In Proceedings of the 44th International
Conference on Software Engineering. 438—450.

Patricia Leavy. 2022. Research design: Quantitative, qualitative, mixed methods,
arts-based, and community-based participatory research approaches. Guilford
Publications.

Caroline Lemieux, Jeevana Priya Inala, Shuvendu K Lahiri, and Siddhartha Sen.
2023. CODAMOSA: Escaping coverage plateaus in test generation with pre-
trained large language models. In International conference on software engineering.
Meiziniu Li, Jialun Cao, Yonggiang Tian, Tsz On Li, Ming Wen, and Shing-Chi
Cheung. 2023. Comet: Coverage-guided model generation for deep learning
library testing. ACM Transactions on Software Engineering and Methodology 32, 5
(2023), 1-34.

Xiaoting Li, Xiao Liu, Lingwei Chen, Rupesh Prajapati, and Dinghao Wu. 2022.
ALPHAPROG: reinforcement generation of valid programs for compiler fuzzing.
In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 36. 12559~
12565.

Jun-Wei Lin, Navid Salehnamadi, and Sam Malek. 2023. Route: Roads not taken
in ui testing. ACM Transactions on Software Engineering and Methodology 32, 3
(2023), 1-25.

Jiawei Liu, Jinkun Lin, Fabian Ruffy, Cheng Tan, Jinyang Li, Aurojit Panda, and
Lingming Zhang. 2023. Nnsmith: Generating diverse and valid test cases for deep
learning compilers. In the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 2. 530-543.
Zhe Liu, Chunyang Chen, Junjie Wang, Xing Che, Yuekai Huang, Jun Hu, and
Qing Wang. 2023. Fill in the blank: Context-aware automated text input genera-
tion for mobile gui testing. In 2023 IEEE/ACM 45th International Conference on

Practitioners’ Expectations on Automated Test Generation

[46]

[47

[48]

[49]

[50

(51

[52]

[53]

[54

[55]

[56

[57]

[58]

[59]

[60]

(61

[62]

[63]

(64

[65

[66]

[67]

Software Engineering. 1355-1367.

Zhongxin Liu, Kui Liu, Xin Xia, and Xiaohu Yang. 2023. Towards more realistic
evaluation for neural test oracle generation. In Proceedings of the 32nd ACM
SIGSOFT International Symposium on Software Testing and Analysis. 589-600.
Stephan Lukasczyk and Gordon Fraser. 2022. Pynguin: Automated unit test gen-
eration for python. In Proceedings of the ACM/IEEE 44th International Conference
on Software Engineering: Companion Proceedings. 168—172.

Bogdan Marculescu, Man Zhang, and Andrea Arcuri. 2022. On the faults found in
rest apis by automated test generation. ACM Transactions on Software Engineering
and Methodology 31, 3 (2022), 1-43.

Luana Martins, Vinicius Brito, Daniela Feitosa, Larissa Rocha, Heitor Costa,
and Ivan Machado. 2021. From Blackboard to the Office: A Look Into How
Practitioners Perceive Software Testing Education. In Evaluation and Assessment
in Software Engineering. 211-220.

Antonio Mastropaolo, Nathan Cooper, David Nader Palacio, Simone Scalabrino,
Denys Poshyvanyk, Rocco Oliveto, and Gabriele Bavota. 2023. Using transfer
learning for code-related tasks. IEEE Transactions on Software Engineering 49, 4
(2023), 1580-1598.

Héctor D Menéndez, Michele Boreale, Daniele Gorla, and David Clark. 2020.
Output sampling for output diversity in automatic unit test generation. IEEE
Transactions on Software Engineering 48, 1 (2020), 295-308.

Hector D Menendez and David Clark. 2021. Hashing fuzzing: introducing input
diversity to improve crash detection. IEEE Transactions on Software Engineering
48,9 (2021), 3540-3553.

Mathieu Nassif, Alexa Hernandez, Ashvitha Sridharan, and Martin P Robillard.
2021. Generating unit tests for documentation. IEEE Transactions on Software
Engineering 48, 9 (2021), 3268-3279.

Pengyu Nie, Rahul Banerjee, Junyi Jessy Li, Raymond J Mooney, and Milos
Gligoric. 2023. Learning Deep Semantics for Test Completion. In 45th IEEE/ACM
International Conference on Software Engineering. 2111-2123.

Chittoor V Ramamoorthy, S-BF Ho, and WT Chen. 1976. On the automated
generation of program test data. IEEE Transactions on software engineering 4
(1976), 293-300.

Seemanta Saha, Laboni Sarker, Md Shafiuzzaman, Chaofan Shou, Albert Li,
Ganesh Sankaran, and Tevfik Bultan. 2023. Rare path guided fuzzing. In Proceed-
ings of the 32nd ACM SIGSOFT International Symposium on Software Testing and
Analysis. 1295-1306.

Ronnie ES Santos, Ayse Bener, Maria Teresa Baldassarre, Cleyton VC Magalhaes,
Jorge S Correia-Neto, and Fabio QB da Silva. 2019. Mind the gap: are practi-
tioners and researchers in software testing speaking the same language?. In 7th
International Workshop on Conducting Empirical Studies in Industry. 10-17.
Max Schéfer, Sarah Nadi, Aryaz Eghbali, and Frank Tip. 2023. An empirical
evaluation of using large language models for automated unit test generation.
IEEE Transactions on Software Engineering (2023).

Jianzhong Su, Hong-Ning Dai, Lingjun Zhao, Zibin Zheng, and Xiapu Luo. 2022.
Effectively generating vulnerable transaction sequences in smart contracts with
reinforcement learning-guided fuzzing. In Proceedings of the 37th IEEE/ACM
International Conference on Automated Software Engineering. 1-12.

Baicai Sun, Dunwei Gong, Feng Pan, Xiangjuan Yao, and Tian Tian. 2023. Evolu-
tionary generation of test suites for multi-path coverage of MPI programs with
non-determinism. IEEE Transactions on Software Engineering (2023).

Baicai Sun, Dunwei Gong, Tian Tian, and Xiangjuan Yao. 2020. Integrating an en-
semble surrogate model’s estimation into test data generation. IEEE Transactions
on Software Engineering 48, 4 (2020), 1336-1350.

Xiaoyu Sun, Xiao Chen, Yanjie Zhao, Pei Liu, John Grundy, and Li Li. 2022.
Mining android api usage to generate unit test cases for pinpointing compatibility
issues. In Proceedings of the 37th IEEE/ACM International Conference on Automated
Software Engineering. 70:1-70:13.

Yang Sun, Christopher M Poskitt, Jun Sun, Yuqi Chen, and Zijiang Yang. 2022.
LawBreaker: An approach for specifying traffic laws and fuzzing autonomous ve-
hicles. In Proceedings of the 37th IEEE/ACM International Conference on Automated
Software Engineering. 1-12.

Zohdinasab Tahereh, Vincenzo Riccio, Tonella Paolo, et al. 2023. DeepAtash:
Focused Test Generation for Deep Learning Systems. In Proceedings of the ACM
SIGSOFT International Symposium on Software Testing and Analysis. 954-966.
Haoxiang Tian, Guoquan Wu, Jiren Yan, Yan Jiang, Jun Wei, Wei Chen, Shuo Li,
and Dan Ye. 2022. Generating Critical Test Scenarios for Autonomous Driving
Systems via Influential Behavior Patterns. In Proceedings of the 37th IEEE/ACM
International Conference on Automated Software Engineering. 46:1-46:12.

Huynh Khanh Vi Tran, Nauman Bin Ali, Jirgen Bérstler, and Michael Unterkalm-
steiner. 2019. Test-case quality—understanding practitioners’ perspectives. In
20th International Conference on Product-Focused Software Process Improvement.
37-52.

Vasudev Vikram, Isabella Laybourn, Ao Li, Nicole Nair, Kelton OBrien, Rafaello
Sanna, and Rohan Padhye. 2023. Guiding greybox fuzzing with mutation testing.
In Proceedings of the 32nd ACM SIGSOFT International Symposium on Software
Testing and Analysis. 929-941.

1630

(68

[69]

[70

[72

(73]

(74

[75

[76

[77]

(78]

[79

%
=

(81

(82

(83

[84

[85

(86]

%
=

(88

ISSTA °24, September 16-20, 2024, Vienna, Austria

Meriel von Stein, David Shriver, and Sebastian Elbaum. 2023. DeepManeuver:
Adversarial Test Generation for Trajectory Manipulation of Autonomous Vehicles.
IEEE Transactions on Software Engineering (2023).

Chunhui Wang, Fabrizio Pastore, Arda Goknil, and Lionel C Briand. 2022. Au-
tomatic generation of acceptance test cases from use case specifications: an
nlp-based approach. IEEE Transactions on Software Engineering 48, 2 (2022),
585-616.

Junjie Wang, Yuchao Huang, Chunyang Chen, Zhe Liu, Song Wang, and Qing
Wang. 2023. Software testing with large language model: Survey, landscape, and
vision. arXiv preprint arXiv:2307.07221 (2023).

Cody Watson, Michele Tufano, Kevin Moran, Gabriele Bavota, and Denys Poshy-
vanyk. 2020. On learning meaningful assert statements for unit test cases. In the
ACMY/IEEE 42nd International Conference on Software Engineering. 1398-1409.
Anjiang Wei, Yinlin Deng, Chenyuan Yang, and Lingming Zhang. 2022. Free
lunch for testing: Fuzzing deep-learning libraries from open source. In 44th
International Conference on Software Engineering. 995-1007.

Jim Witschey, Olga Zielinska, Allaire Welk, Emerson Murphy-Hill, Chris May-
horn, and Thomas Zimmermann. 2015. Quantifying developers’ adoption of
security tools. In Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering. 260-271.

Trey Woodlief, Sebastian Elbaum, and Kevin Sullivan. 2022. Semantic image
fuzzing of Al perception systems. In Proceedings of the 44th International Confer-
ence on Software Engineering. 1958—-1969.

Shundan Xiao, Jim Witschey, and Emerson Murphy-Hill. 2014. Social influences
on secure development tool adoption: why security tools spread. In 17th ACM
conference on Computer supported cooperative work & social computing. 1095—
1106.

Danning Xie, Yitong Li, Mijung Kim, Hung Viet Pham, Lin Tan, Xiangyu Zhang,
and Michael W Godfrey. 2022. Docter: Documentation-guided fuzzing for testing
deep learning api functions. In Proceedings of the 31st ACM SIGSOFT International
Symposium on Software Testing and Analysis. 176—188.

Cong Yan, Suman Nath, and Shan Lu. 2023. Generating Test Databases for
Database-Backed Applications. In 2023 IEEE/ACM 45th International Conference
on Software Engineering. IEEE, 2048-2059.

Rahulkrishna Yandrapally, Saurabh Sinha, Rachel Tzoref-Brill, and Ali Mesbah.
2023. Carving Ul Tests to Generate API Tests and API Specification. In 2023
IEEE/ACM 45th International Conference on Software Engineering. 1971-1982.
Rahul Krishna Yandrapally and Ali Mesbah. 2022. Fragment-based test generation
for web apps. IEEE Transactions on Software Engineering 49, 3 (2022), 1086-1101.
Xiangjuan Yao, Gongjie Zhang, Feng Pan, Dunwei Gong, and Changging Wei.
2020. Orderly generation of test data via sorting mutant branches based on their
dominance degrees for weak mutation testing. IEEE Transactions on Software
Engineering 48, 4 (2020), 1169-1184.

Guixin Ye, Tianmin Hu, Zhanyong Tang, Zhenye Fan, Shin Hwei Tan, Bo Zhang,
Wenxiang Qian, and Zheng Wang. 2023. A Generative and Mutational Approach
for Synthesizing Bug-Exposing Test Cases to Guide Compiler Fuzzing. In Pro-
ceedings of the 31st ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 1127-1139.

Hao Yu, Yiling Lou, Ke Sun, Dezhi Ran, Tao Xie, Dan Hao, Ying Li, Ge Li, and
Qianxiang Wang. 2022. Automated assertion generation via information retrieval
and its integration with deep learning. In Proceedings of the 44th International
Conference on Software Engineering. 163-174.

Lucas Zamprogno, Braxton Hall, Reid Holmes, and Joanne M Atlee. 2023. Dy-
namic Human-in-the-Loop Assertion Generation. IEEE Transactions on Software
Engineering 49, 4 (2023), 2337-2351.

Man Zhang, Andrea Arcuri, Yonggang Li, Yang Liu, and Kaiming Xue. 2023.
White-box fuzzing RPC-based APIs with EvoMaster: An industrial case study.
ACM Transactions on Software Engineering and Methodology 32, 5 (2023), 1-38.
Qian Zhang, Jiyuan Wang, Guoqing Harry Xu, and Miryung Kim. 2022. Hetero-
Gen: transpiling C to heterogeneous HLS code with automated test generation
and program repair. In 27th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems. 1017-1029.

Yixue Zhao, Saghar Talebipour, Kesina Baral, Hyojae Park, Leon Yee, Safwat Ali
Khan, Yuriy Brun, Nenad Medvidovi¢, and Kevin Moran. 2022. Avgust: automat-
ing usage-based test generation from videos of app executions. In Proceedings of
the 30th ACM Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. 421-433.

Yuanhang Zhou, Fuchen Ma, Yuanliang Chen, Meng Ren, and Yu Jiang. 2023.
CLFuzz: Vulnerability Detection of Cryptographic Algorithm Implementation
via Semantic-aware Fuzzing. ACM Transactions on Software Engineering and
Methodology 33, 2 (2023), 1-28.

Zhichao Zhou, Yuming Zhou, Chunrong Fang, Zhenyu Chen, and Yutian Tang.
2022. Selectively Combining Multiple Coverage Goals in Search-Based Unit
Test Generation. In Proceedings of the 37th IEEE/ACM International Conference on
Automated Software Engineering. 91:1-91:12.

Received 2024-04-12; accepted 2024-07-03

	Abstract
	1 Introduction
	2 Research Methodology
	2.1 Stage 1: Interview
	2.2 Stage 2: Online Survey
	2.3 Stage 3: Literature Review

	3 Results
	3.1 RQ1: Practice of Developing Test Code
	3.2 RQ2: Practices and Issues of Automated Test Generation Tools
	3.3 RQ3: Tool Importance
	3.4 RQ4: Practitioners' Expectations
	3.5 RQ5: Difference Between the Current Research and Practitioners' Need

	4 Discussion
	4.1 Implications
	4.2 Threats to Validity

	5 Related Work
	6 Conclusion and Future Work
	Acknowledgments
	References

