
Received: 22 October 2022 - Revised: 3 February 2023 - Accepted: 5 June 2023 - IET Software
DOI: 10.1049/sfw2.12133

O R I G I N A L R E S E A R C H

Revisiting ‘revisiting supervised methods for effort‐aware
cross‐project defect prediction’

Fuyang Li1 | Peixin Yang1,2 | Jacky Wai Keung3 | Wenhua Hu1 | Haoyu Luo4 |
Xiao Yu1,2,5

1School of Computer Science and Artificial Intelligence, Wuhan University of Technology, Wuhan, China
2Sanya Science and Education Innovation Park of Wuhan University of Technology, Sanya, China
3Department of Computer Science, City University of Hong Kong, Hong Kong, China
4College of Mathematics and Informatics, South China Agricultural University, Guangzhou, China
5Wuhan University of Technology Chongqing Research Institute, Chongqing, China

Correspondence

Xiao Yu, Sanya Science and Education Innovation
Park of Wuhan University of Technology, Sanya,
China.
Email: xiaoyu@whut.edu.cn

Funding information

Project of Sanya Yazhou Bay Science and
Technology City, Grant/Award Number: SCKJ-
JYRC-2022-17; Natural Science Foundation of
China, Grant/Award Number: 62272356; Youth
Fund Project of Hainan Natural Science Foundation,
Grant/Award Number: 622QN344; Natural Science
Foundation of Chongqing, Grant/Award Number:
cstc2021jcyj-msxmX1115; Start-up Grant from
Wuhan University of Technology, Grant/Award
Number: 104-40120693

Abstract
Effort‐aware cross‐project defect prediction (EACPDP), which uses cross‐project soft-
ware modules to build a model to rank within‐project software modules based on the
defect density, has been suggested to allocate limited testing resource efficiently. Recently,
Ni et al. proposed an EACPDP method called EASC, which used all cross‐project
modules to train a model without considering the data distribution difference between
cross‐project and within‐project data. In addition, Ni et al. employed the different defect
density calculation strategies when comparing EASC and baseline methods. To explore
the effective defect density calculation strategies and methods on EACPDP, the authors
compare four data filtering methods and five transfer learning methods with EASC using
four commonly used defect density calculation strategies. The authors use three classi-
fication evaluation metrics and seven effort‐aware metrics to assess the performance of
methods on 11 PROMISE datasets comprehensively. The results show that (1) The
classification before sorting (CBS+) defect density calculation strategy achieves the best
overall performance. (2) Using balanced distribution adaption (BDA) and joint distri-
bution adaptation (JDA) with the K‐nearest neighbour classifier to build the EACPDP
model can find 15% and 14.3% more defective modules and 11.6% and 8.9% more
defects while achieving the acceptable initial false alarms (IFA). (3) Better comprehensive
classification performance of the methods can bring better EACPDP performance to
some extent. (4) A flexible adjustment of the defect threshold λ of the CBS+ strategy
contribute to different goals. In summary, the authors recommend researchers and
practitioners use to BDA and JDA with the CBS+ strategy to build the EACPDP model.

K E Y W O R D S
data mining, quality assurance, software engineering, software maintenance, software metrics, software quality

1 | INTRODUCTION

Computer software is widely used in various industries in so-
ciety today, which may fail with quality problems. As software
plays an increasingly important role in various fields, ensuring

software reliability is one of the issues people are more con-
cerned about [1–3]. Software defects are a potential sources of
errors, failures, and crashes of associated systems. However,
the increase in the scale of the software makes defect inspec-
tion and fixing more time‐consuming. Worse yet, software

This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the
original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.

© 2023 The Authors. IET Software published by John Wiley & Sons Ltd.

472 - IET Soft. 2023;17:472–495. wileyonlinelibrary.com/journal/sfw2

https://doi.org/10.1049/sfw2.12133
https://orcid.org/0000-0002-4473-3068
mailto:xiaoyu@whut.edu.cn
https://orcid.org/0000-0002-4473-3068
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://ietresearch.onlinelibrary.wiley.com/journal/17518814
http://crossmark.crossref.org/dialog/?doi=10.1049%2Fsfw2.12133&domain=pdf&date_stamp=2023-06-27

testing teams usually have limited testing resources and cannot
inspect all software modules in a short period of time [4–6].
Therefore, software defect prediction (SDP) techniques have
received more attention for fully using limited resources.
Software testing teams build the SDP model based on the
historical software data to predict the defective‐proneness of
the software module to be inspected. They can devote more
testing resources to or first inspect those software modules
that are predicted to be defective, which is very beneficial to
allocating software testing resources efficiently [7, 8] and help
defect localisation [9–12].

Most previous SDP models are based on binary classifica-
tion algorithms, and such models predict software modules into
two categories, that is, defective and clean. When software
testing resources are inadequate to inspect all the predicted
defective modules, the prediction results of classification‐based
SDP models cannot guide software testing teams regarding
which predicted defective modules to inspect first. Therefore,
for the first time, Mende et al. [13] proposed effort‐aware defect
prediction (EADP) to sort softwaremodules based on the defect
density and inspect the modules with higher defect densities
first. Software testing teams can find more defects when
checking a certain number of lines of code (LOC). For example,
Fenton [14] and Andersson [15] et al. pointed out that approx-
imately 20% of LOC account for 80% or more of the defects.

1.1 | Motivations

Most previous EADP studies [13, 16–21] usually built predictive
models on historical labelled software modules and then pre-
dicted the defect‐proneness of unlabelled modules in the same
project, referred to as within‐project EADP. However, in actual
software development scenarios, it is hard to obtain a large
amount of historical data from the same project, especially for
newly developed software [22–27]. Therefore, Ni et al. [28]
proposed an effort‐aware cross‐project defect prediction
(EACPDP) method called EASC in their IEEE transactions on
software engineering (TSE) paper titled ‘Revisiting supervised
and unsupervised methods for effort‐aware cross‐project defect
prediction’.

EASC first trains a naive Bayes classifier using cross‐project
software modules and then divides all within‐project software
modules into two lists (i.e. defective and clean), which contain
predicted defective and clean software modules, separately.
Finally, EASC appends clean modules to defective ones after
ranking the two lists separately by defect density (i.e. the ratio
between the predicted defective probability and LOC), since
EASC considers that high defective‐prone software modules
with less LOC should be checked, preferentially. The results of
experiments on four public datasets (AEEEM [29], NASA [30,
31], PROMISE [32], and RELINK [33]) demonstrate that the
EASC method significantly outperforms some unsupervised
methods when considering effort‐aware performance measures.

Although EASC achieves encouraging performance, Ni
et al.'s study [28] still has two issues that can be further
improved, which are:

(1) EASC trains the naive Bayes classifier using all cross‐
project data without considering the data distribution
difference between within‐project and cross‐project
modules. Zimmermann et al.'s study [34] shows that
classification‐based Cross‐Project Defect Prediction
(CPDP)models do not workwell when all cross‐project data
is used for training. Since EASC utilises the built naive Bayes
model to calculate the defect density, the distribution dif-
ference also degrades the performance of EASC.

(2) The experimental results showed that EASC performed
better than two data filtering methods (i.e. BF filter [35] and
Menzies11‐RF [36]), one data transformation method (i.e.
CamargoCruz09‐DT [37]) and one transfer learning
method (i.e. Watanabe08‐DT [38]). However, the four
methods used the predicted defective probability as defect
density to rank software modules. The inconsistency in
defect density calculation strategies between the four
compared methods and EASC leads to unfair com-
parisons. Even though the four compared methods ac-
count for the data distribution difference, it is unclear
whether data filtering and transfer learning methods can
enhance the performance of EACPDPmodels, since defect
densities are calculated differently using EASC.

1.2 | Our works and contributions

In light of the two issues and the high impact of the work
published by Ni et al. [28] in the TSE journal, we first do a
literature review to identify 32 primary EADP articles pub-
lished until January 2023 and find the four commonly used
defect density strategies in the studies, including Label/LOC,
Prob/LOC, classification before sort (CBS+) and Prob. Then,
we conduct a comprehensive empirical study on 11 software
defect datasets from the PROMISE corpus by posing the
following four research questions (RQs). In this section,
certain notations of the methods are utilised directly, which will
be thoroughly explained in Section 3.

RQ1: What is the best defect density calculation
strategy for EACPDP?

We investigate the impact of the four common defect
density calculation strategies for EACPDP. Since the main
purpose of EACPDP is to find more defects and defective
modules and to obtain a more accurate global ranking of soft-
ware modules, we mainly use PofB@20% (Proportion of Bugs
found when the top 20% LOC are inspected), Recall@20% and
Popt to measure the effectiveness of the calculation strategies.
We also use Precision@20% and initial false alarms (IFA) to
evaluate the false positive rate, and PMI@20% (Proportion of
Modules Inspected when the top 20% LOC are inspected) to
measure howmany software modules need to be checked. Then,
we use the Scott‐Knott Effect Size Difference (ESD) [39] test to
group these EACPDP methods into different rankings. The
results show that the CBS+ defect density calculation strategy
achieves better overall performance. The Label/LOC and
Prob/LOC calculation strategies perform poorly in terms of
PMI@20% and IFA, while the Prob calculation strategy has a

LI ET AL. - 473

 17518814, 2023, 4, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12133 by U
niversity O

f M
acau Procurem

ent Section, W
iley O

nline L
ibrary on [07/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

very poor performance in terms of Recall@20% and
PofB@20%. Based on these results, we recommend applying
the CBS+ defect density strategy to EACPDP, which first di-
vides the modules into predicted defective group and clean
group based on the defined defect threshold λ, then sorts the
modules in the two groups separately by Prob/LOC and finally
ranks the defective group ahead of the clean group.

RQ2: Can data filtering and transfer learning ap-
proaches improve the EACPDP performance?

To alleviate the data distribution difference between cross‐
project and within‐project modules, we apply the four data
filtering methods (BF, PF, KF and DFAC), and the five transfer
learning methods (TCA, balanced distribution adaption [BDA],
joint distribution adaptation [JDA], JPDA and TNB) to cross‐
project data, and use K‐Nearest Neighbour (KNN), Logistic
Regression (LR), andRandomForest (RF) to build theEACPDP
models with the CBS+ strategy. We employ the Wilcoxon
signed‐rank test [40] to validate the performance improvement
between the four data filteringmethods and five transfer learning
methods with None (without any data filtering and transfer
learning methods). Almost all data filtering methods cannot
enhance the EACPDP performance. BDA and JDA with the
KNN classifier to build EACPDP models significantly improve
the Recall@20% value by 15% and 14.3% and the PofB@20%
value by 11.6% and 8.9% while achieving the acceptable IFA.

RQ3: What is the relationship among the performance
measures?

We first use BDA and JDA with three classifiers to build
the classification model and then rank the software modules by
the CBS+ strategy. In order to investigate whether better
classification performance can contribute to building better
EACPDP models, we employ the Kendell correlation coeffi-
cient to evaluate the relationship between the three classifica-
tion metrics (i.e. Precision, Recall and F1) and the seven effort‐
aware metrics. The results show that Precision has a very high
correlation with Precision@20% and F1@20%, and F1 has a
moderate or low correlation with F1@20% on BDA and JDA
with the three classifiers. This implies that better comprehen-
sive classification performance of the methods can bring better
EACPDP performance to some extent.

RQ4: How does the defect threshold λ of the CBS+
strategy affect EACPDP performance?

One key of the CBS+ strategy is to divide all modules into
predicted defective and clean groups based on the defect
threshold λ. To explore the effect of λ, we analyse the per-
formance of BDA and JDA with three classifiers when we
change the defect threshold λ from 0.1 to 0.9. The results show
that the Recall@20%, F1@20%, PofB@20%, PMI@20% and
IFA values decrease, and the Precision@20% value increases
conversely when the threshold value is increased generally.
When λ is set to 0.5, the EACPDP models can achieve the best
Recall@20%, F1@20% and PofB@20% values with the
acceptable IFA.

Our contributions can be summarised as follows.1

� We perform a comprehensive empirical study to explore the
practical benefits of data filtering and transfer learning
methods with four commonly used defect density calcula-
tion strategies for the first time.

� We use three classification evaluation metrics and seven
effort‐aware evaluation metrics on 11 datasets from
different projects in the PROMISE corpus to comprehen-
sively evaluate these methods and provide some implications
to researchers and practitioners.

� We do a comprehensive literature review of 32 EADP
studies to identify four widely used defect density calculation
strategies. Researchers can utilise the set as a starting point
to conduct subsequent EADP studies.

� We make the source code and dataset of our empirical study
publicly available to facilitate the replication of our work and
conduct future research.

1.3 | Organisation

The remainder of the paper is organised as follows: Section 2
introduces the related work on effort‐aware defect prediction
and cross‐project defect prediction. Section 3 gives a brief
description of the data filtering and transfer learning methods.
Section 4 and Section 5 present the details of our experiment
setup as well as the experimental results. Section 6 discusses
the potential threats to validity. Section 7 gives some insights
for future research from the experimental results. Section 8
draws the conclusion.

2 | RELATED WORK

2.1 | Effort‐aware defect prediction

We review the relevant articles published between 2010 and
2022to explore the development of EADP. To the best of our
knowledge, the first two EADP articles with the titles containing
‘effort‐aware’ and ‘defect prediction/bug prediction’ were pre-
sented by Mende et al. [13] at the 14th European Conference on
Software Maintenance and Reengineering (CSMR 2010), and
Kamei et al. [41] at the 26th IEEE International Conference on
Software Maintenance (ICSM 2010). In order to refine the
search process throughout the EADP study, we set the search
start time to 2010. The search criteria for this study includes
accessible English articles and only the journal version if the
article contains both conference and journal versions. More-
over, we only select articles where the SDP scenario focuses on
ranking software modules by defect density. The reasons are as
follows2:

(1) Some researchers (e.g. Xia et al. [19], Yang et al. [42] and
Wang et al. [43]) have evaluated their proposed SDP

1
https://github.com/AIForSys/EACPDP

2
Cost‐effectiveness is also called Recall@20%, which represents the percentage of the
actual defective

474 - LI ET AL.

 17518814, 2023, 4, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12133 by U
niversity O

f M
acau Procurem

ent Section, W
iley O

nline L
ibrary on [07/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://github.com/AIForSys/EACPDP

approach using not only many classification‐based evalu-
ation metrics (e.g. Precision, Recall, and F1), but also a few
effort‐aware evaluation metrics (e.g. cost‐effectiveness
modules found in the top 20% LOC.). However, the
main goal of the proposed method is to correctly classify
the defect‐proneness of software modules rather than rank
modules.

(2) It is difficult and impractical to find all SDP articles that
use cost‐effectiveness as an evaluation metric. Therefore,
we only select articles where the SDP scenario focuses on
ranking software modules.

We search for related articles using Google Scholar,
IEEExplore, and ACM Digital Library, among others. First,
inspired by Zhou et al.’s [44] method, we perform a forward
snowball search by recursively examining citations from Mende
et al.'s CSMR paper [13] and Kamei et al.'s ICSM paper [41].
Specifically, we first search and find all articles citing these two
papers using Google Scholar, IEEExplore, and ACM Digital
Library, among others. Then, we screen out irrelevant studies
and repeat this operation. Eventually, we identify 32 papers
with a significant impact in the field of EADP.

Mende et al. [13] applied ‘effort‐aware’ to defect prediction
for the first time. Kamei et al. [41] further studied the perfor-
mance of the classification algorithms for EADP, including
linear models, regression trees and random forests. Kamei et al.
[17] utilised linear regression to build the EADP model to help
developers review defects more efficiently with a fixed inspec-
tion budget. Yang et al. [45] and Ma et al. [46] argued that slice‐
based cohesion metrics and network measures were of practical
value in the context of EADP, respectively. Subsequently, Yang
et al. [20] proposed an unsupervised model called ManualUp for
Just‐In‐Time (JIT) EADP. The results showed that ManualUp
was more effective than some supervised methods in
Recall@20%. Panichella et al. [47] and Yang et al. [48] proposed
using genetic algorithms to train EADP models and validated
their effectiveness. Yang et al. [49] studied the relationship be-
tween functional‐level dependency clusters and software quality
for EADP. Muthukumaran et al. [50] took the joint distribution
of metrics and transformed them into aggregated scores that
can be expressed as probabilities to build an aggregated EADP
model. Bennin et al. [51] and Yu et al. [52] investigated the best
EADP algorithms, and then Bennin et al. [53] evaluated the
impact of data re‐sampling methods on EADP. Yan et al. [54]
compared the effectiveness of ManualUp and supervised pre-
diction models on file‐level EADP. Fu et al. [55] proposed a
supervised effort‐aware JIT defect prediction model named
OneWay, which was based on the ManualUp method proposed
by Yang et al. [49]. OneWay first evaluates the unsupervised
models from ManualUp on labelled training data and then se-
lects the one with the best cost‐effectiveness for prioritising the
changes in testing data. The experiments conducted by Fu et al.
[55] showed that OneWay outperforms a majority of unsuper-
vised models in effort‐aware metrics. Liu et al. [56] used code
churn to build an unsupervised JIT EADPmodel called CCUM.
Subsequently, Miletic et al. [57] explored the applicability of
cross‐release code churn for identifying critical design changes

and predicting defects in software version iterations. Chen et al.
[58] used a multi‐objective optimisation algorithm to construct
the JIT EADP model. Huang et al. [16, 59] reviewed the works
of Kamei et al. [17] and Yang et al. [20] and pointed out that the
value of Precision@20% could be low and the Proportion of
Module Inspected (PMI@20%) and IFA values could be very
high according to the recommended ranking of ManualUp
when inspecting the top 20% LOC. Therefore, they proposed
the two supervised models (i.e. CBS and CBS+) and verified the
effectiveness of these two models on effort‐aware metrics.
Experiments show that both methods outperform the unsu-
pervised method ManualUp in terms of Precision@20%,
PMI@20% and IFA. Guo et al. [60] bridged the gap between
effort‐aware performance and high classification ability by
revisiting the JIT EADP models. Qiao et al. [61] proposed a
deep learning‐based JIT EADP method, which utilised neural
networks to select useful features for defect prediction. Qu et al.
[62] and Du et al. [63] analysed software defect distributions
using k‐core decomposition on class‐dependent networks and
proposed a top‐core equation to improve the EADP model. In
order to overcome the lack of training data, Zhang et al. [64]
proposed a semi‐supervised model based on sample selection
for JIT EADP. Fan et al. [65] investigated the effects of mis-
labelling variation of different SZZ variants on the performance
and interpretation of JIT EADP models. Ulan et al. [66] pro-
posed an unsupervised EADP method based on weighted
metric aggregation. Carka et al. [67] proposed to evaluate the
EADP performance using normalised PofB, which ranked
software modules based on predicted defect densities. Zhao
et al. [21], Xu et al. [68] and Cheng et al. [22] proposed three JIT
EADP methods for Android applications. Ni et al. [28] pro-
posed a supervised EACPDP method called EASC. The dif-
ference with CBS+ [16] is that EASC used naive Bayes as the
underlying classifier. However, EASC does not take into ac-
count differences in data distribution between within‐project
and cross‐project data and builds models using all cross‐
project data, which can potentially impact the performance. In
addition, the inconsistency of the strategies of defect density
between EASC and four compared methods may result in unfair
comparisons. These retrieved papers mainly used the four
defect density strategies of defect density: Label/LOC, Prob/
LOC, CBS+, and Prob. The detailed introductions of the four
strategies are presented in Section 3.1. Table 1 provides an
overview of the EADP studies.

2.2 | Cross‐project defect prediction

In practice, it is hard to build reliable SDP models for a new
project due to the lack of historical data. Earlier, researchers
suggested using cross‐project modules to train SDP models
and predicting defects in within‐project modules and called
this approach CPDP. Briand et al. [69] first proposed to use
historical software projects of other systems to build SDP
models and explored the applicability of CPDP in object‐
oriented software projects. Another CPDP study on 622
cross‐project pairs by Zimmermann et al. [34] used a logistic

LI ET AL. - 475

 17518814, 2023, 4, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12133 by U
niversity O

f M
acau Procurem

ent Section, W
iley O

nline L
ibrary on [07/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

regression classifier to build CPDP models. The experimental
results of the two studies showed the poor performance of
CPDP models, and CPDP is still a severe challenge. The main
reason is that the cross‐project and within‐project modules

have different data distributions. Therefore, subsequent CPDP
studies [70, 71] aim to alleviate the problem in the two main-
stream ways, that is, data filtering and transfer learning.

2.2.1 | Cross‐project defect prediction based on
data filtering

The data filtering methods aim to find similar modules based
on a defined similarity index from cross‐projects as the training
data to build a better predictor of the within‐project. Ac-
cording to Turhan et al.'s [35] study, the CPDP performance
will be low if all available cross‐projects are used to build the
model. Therefore, they propose the Burak filter to select some
valuable modules from cross‐projects that are similar to
within‐project modules. Subsequently, Peters et al. [72] pro-
posed the Peter filter. It first labels each module in cross‐
projects with the closest within‐project module, and then
each within‐project module selects its closest cross‐project
module with the label to build the filtered cross‐project data.
Kawata et al. [73] proposed a density‐based spatial clustering
guided data filter, and Yu et al. [74] proposed an agglomerative
clustering guided data filter. The two methods assume that the
cross‐project modules that are in the same clusters as within‐
project modules are the most valuable training data. Hosseini
et al. [75] further embedded a genetic algorithm in the Burak
filter to generate an evolving training dataset to improve
CPDP. Bin et al. [76] explored the impact of nine data filtering
methods for CPDP and concluded that using all cross‐project
modules as the training data could achieve better performance.
Therefore, the subsequent CPDP studies of data filtering are
limited. However, little is known about whether data filtering
methods can enhance the performance of EACPDP models,
which drives us to investigate the problem in the study.

2.2.2 | Cross‐project defect prediction based on
transfer learning

The transfer learningmethodsmainly borrow data or knowledge
from cross‐projects to facilitate the CPDPmodel building at the
within‐project. Ma et al. [77] used the gravitational gravity to
assign higher weights for more relevant cross‐project modules
and then built a weighted naive Bayes model. Nam et al. [78]
proposed the TCA + method by adding decision rules to select
an appropriate normalisation method for preprocessing in
Transfer Component Analysis (TCA), and verified the effec-
tiveness of TCA and TCA + on CPDP. Xia et al. [19] proposed
using genetic algorithms and ensemble learning to build a
compositional model for CPDP. Jing et al. [79], Limsettho et al.
[80], Wu et al. [81], Gong et al. [82], Xu et al. [83] and Li et al. [84]
considered both the data distribution differences and the class
imbalance problem of cross‐project data, and applied some
transfer learning (e.g. Semi‐Supervised Transfer Component
Analysis (SSTCA), Joint Distribution Adaptation (JDA), TCA
and Joint Probabilistic Domain Adaptation (JPDA)) and
imbalanced learning (e.g. Improved Subclass Discriminant

TABLE 1 The overview of the EADP studies with the four defect
density calculation strategies.

Defect density strategies Studies

Label/LOC Mende et al. 2010 [13]

Kamei et al. 2010 [41]

Kamei et al. 2012 [17]

Panichella et al. 2016 [47]

Yang et al. 2016 [49]

Bennin et al. 2016 [51]

Bennin et al. 2016 [53]

Muthukumaran et al. 2016 [50]

Yang et al. 2016 [20]

Yan et al. 2017 [54]

Liu et al. 2017 [56]

Fu et al. 2017 [55]

Miletic et al. 2018 [57]

Chen et al. 2018 [58]

Guo et al. 2018 [60]

Yang et al. 2021 [48]

Prob/LOC Yang et al. 2015 [45]

Ma et al. 2016 [46]

Guo et al. 2018 [60]

Qu et al. 2019 [62]

Qiao et al. 2019 [61]

Fan et al. 2019 [65]

Zhang et al. 2019 [64]

Yu et al. 2019 [52]

Du et al. 2022 [63]

Carka et al. 2022 [67]

CBS+ Huang et al. 2019 [16]

Ni et al. 2020 [28]

Zhao et al. 2020 [21]

Xu et al. 2021 [68]

Zhao et al. 2022 [21]

Cheng et al. 2022 [22]

Prob Guo et al. 2018 [60]

Ni et al. 2020 [28]

Ulan et al. 2021 [66]

Abbreviations: CBS+, classification before sorting, EADP, effort‐aware defect
prediction; LOC, lines of code.

476 - LI ET AL.

 17518814, 2023, 4, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12133 by U
niversity O

f M
acau Procurem

ent Section, W
iley O

nline L
ibrary on [07/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

Analysis (ISDA), Synthetic Minority Oversampling Technique
(SMOTE) and STratification embedded in Nearest Neighbour
(STr‐NN)) methods to solve the two problems. Xu et al. [68]
applied the Balanced Distribution Adaption (BDA) method to
CPDP, which not only considered the marginal and conditional
distributions, but also assigned different weights to them,
adaptively. Subsequently, Omondiagerbe et al. [85] proposed the
Weighted‐BDA + method to improve CPDP performance,
which incorporated the ratio of within‐project and cross‐project
modules into the BDA model learning process and adjusted the
weights of the marginal and conditional distributions. Wu et al.
[81] proposed a cost‐sensitive kernelised semi‐supervised dic-
tionary learning method for CPDP, which can use limited
labelled defective modules and lots of unlabelled modules in the
kernel space and consider the misclassification cost during dic-
tionary learning. Zou et al. [26] proposed a CPDPmethod called
CFIW‐TNB, which took into consideration instance‐transfer
learning and feature‐transfer learning. Li et al. [24] proposed a
selection‐based kernelised discriminant subspace alignment
method for CPDP, which took into account data distribution
differences, non‐linearity, and discriminant problems at the same
time. Jin et al. [86] employed the kernel twin support vector
machines based on domain adaptation to reduce the distribution
difference and used a particle swarm optimisation algorithm to
obtain the Support Vector Machine (SVM) parameters. Huang
et al. [1] proposed a CPDP method based on multi‐adaptation
and nuclear norms to alleviate the data distribution differences
between cross‐project and within‐project modules.

3 | PRELIMINARIES

3.1 | Defect density calculation methods

(1) The first defect density strategy is the ratio between Label
(m) and LOC(m):

Density_1ðmÞ ¼
LabelðmÞ
LOCðmÞ

; ð1Þ

where m refers to the module called m, Label(m) repre-
sents the predicted class label of the modulem (1 or 0, 1 means
defective, and 0 means clean), and LOC(m) is the LOC of the
module m.

(2) The second defect density strategy is the ratio between
Prob(m) and LOC(m):

Density_2ðmÞ ¼
ProbðmÞ
LOCðmÞ

; ð2Þ

where Prob(m) represents the predicted defective proba-
bility of the module m.

(3) The third defect density strategy is the CBS+ (Classification
Before Sort) method proposed by Huang et al. [16]. CBS+
separates the modules into two groups, that is, defective

group (the predicted defective probabilities of the modules
in the group is greater than or equal to 0.5) and clean group
(the predicted defective probabilities of the modules in the
group is less than 0.5). Then, software testers first inspect
the predicted defective modules in the defective group ac-
cording to the defect density calculated in Formula (3).
Then, the predicted clean modules in the clean group are
inspected according to the defect density calculated in
Formula (3), if there is still testing resource left.

Therefore, in Formula (3) we subtract one from the
defective probability of predicted clean software modules to
ensure that the predicted defective modules are ranked before
the predicted clean ones and can be detected preferentially.

Density_3ðmÞ ¼

8
>>><

>>>:

ProbðmÞ
LOCðmÞ

; ProbðmÞ ≥ 0:5

ProbðmÞ − 1
LOCðmÞ

; ProbðmÞ < 0:5:

ð3Þ

(4) The fourth defect density strategy directly uses the pre-
dicted defective probability of the software module m as
the defect density:

Density_4ðmÞ ¼ ProbðmÞ: ð4Þ

For example, suppose there are five software modules (m1,
m2, m3, m4 and m5) with 50, 100, 150, 50 and 150 LOC,
respectively. A classifier predicts the defective probabilities of
these five modules as 0.4, 0.6, 0.8, 0.3 and 0.9, and the class
labels as 0, 1, 1, 0 and 1. The ranking of the five software
modules according to the four strategies of defect density is
shown in Figure 1.

3.2 | Data filtering methods

(1) Burak Filter (BF) [35] assumes that the cross‐project
modules closest to the within‐project modules are the
most useful modules. The specific process of BF is as
follows: (a) For each within‐project module, BF chooses its
k nearest neighbours among all cross‐project modules
based on the distance measurement in the Euclidean space.
(b) BF merges these neighbours into a duplicate‐free
training dataset.

(2) Peters Filter (PF) [72] also assumes that the cross‐project
modules closest to the within‐project modules are the
most valuable modules. However, PF and BF are different
in finding cross‐project modules: (a) PF combines within‐
project modules and cross‐project modules to get a com-
bined set. (b) It uses the K‐Means clustering algorithm to
cluster the combined dataset to obtain k distinct clusters.
(c) The clusters containing at least one within‐project
module are preserved and others are abandoned. (d) For
each within‐project module, PF finds the closest module

LI ET AL. - 477

 17518814, 2023, 4, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12133 by U
niversity O

f M
acau Procurem

ent Section, W
iley O

nline L
ibrary on [07/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

from the cross‐project data in the same cluster. (e) PF
combines these modules without duplicates as the training
data.

(3) Kawata Filter (KF) [73] assumes that the cross‐project
modules in the same clusters as the within‐project mod-
ules are the most useful. The specific process of KF is as
follows: (a) KF combines all cross‐project modules and all
within‐project modules and employs the DBSCAN clus-
tering algorithm to group these modules. (b) It retains the
clusters containing at least one within‐project module and
selects all cross‐project modules in the clusters as the
training data.

(4) Data Filtering based on Agglomerative Clustering
(DFAC) [74] also assumes that the cross‐project modules
in the same clusters as the within‐project modules are the
most valuable. The difference with KF is that DFAC
employs the agglomerative clustering algorithm to solve
the randomness problem caused by setting a large number
of parameters of the DBSCAN algorithm.

3.3 | Transfer learning methods

(1) Transfer Naive Bayes (TNB) [77] efficiently assigns
weights to the cross‐project modules so that the cross‐
project module distribution is close to the distribution of
within‐project modules. Specifically, (a) TNB fetches the
scope of features in each dimension of the within‐project.
(b) The features of each cross‐project module are
compared with the within‐project feature scope to calcu-
late the number of similar attributes. (c) TNB analogy to
the gravitational formula, using the number of similar at-
tributes to calculate each cross‐project module weight. (d)
The weighted naive Bayes model is build based on the
weighted cross‐project modules.

(2) Transfer Component Analysis (TCA) [87] aims to find a
latent feature space so that the marginal distributions be-
tween different projects after transferring are similar.
Therefore, TCA maps the within‐project and cross‐project
modules together into a high‐dimensional Regenerative
Kernel Hilbert Space (RKHS), where the distribution
distance between the within‐project and cross‐project

modules is minimised and their respective internal prop-
erties are preserved. In addition, TCA uses Maximum
Mean Discrepancy (MMD) to learn the transfer compo-
nents across projects in the RKHS space.

(3) Joint Distribution Adaptation (JDA) [88] additionally
adds the conditional distribution between different pro-
jects to optimisation objective, compared with TCA only
considering the marginal distribution. In order to calculate
the conditional distribution, JDA first trains a classifier to
predict and optimise pseudo labels of within‐project
modules. Then, JDA iteratively refines their pseudo la-
bels until they are stabilised and finally constructs the
transferred feature representation of the cross‐project and
within‐project modules.

(4) Balanced Distribution Adaption (BDA) [89] takes into
account the marginal and conditional distributions of the
different projects and automatically assigns weights to
both distributions to obtain the best transfer components.
The JDA and BDA methods suggest optimising the mar-
ginal and conditional distributions, but the BDA method
notices the difference in importance between the two
distinct distributions. Therefore, BDA tries to find the
balance factor, which can adaptively adjust the importance
of those two distributions. Specifically, BDA continuously
corrects the balance factor through iterations. Then, BDA
constructs the transferred feature representation of the
cross‐project and within‐project modules after finding the
optimal balance factor. In particular, when the balance
factor is around 0.5, BDA considers the two distributions
equally important, and BDA is similar to the JDA method.

(5) Joint Probability Domain Adaptation (JPDA) [90]
considers the differences in joint probability distributions
between different projects and the distinguishability be-
tween different classes. From a Bayesian theorem
perspective, JPDA suggests computing the discrepancy of
joint probability distribution between cross‐project and
within‐project modules rather than the sum of the mar-
ginal and conditional distribution. Specifically, JPDA im-
proves the transferability between different projects by
minimising the MMD of the same class and the distin-
guishability between different classes by maximising the
MMD of different classes.

F I GURE 1 The ranking of the five software modules according to the four defect density calculation strategies. (a) Sorted by Density_1. (b) Sorted by
Density_2. (c) Sorted by Density_3. (d) Sorted by Density_4.

478 - LI ET AL.

 17518814, 2023, 4, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12133 by U
niversity O

f M
acau Procurem

ent Section, W
iley O

nline L
ibrary on [07/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

4 | EXPERIMENTAL SETUP

4.1 | Datasets

To meet the requirements of the EADP task for the number of
defects, we select 11 software project datasets from the
PROMISE data repository [91] in this paper. The selection of
our experimental dataset differs from that of Ni et al.'s [28] as
they did not consider the information on the number of defects
and chose the datasets without the information about the
number of defects, such as AEEEM [29], NASA [30, 31] and
RELINK [33]. However, the goal of EADP is to predict defect
density (i.e. the ratio between the number of defects and LOC)
and rank software modules based on the density. Therefore, we
only utilise the PROMISE dataset which comprises information
on the number of defects as our experimental dataset. Each
module in the dataset contains 20 mutually exclusive code fea-
tures and one numeric attribute that indicates the number of
defects in the module. The experimental projects come from
different application domains and have different sizes (i.e.
containing 205 to 965 modules) and different percentages of
defective modules (i.e. varying from 2.2% to 98.8%), which is
conducive to improving the generalisation of our experiments.
Moreover, these datasets are publicly available, so the results of
this paper can be replicated to a large extent by other researchers.
The description of these datasets is provided in Table 2,
including the number of modules (#Module), the percentage of
defective modules (%Defective), the average number of defects
(AvgDefects), and the average LOC (AvgLOC).

4.2 | Evaluation metrics

4.2.1 | Effort‐aware evaluation metrics

We restrict the limited effort to 20% of the total LOC of the
defect dataset, similar to the previous EADP studies [16, 21,
28, 68]. Assume that there are N software modules in a defect

dataset, which contain P defective modules and Q defects.
When checking the top 20% LOC according to the predicted
result of the EADP model, the software testing team inspects
n software modules and finds p actual defective modules with
q defects. In our experiments, we utilise several evaluation
measures that are commonly adopted in both the software
engineering [92–94] and machine learning [95–100].

Precision@20% is the ratio between the number of actual
defective modules and the number of predicted defective
modules in the top 20% LOC. A higher Precision@20% is
significant to adopting the EADP model in practice. If the
software testing team finds that many predicted defective
modules do not contain defects, they may ignore all prediction
results and lead to the waste of testing resources.

Precision@20%¼
p
n

ð5Þ

Recall@20% is the ratio between the number of actual
defective modules found in the top 20% LOC and the number
of defective modules in the dataset. A higher Recall@20%
means that the software testing team can capture more
defective modules.

Recall@20%¼
p
P

ð6Þ

In general, the improvement in Recall@20% comes at the
expense of Precision@20%. So we further use F1@20% to
comprehensively measure the EADP performance when the
top 20% LOC are inspected. F1@20% takes into account both
the Precision@20% and Recall@20% simultaneously, which is
a harmonic average of the two.

F1@20%¼
2� Precision@20%� Recall@20%
Precision@20%þ Recall@20%

ð7Þ

PofB@20% is the Proportion of the found Bugs when the
top 20% LOC are inspected. The higher the PofB@20%, the
more defects can be detected.

Pof B@20%¼
q
Q

ð8Þ

PMI@20% is the Proportion of Module Inspected when
the top 20% LOC are inspected. A high PMI@20% indicates
that the software testing team needs to check for more mod-
ules given the same number of LOC. Switching between
different modules frequently also increases the actual effort
and time cost.

PMI@20%¼
n
N

ð9Þ

PofB@20% and PMI@20% are often correlated, and when an
EADP method obtains a high PofB@20%, it will also achieve
a high PMI@20%.

TABLE 2 The details of the experimental datasets.

Datasets #Module %Defective AvgDefects AvgLOC

Ant 1.7 745 22.3% 2.04 280.1

Camel 1.6 965 19.5% 2.66 117.2

Ivy 2.0 352 11.4% 1.4 249.3

Jedit 4.3 492 2.2% 1.09 411.3

Log4j 1.2 205 92.2% 2.63 186.3

Lucene 2.4 340 59.7% 3.11 302.5

Poi 3.0 442 63.6% 1.78 292.6

Synapse 1.2 256 33.6% 1.69 209.0

Velocity 1.6 229 34.1% 2.44 249.0

Xalan 2.7 909 98.8% 1.35 471.5

Xerces 1.4 588 74.3% 3.65 240.1

LI ET AL. - 479

 17518814, 2023, 4, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12133 by U
niversity O

f M
acau Procurem

ent Section, W
iley O

nline L
ibrary on [07/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

Popt is used to evaluate how close the built prediction
model is to the optimal model. The x‐axis in the Alberg plot
shown in Figure 2 represents the cumulative percentage of
LOC, and the y‐axis represents the cumulative percentage of
the found defects. The prediction model sorts the software
modules in descending order according to the predicted defect
density; the optimal model sorts the software modules in
descending order according to the actual defect density; the
worst model sorts the software modules in ascending order
according to the actual defect density. The Popt is calculated as
follows:

Popt¼ 1 −
AreaðoptimalÞ − AreaðpredictionÞ
AreaðoptimalÞ − AreaðworstÞ

; ð10Þ

where Area(optimal) is the area under the optimal model
curve, Area(prediction) is the area under the prediction model
curve, and Area(worst) is the area under the worst model curve.
The higher Popt value indicates that the prediction model is
closer to the optimal model and has a better global ranking
performance.

IFA is the number of IFA encountered before the software
testing team finds the first actual defective module. Kochhar
et al. [101] pointed out that the software testing team will get
frustrated and stop checking other predictive defective mod-
ules if the top‐k predicted defective modules by the EADP
model are all false positives. In addition, their study shows that
almost all respondents (close to 98%) agree that examining
more than 10 actual clean modules was beyond their acceptable
level.

4.2.2 | Classification evaluation metrics

In Section 5.2, we conduct a correlation analysis to explore
the relationship between the effort‐aware performance of the
EACPDP model and the classification performance of the
embedding classification model. Therefore, we employ Preci-
sion, Recall and F1 to evaluate the classification performance.
The confusion matrix shown in Table 3 lists all four possible

prediction results, where true positive (TP) is the number of
defective modules correctly predicted as defective, false nega-
tive (FN) is the number of defective modules wrongly pre-
dicted as clean, false positive (FP) is the number of clean
modules wrongly predicted as defective and true negative (TN)
is the number of clean modules correctly predicted as clean.

Precision is the percentage of the modules that actually
contain defects to all the predicted defective modules.

Precision¼
TP

TP þ FP
ð11Þ

Recall is the percentage of the correctly predicted defec-
tive modules to all the actual defective modules in the dataset.

Recall ¼
TP

TP þ FN
ð12Þ

F1 is the harmonic mean of Precision and Recall, and we use
the F1 to measure the model's classification performance
comprehensively.

F1¼
2� Precision� Recall
Precisionþ Recall

ð13Þ

4.3 | Experimental process

Cross‐project validation: We employ 11 software projects as
the experimental datasets. It is difficult to determine which
project to use as a training set to build a better model, so we
choose one dataset as a within‐project for testing and the
remaining ten cross‐projects for training at each time. The
cross‐project experimental setting is the same as that of Huang
et al.'s [16] study. Figure 3 shows the specific process of our
experiments. For example, we use Ant 1.7 as a within‐project
and the remaining 10 projects (i.e. Camel 1.6, Ivy 2.0, …,
Xerces 1.4) as cross‐projects.

(1) We use the four data filtering methods (i.e. BF, PF, KF and
DFAC) to remove all irrelevant modules in the cross‐
projects and obtain the 10 filtered cross‐projects (i.e.
Camel 1.60, Ivy 2.00, …, Xerces 1.40). Then, we use KNN,
LR, and RF classifiers to build predictors based on the 10
filtered cross‐projects. Finally, we employ the predictor to
predict the class label and defective probability of the
modules in Ant 1.7 and sort them according to the four
calculation methods of defect density mentioned in
Section 3.1.

F I GURE 2 The Alberg plot.

TABLE 3 The confusion matrix.

Predicted defective Predicted clean

Actual defective TP FN

Actual clean FP TN

Abbreviations: FN, false negative; FP, false positive; TN, true negative; TP, true positive.

480 - LI ET AL.

 17518814, 2023, 4, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12133 by U
niversity O

f M
acau Procurem

ent Section, W
iley O

nline L
ibrary on [07/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

(2) We apply the five transfer learning methods (i.e. TCA,
BDA, JDA, JPDA and TNB) to transfer these modules'
features in all the projects and obtain the 10 transferred
cross‐projects (i.e. Camel 1.6*, Ivy 2.0*, …, Xerces 1.4*)
and the one transferred within‐project (i.e. Ant 1.7*). Next,
we still use the three classifiers mentioned above to build
the predictor. At last, we use the predictor to sort the
modules in Ant 1.7* according to the four calculation
methods of defect density.

4.4 | Classifiers

The study by Ghotra et al. [102] pointed out that the choice of
different binary classification algorithms has a obvious influ-
ence on the performance of SDP models. Therefore, if we
build EACPDP models based on different classification tech-
niques, we may get different results. Finally, we select the three
classifiers (i.e., Logistic Regression (LR), K‐Nearest Neighbour
(KNN), and Random Forest (RF)), since our preliminary
experiment results show that the three classifiers achieve the
better performance than the widely used classifiers (including
naive Bayes, support vector machine, decision tree, and multi‐
layer perceptron). These three classifiers were widely used in
previous SDP studies [16, 28, 68, 72, 76, 83], and they belong
to the three different categories, that is, regression function,
instance‐based algorithm, and ensemble learning.

(1) Logistic Regression (LR) [103] adds a non‐linear map-
ping (Sigmoid function) to classify software modules into
discrete outcomes. LR uses maximum likelihood estima-
tion to train weights for each feature of the module, and
uses the sigmoid function to map a discrete value between

0 and 1, which is used as the defective probability to
classify the module.

(2) K‐Nearest Neighbour (KNN) [104] predict the within‐
project module's label by the K nearest cross‐project
modules. KNN find the K cross‐project modules that
are closest to the within‐project module, and use the class
labels with the most occurrences as the label of the within‐
project module.

(3) Random Forest (RF) [105] generates a random forest of
multiple decision trees from the cross‐project by bootstrap
resampling technique, and finally the prediction class with
the highest votes is used as the predicted label of the
within‐project module.

4.5 | Statistic test

Scott‐Knott ESD [39] test is amultiple comparisonmethod that
utilises hierarchical clustering to divide EACPDP methods into
different groups with significant differences at the significance
level of 0.05 (α = 0.05). It ranks the EACPCP methods while
ensuring the magnitude of differences is negligible for methods
within the same group, and the difference is not negligible for
methods between groups. In other words, there is no significant
difference among the EACPDP methods in the same group,
while the EACPDPmethods in different groups have significant
difference. For example, the Scott‐Knott ESD test divides five
methods into the two groups, that is, Group 1 (including
methods A, D andE) andGroup 2 (includingmethods B and C).
There is no significant difference between the methods within
eitherGroup 1 orGroup 2.However, themethodsA,D andE in
Group 1 significantly outperform the methods B and C in
Group 2 according to the Scott‐Knott ESD test.

F I GURE 3 The specific process of our experiments.

LI ET AL. - 481

 17518814, 2023, 4, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12133 by U
niversity O

f M
acau Procurem

ent Section, W
iley O

nline L
ibrary on [07/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

Wilcoxon signed‐rank [40] test is a non‐parametric sample
test, which is based on the ranking of the methods rather than
the mean. The basic principle of hypothesis testing is the small
probability principle, which states that a small probability event
cannot actually occur in a single test. However, when multiple
hypothesis tests are performed under the same research prob-
lem, it no longer fits the single test as stated by the small
probability principle. So we also use the Benjamini–Hochberg
[106] (BH) correction to control the false discovery rate. The
null hypothesis is that there is no difference between two
EACPDP methods. If the corrected p‐value by the BH pro-
cedure is less than 0.05, we reject the null hypothesis and
consider a significant difference between the EACPDP
methods; otherwise, we accept the original hypothesis.

5 | EXPERIMENTAL RESULTS

5.1 | RQ1: what is the best strategy of defect
density for EACPDP?

Motivation: The previous EADP studies mainly employed the
four strategies of defect density, that is, Label/LOC, Prob/
LOC, CBS+ and Prob. To verify which strategy performs the
best, we compare the performance of the 10 methods when
applying the four strategies to sort software modules.

Methods: Figures 4–10 show the performance distribution
of different methods using the four strategies across all datasets
in terms of Precision@20%, Recall@20%, F1@20%,
PofB@20%, PMI@20%, IFA and Popt. We first apply the 10
methods to the cross‐project datasets and then use KNN to
build the EACPDP models. The None method only uses the
KNN classifier to build the model based on all cross‐project

data. We denote the methods as X1, X2, X3 and X4, where
‘X’ represents the learning method, and 1, 2, 3 and 4 represent
the first, second, third and fourth strategies of defect density.
The colour of each box represents the Scott‐Knott ESD test
ranking. From top down, the order is red, green, blue, yellow,
purple, orange, pink, and grey. More specifically, the methods
represented by red significantly outperforms the methods rep-
resented by other colours according to the Scott‐Knott ESD
test. Tables 4–10 list the medium performance values of the
methods across all datasets. Due to the space limit, we only
present the results with the KNN classifier. The main reasons
are that KNN achieves better performance than LR and RF and
the results of RQ1 with LR and RF are similar to that of KNN.

Results: The CBS+ strategy can achieve a better overall
performance. The Label/LOC and Prob/LOC strategies
perform poorly in terms of PMI@20% or IFA, while the Prob
strategy has a poor performance in terms of Recall@20% and
PofB@20%. Detailed analysis of these results are as follows:

(1) None of the methods using the Label/LOC strategy
perform the best on all the metrics. BDA and JDA achieve
the best Recall@20%, F1@20%, PofB@20%, and Popt.
However, their medium IFA values are both 11. The pre-
vious studies [16, 101] concluded that if the first 10 software
modules are false alarms, the test team will not continue to
check them. Therefore, the performance of BDA and JDA
on other metrics has no practical significance.

(2) All methods using the Prob/LOC strategy have high
performance values except for Precision@20%. However,
high PMI@20% and IFA values represent worse EACPDP
performance. This means that the strategy has a very high
overhead in frequent module switches and lots of false
alarms. In particular, the medium PMI@20% value of the

F I GURE 4 The Precision@20% of each method using the four defect density calculation strategies.

F I GURE 5 The Recall@20% of each method using the four defect density calculation strategies.

482 - LI ET AL.

 17518814, 2023, 4, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12133 by U
niversity O

f M
acau Procurem

ent Section, W
iley O

nline L
ibrary on [07/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

strategy is significantly higher than that of the other ways
by 8.6%–29.6%. This strategy tends to rank modules with
fewer LOC first, since the modules are likely to have
higher defect density. When inspecting the same amount
of LOC (i.e. top 20%LOC), software testers require to
check more modules (high PMI@20% value). Therefore,
they have more chances to find defective modules and
defects (high Recall@20% and PofB@20% values).

(3) All methods using the Prob strategy have low performance
values except for Precision@20%. Although the
PMI@20% and IFA values meet the EACPDP re-
quirements, the strategy performs significantly worse than
other ways on other important metrics (i.e. Recall@20%,
F1@20% and PofB@20%). The Prob strategy ranks
modules based on the predicted defect probability, and the
modules with many LOC tend to be ranked first in the

F I GURE 7 The PofB@20% of each method using the four defect density calculation strategies.

F I GURE 8 The PMI@20% of each method using the four defect density calculation strategies.

F I GURE 9 The initial false alarms (IFA) of each method using the four defect density calculation strategies.

F I GURE 6 The F1@20% of each method using the four defect density calculation strategies.

LI ET AL. - 483

 17518814, 2023, 4, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12133 by U
niversity O

f M
acau Procurem

ent Section, W
iley O

nline L
ibrary on [07/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

F I GURE 1 0 The Popt of each method using the four defect density calculation strategies.

TABLE 4 The median Precision@20% of each method using the
four defect density calculation strategies.

Label/LOC Prob/LOC CBS+ Prob

None 0.322 0.303 0.333 0.611

BF 0.409 0.303 0.422 0.618

PF 0.328 0.381 0.406 0.524

KF 0.385 0.297 0.380 0.591

DFAC 0.377 0.288 0.390 0.522

TCA 0.328 0.351 0.361 0.364

BDA 0.325 0.282 0.305 0.351

JDA 0.325 0.282 0.305 0.351

JPDA 0.476 0.333 0.500 0.471

TNB 0.600 0.511 0.606 0.714

Abbreviations: BDA, balanced distribution adaption; BF, Burak Filter; CBS+,
classification before sorting; DFAC, data filtering based on agglomerative clustering;
JDA, joint distribution adaptation; JPDA, joint probability domain adaptation; KF,
Kawata Filter; LOC, lines of code; PF, peters filter; TCA, transfer component analysis;
TNB, transfer Naive Bayes.

TABLE 5 The median Recall@20% of each method using the four
defect density calculation strategies.

Label/LOC Prob/LOC CBS+ Prob

None 0.244 0.436 0.244 0.117

BF 0.242 0.447 0.229 0.122

PF 0.175 0.356 0.175 0.141

KF 0.227 0.413 0.218 0.122

DFAC 0.242 0.441 0.245 0.128

TCA 0.217 0.205 0.203 0.203

BDA 0.389 0.520 0.400 0.241

JDA 0.375 0.520 0.375 0.241

JPDA 0.256 0.473 0.273 0.176

TNB 0.179 0.267 0.182 0.104

Abbreviations: BDA, balanced distribution adaption; BF, Burak Filter; CBS+,
classification before sorting; DFAC, data filtering based on agglomerative clustering;
JDA, joint distribution adaptation; JPDA, joint probability domain adaptation; KF,
Kawata Filter; LOC, lines of code; PF, peters filter; TCA, transfer component analysis;
TNB, transfer Naive Bayes.

TABLE 6 The median F1@20% of each method using the four
defect density calculation strategies.

Label/LOC Prob/LOC CBS+ Prob

None 0.284 0.381 0.281 0.158

BF 0.342 0.381 0.333 0.161

PF 0.242 0.319 0.264 0.174

KF 0.308 0.369 0.297 0.163

DFAC 0.331 0.355 0.332 0.163

TCA 0.285 0.222 0.212 0.216

BDA 0.391 0.382 0.367 0.296

JDA 0.391 0.382 0.367 0.296

JPDA 0.282 0.423 0.283 0.239

TNB 0.206 0.254 0.207 0.145

Abbreviations: BDA, balanced distribution adaption; BF, Burak Filter; CBS+,
classification before sorting; DFAC, data filtering based on agglomerative clustering;
JDA, joint distribution adaptation; JPDA, joint probability domain adaptation; KF,
Kawata Filter; LOC, lines of code; PF, peters filter; TCA, transfer component analysis;
TNB, transfer Naive Bayes.

TABLE 7 The median PofB@20% of each method using the four
defect density calculation strategies.

Label/LOC Prob/LOC CBS+ Prob

None 0.200 0.340 0.205 0.167

BF 0.246 0.324 0.238 0.182

PF 0.228 0.312 0.234 0.188

KF 0.214 0.324 0.237 0.210

DFAC 0.221 0.330 0.233 0.180

TCA 0.193 0.203 0.202 0.202

BDA 0.332 0.396 0.333 0.258

JDA 0.332 0.396 0.333 0.258

JPDA 0.254 0.376 0.244 0.188

TNB 0.187 0.217 0.209 0.180

Abbreviations: BDA, balanced distribution adaption; BF, Burak Filter; CBS+,
classification before sorting; DFAC, data filtering based on agglomerative clustering;
JDA, joint distribution adaptation; JPDA, joint probability domain adaptation; KF,
Kawata Filter; LOC, lines of code; PF, peters filter; TCA, transfer component analysis;
TNB, transfer Naive Bayes.

484 - LI ET AL.

 17518814, 2023, 4, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12133 by U
niversity O

f M
acau Procurem

ent Section, W
iley O

nline L
ibrary on [07/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

testing sequence. When inspecting the same amount of
LOC (i.e. top 20%LOC), software testers require to check
fewer modules (low PMI@20% value). Therefore, the
Recall@20% and PofB@20% values are also low accord-
ingly, since fewer inspected modules bring fewer opportu-
nities to find defective modules and defects.

(4) The CBS+ calculation strategy loses to the Prob strategy
but significantly outperforms Prob/LOC for a large portion
of the methods in terms of Precision@20%. Except for the
TCA, BDA, and JDAmethods, the CBS+ strategy performs
similarly to Label/LOC and significantly outperforms the

Prob strategy on Recall@20% and F1@20%. Compared
with Label/LOC and Prob, CBS+ has a significant
improvement on PofB@20%. In terms of PMI@20%,
CBS+ strategy and Label/LOC are not significantly
different, but they are significantly better than Prob/LOC
strategy on themethods except BDA and JDA. Themedium
IFA values of all the methods except TCA using the CBS+
strategy are controlled within 10. In terms of Popt, the CBS
+ strategy outperforms the Label/LOC and Prob strategies
in all methods except BDA, JDA and JPDA. The CBS+
strategy first groups modules according to their defect
probability, then ranks the defective group in front of the
clean group. The modules ranked at the top are more likely
to be defective and have relatively more LOC. Therefore,
the CBS+ strategy has better PMI@20% or IFA perfor-
mance than Label/LOC and Prob/LOC.

(5) It is worth noting that BDA and JDA always achieve the
best performance among the methods in terms of
Recall@20%, F1@20%, PofB@20% and Popt under all
four defect density strategies.

However, the implementation of Label/LOC and Prob/
LOC strategies produces unsatisfactory PMI@20% or IFA
results for these two methods. Therefore, the CBS+ strategy is
the most suitable for EACPDP under overall consideration.

TABLE 8 The median PMI@20% of each method using the four
defect density calculation strategies.

Label/LOC Prob/LOC CBS+ Prob

None 0.288 0.576 0.284 0.093

BF 0.285 0.576 0.279 0.100

PF 0.139 0.359 0.166 0.060

KF 0.270 0.566 0.267 0.098

DFAC 0.291 0.555 0.283 0.093

TCA 0.222 0.234 0.234 0.234

BDA 0.468 0.637 0.494 0.278

JDA 0.470 0.637 0.494 0.278

JPDA 0.351 0.544 0.351 0.151

TNB 0.163 0.249 0.140 0.068

Abbreviations: BDA, balanced distribution adaption; BF, Burak Filter; CBS+,
classification before sorting; DFAC, data filtering based on agglomerative clustering;
JDA, joint distribution adaptation; JPDA, joint probability domain adaptation; KF,
Kawata Filter; LOC, lines of code; PF, peters filter; TCA, transfer component analysis;
TNB, transfer Naive Bayes.

TABLE 9 The median IFA of each method using the four defect
density calculation strategies.

Label/LOC Prob/LOC CBS+ Prob

None 5 10 8 1

BF 7 8 7 0

PF 3 3 1 0

KF 9 7 4 0

DFAC 6 8 6 0

TCA 3 5 16 3

BDA 11 8 10 1

JDA 11 7 10 1

JPDA 2 3 1 1

TNB 2 2 3 0

Abbreviations: BDA, balanced distribution adaption; BF, Burak Filter; CBS+,
classification before sorting; DFAC, data filtering based on agglomerative clustering;
JDA, joint distribution adaptation; JPDA, joint probability domain adaptation; KF,
Kawata Filter; LOC, lines of code; PF, peters filter; TCA, transfer component analysis;
TNB, transfer Naive Bayes.

TABLE 10 The median Popt of each method using the four defect
density calculation strategies.

Label/LOC Prob/LOC CBS+ Prob

None 0.399 0.707 0.482 0.288

BF 0.433 0.735 0.499 0.355

PF 0.439 0.575 0.534 0.378

KF 0.451 0.685 0.494 0.357

DFAC 0.416 0.711 0.484 0.292

TCA 0.502 0.508 0.505 0.505

BDA 0.624 0.791 0.448 0.611

JDA 0.612 0.791 0.464 0.611

JPDA 0.488 0.762 0.462 0.433

TNB 0.400 0.572 0.495 0.346

Abbreviations: BDA, balanced distribution adaption; BF, Burak Filter; CBS+,
classification before sorting; DFAC, data filtering based on agglomerative clustering;
JDA, joint distribution adaptation; JPDA, joint probability domain adaptation; KF,
Kawata Filter; LOC, lines of code; PF, peters filter; TCA, transfer component analysis;
TNB, transfer Naive Bayes.

Answer to RQ1

The CBS+ strategy can achieve the relatively high
Recall@20%, F1@20%, PofB@20%, and Popt values
with the acceptable IFA.

LI ET AL. - 485

 17518814, 2023, 4, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12133 by U
niversity O

f M
acau Procurem

ent Section, W
iley O

nline L
ibrary on [07/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

5.2 | RQ2: can data filtering and transfer
learning approaches improve the EACPDP
performance?

Motivation: Ni et al.'s study [28] used naive Bayes to model
EASC without taking into account the data distribution dif-
ference. Therefore, we compare four data filtering methods
and five transfer learning methods with the EASC method in
order to verify whether these methods can alleviate the data
difference distribution problem to improve the performance of
EACPDP further.

Methods: We apply the four data filtering methods and the
five transfer learning methods to the cross‐project datasets, and
then use KNN, LR and RF classifiers to build the EACPDP
models, respectively. Tables 11–13 and Figures 11–13 show the
performance differences between the data filtering and transfer
learning methods and None with these three classifiers using
the CBS+ strategy. We employ the Wilcoxon signed‐rank test
and draw boxplots to examine the significant differences,
where red boxes indicate that the corresponding method is
significantly different from None and black boxes indicate no
significant difference between the corresponding method and

None. Similarly, in Tables 11–13 we bold the results of the
Wilcoxon signed‐rank test to indicate that significant difference
between the corresponding method and None.

Results: All data filtering methods have weak performance
improvement or even degradation in classification and effort‐
aware scenarios, and the transfer learning methods (i.e. BDA
and JDA) can significantly improve the performance of
EACPDP in terms of Recall, Recall@20% and PofB@20%.
We analyse the data filtering and transfer learning methods in
detail, and the results are shown below.

(1) Almost all data filtering methods do not differ significantly
from None on the evaluation metrics, and some methods
have degraded the performance. The PF with the KNN
classifier has a significant decrease of 20.7% on Recall. The
KF with the LR classifier has a significant decrease of 4.1%
on Precision and 3.5% on PMI@20%. The PF of the RF
classifier decreases significantly by 22.9% on Recall. How-
ever, there are also some data filtering methods that slightly
improve the performance. For example, DFAC with the
KNN classifier improve the Precision value by 0.9%, but
the improvement is not statistically significant.

TABLE 11 The relative improvement of each method with the KNN classifier using the CBS+ strategy.

Precision Recall F1 Precision@20% Recall@20% F1@20% PofB@20% PMI@20% Popt IFA

BF 0.003 0.032 0.019 0.007 0.004 0.007 0.008 −0.002 0.017 0

PF 0.003 −0.207 −0.233 0.055 −0.011 0.003 0.047 −0.037 0.004 0

KF 0.012 0.005 0.008 0.02 0 0 0.014 −0.019 0.004 −1

DFAC 0.009 0.02 0.008 0.009 0.01 0.011 0.008 −0.005 0.009 −1

TCA −0.019 0.064 0.018 0.004 −0.005 −0.007 0.003 −0.034 −0.003 8

BDA −0.004 0 0.002 −0.016 0.15 0.061 0.116 0.193 −0.003 5

JDA 0.03 0.221 0.138 −0.016 0.143 0.061 0.089 0.195 −0.003 4

JPDA 0.006 0.084 0.034 −0.002 0.069 0.034 0.022 0.076 0.011 −2

TNB 0.081 −0.103 −0.002 0.133 −0.032 −0.007 −0.002 −0.117 0.002 −1

Note: Bold values indicate the results of the Wilcoxon signed‐rank test to indicate that significant difference between the corresponding method and None.
Abbreviations: BDA, balanced distribution adaption; BF, Burak Filter; CBS+, classification before sorting; DFAC, data filtering based on agglomerative clustering; JDA, joint distribution
adaptation; JPDA, joint probability domain adaptation; KF, Kawata Filter; LOC, lines of code; PF, peters filter; TCA, transfer component analysis; TNB, transfer Naive Bayes.

TABLE 12 The relative improvement of each method with the LR classifier using the CBS+ strategy.

Precision Recall F1 Precision@20% Recall@20% F1@20% PofB@20% PMI@20% Popt IFA

BF 0.001 0 0.01 0 0.009 0.014 0.012 0.008 −0.005 0

PF 0.021 −0.125 −0.139 0.024 −0.032 −0.045 0 −0.079 0.005 0

KF −0.041 0.077 0.02 −0.045 0.025 0.01 0 0.035 −0.004 1

DFAC 0 0.008 0.01 −0.001 0.006 0.001 0 0.009 −0.01 0

TCA −0.104 −0.053 −0.084 −0.116 0.276 0.031 0.161 0.371 0 1

BDA −0.122 0.537 0.024 −0.027 0.098 0.04 0.06 0.16 −0.005 2

JDA −0.131 0.537 0.024 −0.027 0.098 0.04 0.06 0.16 −0.005 2

JPDA −0.585 −0.259 −0.395 −0.113 0.182 0.015 0.166 0.403 0.063 9

TNB 0.012 −0.103 −0.112 0.014 −0.048 −0.06 0 −0.035 −0.004 −1

Note: Bold values indicate the results of the Wilcoxon signed‐rank test to indicate that significant difference between the corresponding method and None.
Abbreviations: BDA, balanced distribution adaption; BF, Burak Filter; CBS+, classification before sorting; DFAC, data filtering based on agglomerative clustering; JDA, joint distribution
adaptation; JPDA, joint probability domain adaptation; KF, Kawata Filter; LOC, lines of code; PF, peters filter; TCA, transfer component analysis; TNB, transfer Naive Bayes.

486 - LI ET AL.

 17518814, 2023, 4, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12133 by U
niversity O

f M
acau Procurem

ent Section, W
iley O

nline L
ibrary on [07/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

(2) BDA and JDA with the KNN classifier show significant
improvements on Recall@20% and PofB@20%, with
BDA improving 15% on Recall@20% and 11.6% on
PofB@20%, and JDA improving 14.3% and 8.9%, respec-
tively. When embedding the LR classifier, TCA, BDA, JDA
and JPDA increase the Recall@20% value by 27.6%, 9.8%,
9.8%, and 18.2% and the PofB@20% value by 16.1%, 6.0%,
6.0% and 16.6%, respectively. Moreover, the improvements
of TCA and JPDA are statistically significant.

When embedding the RF classifier, TCA, BDA, JDA and
JPDA significantly increase the Recall@20% value by 22.2%,
26.9%, 20.7% and 16%, and the PofB@20% value by 12.6%,
15.8%, 11.2% and 12%, respectively. In addition, we find that
the BDA and JDA methods achieve the best performance no
matter which of the three classifiers is used.

(3) JDA and TNB significantly improve the Precision value by
3% and 8% when embedding the KNN classifier. But TCA,
BDA, JDA and JPDA significantly decrease the Precision
value by 10.4%, 12.2%, 13.1% and 58.5% when embedding
the LR classifier. TNB significantly improves the Precision
value by 4.3% when embedding the RF classifier. The
Recall values of BDA and JDA are both significantly
improved by 53.7% when embedding the LR classifier.
TCA and JPDA embedding the LR classifier significantly
decrease the F1 value by 8.4%, and 39.5%, respectively.
Other transfer learning methods have no significant dif-
ference fromNone in terms of the three evaluation metrics.

(4) TNB significantly improves the Precision@20% value by
13.3% when embedding the KNN classifier. The Preci-
sion@20% values of TCA and JPDA are significantly
decreased by 11.6% and 11.3% when embedding the LR
classifier. BDA and JDA significantly decrease the Preci-
sion@20% values by 3.7% and 2.9% under the RF classifier.

The PMI@20% values of BDA and JDA are significantly
improved by 19.3% and 19.5% under the KNN classifier, by
16% and 16.0% under the LR classifier, and by 33.1% and 29%

under the RF classifier, respectively. In terms of Popt and IFA,
all methods do not differ significantly from None when
embedding the three classifiers.

5.3 | RQ3: what is the relationship among
the performance measures?

Motivations: Since we first employ BDA and JDA to build the
classification models, and then use the CBS+ strategy to rank
software modules. We wonder whether better classification
performance can contribute to building better EACPDP
models. In our study, we employ three classification evaluation
metrics and seven effort‐aware evaluation metrics. Therefore,
we perform the correlation analysis to explore the relationship
between the classification performance and the effort‐aware
performance.

Methods: We employ the Kendell correlation coefficient
(i.e. r) to evaluate the correlation among the evaluation metrics
and use a heat map to show the results, as shown in Figure 14.
The heavier the colour, the stronger the correlation between
every two evaluation metrics. According to the study presented
by Hinkle et al. [107], the correlation coefficient is considered
negligible (|r | < 0.3), low (0.3 ≤ |r | < 0.5), moderate
(0.5 ≤ |r | < 0.7), high (0.7 ≤ |r | < 0.9), and very high
(0.9 ≤ |r | ≤ 1).

Results:

(1) Precision has a very high correlation with Precision@20%
(0.93, 0.82, 0.89, 0.89, 0.82, and 0.89, respectively) and with

TABLE 13 The relative improvement of each method with the RF classifier using the CBS+ strategy.

Precision Recall F1 Precision@20% Recall@20% F1@20% PofB@20% PMI@20% Popt IFA

BF −0.001 0 0 −0.005 0 −0.001 −0.006 0.007 −0.004 0

PF 0.081 −0.229 −0.082 0.079 −0.075 −0.026 0.007 −0.154 −0.008 −5

KF 0.005 −0.005 0 0.001 −0.013 −0.015 −0.022 −0.01 −0.008 0

DFAC 0.012 0 0.009 0.005 −0.016 −0.003 0 −0.008 0.002 0

TCA −0.005 0.004 −0.001 −0.021 0.222 0.037 0.126 0.265 −0.015 0

BDA −0.025 0.09 0.001 −0.037 0.269 0.023 0.158 0.331 0.039 0

JDA −0.044 0.111 −0.006 −0.029 0.207 0.022 0.112 0.29 0.012 0

JPDA −0.007 −0.02 −0.009 −0.036 0.16 0.042 0.12 0.304 0.012 4

TNB 0.043 −0.127 −0.146 0.039 −0.072 −0.104 −0.04 −0.09 −0.01 0

Note: Bold values indicate the results of the Wilcoxon signed‐rank test to indicate that significant difference between the corresponding method and None.
Abbreviations: BDA, balanced distribution adaption; BF, Burak Filter; CBS+, classification before sorting; DFAC, data filtering based on agglomerative clustering; JDA, joint distribution
adaptation; JPDA, joint probability domain adaptation; KF, Kawata Filter; LOC, lines of code; PF, peters filter; TCA, transfer component analysis; TNB, transfer Naive Bayes.

Answer to RQ2

The BDA and JDA methods with the KNN classifier
to build EACPDP models can significantly improve
the Recall@20% and PofB@20% values while
achieving the acceptable IFA.

LI ET AL. - 487

 17518814, 2023, 4, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12133 by U
niversity O

f M
acau Procurem

ent Section, W
iley O

nline L
ibrary on [07/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

F I GURE 1 1 The performance difference between the data filtering
and transfer learning methods and None with the K‐Nearest Neighbour
classifier using the CBS+ strategy. CBS+, classification before sorting;
KNN, K‐Nearest Neighbour.

F I GURE 1 2 The performance difference between the data filtering
and transfer learning methods and None with the LR classifier using the
CBS+ strategy. CBS+, classification before sorting; LR, logistic
regression.

F1@20% (0.85, 0.75, 0.85, 0.85, 0.75 and 0.85, respec-
tively) on BDA and JDA with the three classifiers. How-
ever, the correlations between Recall and Recall@20% are
almost not obvious (−0.24, −0.018, −0.13, −0.6, −0.15
and −0.35, respectively.) F1 has a moderate or low cor-
relations with F1@20% (0.67, 0.42, 0.45, 0.31, 0.42 and
0.38, respectively). It indicates the better comprehensive
classification performance of the methods can contribute
to the superiority of EACPDP models to some extent.

(2) Recall@20% has a high or moderate correlation with
PofB@20% (0.71, 0.82, 0.6, 0.67, 0.82, 0.82 and 0.82,
respectively), since the more defective modules captured

when checking the top 20% LOC, the more defects can be
found.

(3) PMI@20% always has a relatively obvious correlation with
PofB@20% (0.27, 0.53, 0.2, 0.27, 0.53 and 0.49, respec-
tively) and Recall@20% (0.42, 0.71, 0.6, 0.38, 0.71 and 0.67,
respectively), becausemore inspectedmodules increases the
chances to find more defective modules and defects. Pre-
cision@20% has a moderate correlation with IFA (−0.58,
−0.38,‐0.58, −0.58, −0.38 and −0.55, respectively), since
the more false alarms in the top 20% LOC, the more likely
the IFA value is high.

488 - LI ET AL.

 17518814, 2023, 4, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12133 by U
niversity O

f M
acau Procurem

ent Section, W
iley O

nline L
ibrary on [07/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

5.4 | RQ4: how does the defect threshold λ
affect EACPDP performance?

Motivation: One of the keys of the CBS+ strategy is to divide
all modules into defective and clean groups. The defective group
contains modules predicted to be defective, while the clean
group contains modules predicted to be clean. The contents of
these two groups are directly decided by the threshold λ, which is
utilised to distinguish whether a new module is defective. In
other words, if the predicted probability of a new module is
larger than λ, the module is regarded to be defective. Moreover,
we sort the defective group before the clean one, so the
threshold λ also directly determines the detection order of
modules. In the case of limited testing resources, only the first
few modules in the clean group will be checked or even not
checked. Therefore, to investigate whether changing the defect
threshold λ can further improve the EACPDP performance, we
perform detailed analysis of BDA and JDA using the CBS+
strategy with different λ values.

Methods: Figure 15 presents the Precision@20%,
Recall@20%, F1@20%, PofB@20%, PMI@20%, IFA and
Popt values of BDA and JDA using the CBS+ strategy, when
the threshold λ is changed from 0.1 to 0.9 with an interval of
0.1. We do not set λ to 0 or 1, because all modules will be
predicted as defective or clean.

Results: Generally, when the threshold λ increases, the
Recall@20%, F1@20%, PofB@20%, PMI@20% and IFA
values all decrease, and the Precision@20% value increases
conversely. Furthermore, the Popt value decreases before the
threshold λ is set to 0.6 and increases after. One exception is that
when the threshold λ is set to 0.9, the Precision@20% value
decreases, while all other metric values increase dramatically.

(1) When we set λ to 0.1, most modules will be predicted to be
defective and put into the defective group. Since the
modules with fewer LOC have higher defect density,
software testers would first check many modules with
fewer LOC. When inspecting the same amount of LOC
(i.e. top 20% LOC), software testers require to check more
modules (i.e. higher PMI@20% value). As a result, the
Recall@20% and PofB@20% values increase accordingly,
since more inspected modules bring more opportunities to
find defective modules and defects. Since the modules with
fewer LOC are less likely to be defective, the IFA value is
large and the Precision@20% value is low.

(2) When we increase the λ value from 0.1 to 0.8, more
modules with more LOC would be put into the defective
group, since the modules with more LOC are more likely
to be defective. When inspecting the same amount of LOC
(i.e. top 20% LOC), software testers require to check fewer
modules (i.e. lower PMI@20% value). As a result, the
numbers of found defective modules (i.e. Recall@20%)
and defects (i.e. PofB@20%) and the IFA value decrease
accordingly. When the threshold λ is set to 0.4, all metric
values except Precision@20% are higher than those with
λ = 0.5, which means that we can sacrifice a small part of

F I GURE 1 3 The performance difference between the data
filtering and transfer learning methods and None with the RF classifier
using the CBS+ strategy. CBS+, classification before sorting; RF,
random forest.

Answer to RQ3

The better comprehensive classification performance
of the methods can bring better EACPDP perfor-
mance to some extent.

LI ET AL. - 489

 17518814, 2023, 4, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12133 by U
niversity O

f M
acau Procurem

ent Section, W
iley O

nline L
ibrary on [07/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

Precision@20%, PMI@20% and IFA in exchange for
better performance on all other metrics.

(3) When the threshold λ is set to 0.9, very few modules are
predicted to be defective for inspection, and there is a large
budget to inspect modules predicted to be clean. By per-
forming these additional checks, software testers can find

more defective modules and defects, which also means that
they would sacrifice the PMI@20% and Precision@20%
values. In addition, the IFA value exceeds other cases and is
unacceptable (greater than 10). When we set λ to 0.9, only
very few modules are predicted to be defective, and these
modules may not have defects. Therefore, software testers

F I GURE 1 4 The correlation among all performance measures on BDA and JDA with the three classifiers.

F I GURE 1 5 The performance impact of changing the threshold λ on BDA and JDA methods.

490 - LI ET AL.

 17518814, 2023, 4, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12133 by U
niversity O

f M
acau Procurem

ent Section, W
iley O

nline L
ibrary on [07/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

have to check the modules in the clean group when
examining modules in the top 20% LOC to find the first
defective module. However, the top‐ranked modules in the
clean group contain fewer LOC, which are more likely to
clean. Therefore, the IFA value increases dramatically.

6 | THREATS TO VALIDITY3,4,5,6,7

(1) Our findings are based on 11 PROMISE datasets collected
by Jureczko et al. [32] using the BugInfo tool, which have
been used and validated by numerous SDP studies [28, 46,
54, 58]. Our experimental datasets belong to different
application fields and have different numbers of modules
(from 205 to 965) with different levels of defective pro-
portions (from 2.2% to 98.8%). However, many other
software projects in other fields with other characteristics or
programming languages are not used in our work. In
addition, all software projects used in our work were
developed by the open‐source community, and it is not clear
whether our conclusions can apply to commercial projects.
In the future work, we will further reduce the threat by
analysing more modules from other defect datasets.

(2) We employ the four data filtering methods and five transfer
learning methods in our empirical study, since they are the
most classical methods and are also widely investigated in
previous SDP studies. In addition, we acknowledge the
existence of some other data filtering and transfer learning
methods. The adoption of the unused methods in our work
is left for future work.

(3) We employ not only widely used Precision, Recall and F1
metrics in the classification scenario [59, 108–110], but also
Precision@20%, Recall@20%, F1@20%, PofB@20%,
PMI@20%, IFA and Popt in the effort‐aware scenario [16,
28]. Since the EACPDP model is designed to find more
defects and defective modules and to obtain an accurate
global ranking based on the predicted defect density, we
used PofB@20%, Recall@20%, and Popt. We use Preci-
sion@20%, because Precision@20% and Recall@20% are
usually paired. F1@20% balances the tradeoff between
Precision@20% and Recall@20%, so we use F1@20% to
correct the bias that may result from using Precision@20%

and Recall@20%. We use PMI@20% because checking too
many modules introduces additional effort costs. In addi-
tion, we use IFA because previous studies [16, 101] have
concluded that if the IFA value is too large, it will signifi-
cantly reduce software testers' confidence. In addition, we
use the non‐parametric statistical Wilcoxon signed‐rank test
and Scott‐Knott ESD test to compare the performance of
the different data filtering and transfer learning methods to
ensure that the differences are statistically significant.

(4) In order to alleviate the technical defects in our experiments
as much as possible, we implement the classifiers based on
the SKlearn library. The transfer learning methods are
based on their own third‐party libraries (i.e. TCA, BDA,
JDA and JPDA). We carefully implement the code for other
methods by strictly following the original papers'
descriptions.

(5) Our study directly employs the default hyper‐parameter
setting for all data filtering and transfer learning methods
and the three classifiers. Although Tantithamthavorn et al.'s
study [111] have shown that optimising the hyper‐
parameters of classifiers would lead to a significant
improvement for SDP, we leave the hyper‐parameter tuning
as a future work for several reasons: (a) There are several
effort‐aware evaluation metrics in our work, and it is diffi-
cult to choose the optimisation target for tuning the
methods, because it is impossible to decide which perfor-
mancemeasure is themost important. Therefore, the hyper‐
parameter tuning of the methods is regarded as a multi‐
objective optimisation problem, which is much more
complex than the optimisation problem considering only a
single evaluation metric (e.g. the AUC metric in Tanti-
thamthavorn et al.'s study [111]). (b) The grid searchmethod
requires traversing all possible combinations of parameters,
which is very time‐consuming in the face of large datasets
and multiple parameters of some transfer learning methods.
The time‐consuming tuning process makes the methods
less practical. (c) In our study, adjusting the defect threshold
λ can achieve the trade‐off among Pecision@20%,
Recall@20%, PofB@20% and PMI@20%.

7 | IMPLICATIONS

We outline some implications that researchers and practitioners
can derive from our experimental results.

(1) Researchers and practitioners should use the CBS+
strategy to rank software modules. Ni et al.'s EACPDP
study [28] has used different defect density calculation
strategies when comparing different methods. Section 5.1
compares four frequently used defect density strategies in
previous EADP studies. The results show that the CBS+
defect density calculation strategy outperforms Label/LOC
and Prob/LOC in terms of Precision@20%, PMI@20%
and IFA, and is better than Prob/LOC in other metrics (i.e.
Recall@20%, F1@20%, and PofB@20%). Therefore, un-
der overall consideration, we recommend using CBS+

Answer to RQ4

In general, the Recall@20%, F1@20%, PofB@20%,
PMI@20% and IFA values decrease, and the Preci-
sion@20% value increases conversely, when we in-
crease the threshold λ.

3
https://github.com/scikit-learn
4
https://github.com/jindongwang/transferlearning/tree/master/code/traditional/TCA
5
https://github.com/jindongwang/transferlearning/tree/master/code/traditional/BDA
6
https://github.com/jindongwang/transferlearning/tree/master/code/traditional/JDA
7
https://github.com/chamwen/JPDA

LI ET AL. - 491

 17518814, 2023, 4, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12133 by U
niversity O

f M
acau Procurem

ent Section, W
iley O

nline L
ibrary on [07/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://github.com/scikit-learn
https://github.com/jindongwang/transferlearning/tree/master/code/traditional/TCA
https://github.com/jindongwang/transferlearning/tree/master/code/traditional/BDA
https://github.com/jindongwang/transferlearning/tree/master/code/traditional/JDA
https://github.com/chamwen/JPDA

defect density strategy to find more defective modules and
defects (higher Recall@20% and PofB@20% values), while
ensuring that the IFA value is within the acceptable range.

(2) Future EACPDP studies should consider exploring
whether more advanced transfer learning methods
could further enhance the performance. We explore the
performance of data filtering and transfer learning methods
for EACPDP, and the results in Section 5.2 show that the
transfer learning methods (i.e. BDA and JDA) have the best
performance among the investigated methods. It indicates
that considering bothmarginal and conditional distributions
for feature dimensionality reduction can effectively improve
the EACPDP performance. We also find that the classifi-
cation performance has a direct impact on the EACPDP
performance. If the classification model has better classifi-
cation capability, then the EACPDP model built based on
this classification model also has better EADP perfor-
mance. Therefore, we believe that future EACPDP research
can further consider more advanced transfer learning
methods to improve the performance of EASC models.

(3) Future EACPDP studies can consider flexible adjust-
ment of the defect threshold λ to achieve different
goals. The optimal EACPDP model should obtain high
Recall@20%, PofB@20%, Precision@20%, and Popt
values, while keeping the PMI@20% and IFA values as low
as possible. However, software testers can change the
threshold λ to balance the trade‐off among the metrics. If
they are not sensitive to switching modules frequently and
false alarms, it is worthwhile to set a low threshold to sac-
rifice PMI@20% and IFA in exchange for higher
Recall@20% and PofB@20% values. For example, setting λ
to 0.4 is very beneficial to improve Recall@20% and
PofB@20% values, although it slightly increases the
PMI@20% and IFA values. If only a few software testers
inspect the top 20% LOC and the negative impacts of IFA
on their confidence in the EACPDP method are seriously
considered, we should set a very high threshold.

8 | CONCLUSION

This paper explores the effects of different defect density
calculation strategies, data filtering methods, and transfer
learning methods for EACPDP on 11 datasets from the
PROMISE corpus. We use Precision, Recall, F1, Preci-
sion@20%, Recall@20%, F1@20%, PofB@20%, PMI@20%,
IFA and Popt to evaluate the performance and apply the Scott‐
Knott ESD test and Wilcoxon signed‐rank test to analyse
experimental results. We observe that the CBS+ defect density
strategy has the best overall performance, and BDA and JDA
perform the best among all data filtering and transfer learning
methods. By embedding three classifiers (i.e. KNN, LR and
RF), we find that the classification ability directly affects the
EACPDP performance to some extent. Therefore, we suggest
that researchers use the CBS+ defect density strategy and
better transfer learning methods (e.g. BDA and JDA) to
enhance EACPDP performance further. Finally, we observe

that the defect threshold λ of the CBS+ strategy has a sig-
nificant impact on the performance, and a flexible adjustment
can contribute to different EACPDP goals.

AUTHOR CONTRIBUTIONS
Fuyang Li: Investigation, Formal analysis, Methodology,
Writing – original draft. Peixin Yang: Data curation, Software,
Writing – original draft. Jacky Wai Keung: Project adminis-
tration, Methodology, Validation. Wenhua Hu: Data curation,
Visualisation, Writing – review & editing. Haoyu Luo:
Investigation, Software, Visualisation. Xiao Yu: Formal anal-
ysis, Methodology, Supervision, Writing – review & editing.

ACKNOWLEDGEMENTS
This work was in part supported by the Project of Sanya
Yazhou Bay Science and Technology City (SCKJ‐JYRC‐2022‐
17), the Natural Science Foundation of China (62272356), the
Youth Fund Project of Hainan Natural Science Foundation
(622QN344), the Natural Science Foundation of Chongqing
(cstc2021jcyj‐msxmX1115), and the Start–up Grant from
Wuhan University of Technology (104–40120693).

CONFLICT OF INTEREST STATEMENT
We declare that we have no conflict of interest.

DATA AVAILABILITY STATEMENT
Data openly available in a public repository that does not issue
DOIs.

ORCID
Xiao Yu https://orcid.org/0000-0002-4473-3068

REFERENCES
1. Huang, Q., et al.: A cross‐project defect prediction method based on

multi‐adaptation and nuclear norm. IET Softw. 16(2), 200–213 (2022).
https://doi.org/10.1049/sfw2.12053

2. Manchala, P., Bisi, M.: Diversity based imbalance learning approach for
software fault prediction using machine learning models. Appl. Soft
Comput. 124, 109069 (2022). https://doi.org/10.1016/j.asoc.2022.
109069

3. Stradowski, S., Madeyski, L.: Machine learning in software defect pre-
diction: a business‐driven systematic mapping study. Inf. Software
Technol. 155, 107128 (2022). https://doi.org/10.1016/j.infsof.2022.
107128

4. Feng, S., et al.: Investigation on the stability of smote‐based oversampling
techniques in software defect prediction. Inf. Software Technol. 139,
106662 (2021). https://doi.org/10.1016/j.infsof.2021.106662

5. Yu, X., et al.: Predicting the precise number of software defects: are we
there yet? Inf. Software Technol. 146, 106847 (2022). https://doi.org/
10.1016/j.infsof.2022.106847

6. Zhou, C., et al.: Software defect prediction with semantic and structural
information of codes based on graph neural networks. Inf. Software
Technol. 152, 107057 (2022). https://doi.org/10.1016/j.infsof.2022.
107057

7. Bennin, K.E., et al.: An empirical study on the effectiveness of data
resampling approaches for cross‐project software defect prediction.
IET Softw. 16(2), 185–199 (2022). https://doi.org/10.1049/sfw2.12052

8. Kabir, M.A., et al.: Inter‐release defect prediction with feature selection
using temporal chunk‐based learning: an empirical study. Appl. Soft
Comput. 113, 107870 (2021). https://doi.org/10.1016/j.asoc.2021.
107870

492 - LI ET AL.

 17518814, 2023, 4, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12133 by U
niversity O

f M
acau Procurem

ent Section, W
iley O

nline L
ibrary on [07/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://orcid.org/0000-0002-4473-3068
https://orcid.org/0000-0002-4473-3068
https://doi.org/10.1049/sfw2.12053
https://doi.org/10.1016/j.asoc.2022.109069
https://doi.org/10.1016/j.asoc.2022.109069
https://doi.org/10.1016/j.infsof.2022.107128
https://doi.org/10.1016/j.infsof.2022.107128
https://doi.org/10.1016/j.infsof.2021.106662
https://doi.org/10.1016/j.infsof.2022.106847
https://doi.org/10.1016/j.infsof.2022.106847
https://doi.org/10.1016/j.infsof.2022.107057
https://doi.org/10.1016/j.infsof.2022.107057
https://doi.org/10.1049/sfw2.12052
https://doi.org/10.1016/j.asoc.2021.107870
https://doi.org/10.1016/j.asoc.2021.107870
https://orcid.org/0000-0002-4473-3068

9. Xie, H., et al.: A universal data augmentation approach for fault
localization. In: Proceedings of the 44th International Conference on
Software Engineering, pp. 48–60 (2022)

10. Yang, D., et al.: Seeing the whole elephant: Systematically understanding
and uncovering evaluation biases in automated program repair. ACM
Trans. Software Eng. Methodol. 32(3), 1–37 (2022). https://doi.org/10.
1145/3561382

11. Yu, X., et al.: The bayesian network based program dependence graph
and its application to fault localization. J. Syst. Software 134, 44–53
(2017). https://doi.org/10.1016/j.jss.2017.08.025

12. Zhang, Z., et al.: Influential global and local contexts guided trace
representation for fault localization. ACM Trans. Software Eng.
Methodol. 32(3), 1–27 (2022). https://doi.org/10.1145/3576043

13. Mende, T., Koschke, R.: Effort‐aware defect prediction models. In:
2010 14th European Conference on Software Maintenance and Reen-
gineering, pp. 107–116. IEEE (2010)

14. Fenton, N.E., Ohlsson, N.: Quantitative analysis of faults and failures in
a complex software system. IEEE Trans. Software Eng. 26(8), 797–814
(2000). https://doi.org/10.1109/32.879815

15. Andersson, C., Runeson, P.: A replicated quantitative analysis of fault
distributions in complex software systems. IEEE Trans. Software Eng.
33(5), 273–286 (2007). https://doi.org/10.1109/tse.2007.1005

16. Huang, Q., Xia, X., Lo, D.: Revisiting supervised and unsupervised
models for effort‐aware just‐in‐time defect prediction. Empir. Software
Eng. 24(5), 2823–2862 (2019). https://doi.org/10.1007/s10664-018-
9661-2

17. Kamei, Y., et al.: A large‐scale empirical study of just‐in‐time quality
assurance. IEEE Trans. Software Eng. 39(6), 757–773 (2012). https://
doi.org/10.1109/tse.2012.70

18. Rao, J., et al.: Learning to rank software modules for effort‐aware
defect prediction. In: 2021 IEEE 21st International Conference on
Software Quality, Reliability and Security Companion, pp. 372–380.
IEEE (2021)

19. Xia, X., et al.: Hydra: Massively compositional model for cross‐project
defect prediction. IEEE Trans. Software Eng. 42(10), 977–998 (2016).
https://doi.org/10.1109/tse.2016.2543218

20. Yang, Y., et al.: Effort‐aware just‐in‐time defect prediction: simple un-
supervised models could be better than supervised models. In: Pro-
ceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, pp. 157–168 (2016)

21. Zhao, K., et al.: A compositional model for effort‐aware just‐in‐time
defect prediction on android apps. IET Softw. 16(3), 259–278 (2022).
https://doi.org/10.1049/sfw2.12040

22. Cheng, T., et al.: Effort‐aware cross‐project just‐in‐time defect predic-
tion framework for mobile apps. Front. Comput. Sci. 16(6), 1–15
(2022). https://doi.org/10.1007/s11704-021-1013-5

23. Khatri, Y., Singh, S.K.: Towards building a pragmatic cross‐project
defect prediction model combining non‐effort based and effort
based performance measures for a balanced evaluation. Inf. Software
Technol. 150, 106980 (2022). https://doi.org/10.1016/j.infsof.2022.
106980

24. Li, Z., et al.: Cross‐project defect prediction via landmark selection‐
based kernelized discriminant subspace alignment. IEEE Trans.
Reliab. 70(3), 1–18 (2021). https://doi.org/10.1109/tr.2021.3074660

25. Sun, Z., et al.: Cfps: Collaborative filtering based source projects se-
lection for cross‐project defect prediction. Appl. Soft Comput. 99,
106940 (2021). https://doi.org/10.1016/j.asoc.2020.106940

26. Zou, Q., et al.: Correlation feature and instance weights transfer learning
for cross project software defect prediction. IET Softw. 15(1), 55–74
(2021). https://doi.org/10.1049/sfw2.12012

27. Zou, Q., et al.: Joint feature representation learning and progressive
distribution matching for cross‐project defect prediction. Inf. Software
Technol. 137, 106588 (2021). https://doi.org/10.1016/j.infsof.2021.
106588

28. Ni, C., et al.: Revisiting supervised and unsupervised methods for
effort‐aware cross‐project defect prediction. IEEE Trans. Software
Eng. 48(3), 786–802 (2022). https://doi.org/10.1109/tse.2020.3001739

29. D’Ambros, M., Lanza, M., Robbes, R.: An extensive comparison of bug
prediction approaches. In: 2010 7th IEEE Working Conference on
Mining Software Repositories, pp. 31–41. IEEE (2010)

30. Gray, D., et al.: The misuse of the nasa metrics data program data sets
for automated software defect prediction. In: 15th Annual Conference
on Evaluation & Assessment in Software Engineering, pp. 96–103. IET
(2011)

31. Shepperd, M., et al.: Data quality: some comments on the nasa software
defect datasets. IEEE Trans. Software Eng. 39(9), 1208–1215 (2013).
https://doi.org/10.1109/tse.2013.11

32. Jureczko, M., Madeyski, L.: Towards identifying software project clus-
ters with regard to defect prediction. In: Proceedings of the 6th In-
ternational Conference on Predictive Models in Software Engineering,
pp. 1–10 (2010)

33. Wu, R., et al.: Relink: recovering links between bugs and changes. In:
Proceedings of the 19th ACM SIGSOFT Symposium and the 13th
European Conference on Foundations of Software Engineering, pp.
15–25 (2011)

34. Zimmermann, T., et al.: Cross‐project defect prediction: a large scale
experiment on data vs. domain vs. process. In: Proceedings of the 7th
Joint Meeting of the European Software Engineering Conference and
the ACM SIGSOFT Symposium on the Foundations of Software En-
gineering, pp. 91–100 (2009)

35. Turhan, B., et al.: On the relative value of cross‐company and within‐
company data for defect prediction. Empir. Software Eng. 14(5),
540–578 (2009). https://doi.org/10.1007/s10664-008-9103-7

36. Menzies, T., et al.: Local vs. global models for effort estimation and
defect prediction. In: 2011 26th IEEE/ACM International Conference
on Automated Software Engineering, pp. 343–351. IEEE (2011)

37. Cruz, A.E.C., Ochimizu, K.: Towards logistic regression models for
predicting fault‐prone code across software projects. In: 2009 3rd In-
ternational Symposium on Empirical Software Engineering and Mea-
surement, pp. 460–463. IEEE (2009)

38. Watanabe, S., Kaiya, H., Kaijiri, K.: Adapting a fault prediction model to
allow inter languagereuse. In: Proceedings of the 4th International
Workshop on Predictor Models in Software Engineering, pp. 19–24
(2008)

39. Tantithamthavorn, C., et al.: An empirical comparison of model vali-
dation techniques for defect prediction models. IEEE Trans. Software
Eng. 43, 1–18 (2016). https://doi.org/10.1109/tse.2016.2584050

40. Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in
multiple testing under dependency. Ann. Stat. 29(4), 1165–1188 (2001).
https://doi.org/10.1214/aos/1013699998

41. Kamei, Y., et al.: Revisiting common bug prediction findings using
effort‐aware models. In: 2010 IEEE International Conference on
Software Maintenance, pp. 1–10. IEEE (2010)

42. Yang, X., et al.: Tlel: a two‐layer ensemble learning approach for just‐in‐
time defect prediction. Inf. Software Technol. 87, 206–220 (2017).
https://doi.org/10.1016/j.infsof.2017.03.007

43. Wang, H., Zhuang, W., Zhang, X.: Software defect prediction based on
gated hierarchical lstms. IEEE Trans. Reliab. 70(2), 711–727 (2021).
https://doi.org/10.1109/tr.2020.3047396

44. Zhou, Y., et al.: How far we have progressed in the journey? An ex-
amination of cross‐project defect prediction. ACM Trans. Software
Eng. Methodol. 27, 1–51 (2018). https://doi.org/10.1145/3183339

45. Yang, Y., et al.: Are slice‐based cohesion metrics actually useful in
effort‐aware post‐release fault‐proneness prediction? An empirical
study. Software Engineering IEEE Transactions on 41(4), 331–357
(2015). https://doi.org/10.1109/tse.2014.2370048

46. Ma, W., et al.: Empirical analysis of network measures for effort‐aware
fault‐proneness prediction. Inf. Software Technol. 69, 50–70 (2016).
https://doi.org/10.1016/j.infsof.2015.09.001

47. Panichella, A., et al.: A search‐based training algorithm for cost‐aware
defect prediction. In: Proceedings of the Genetic and Evolutionary
Computation Conference 2016, pp. 1077–1084 (2016)

48. Yang, X., et al.: Dejit: a differential evolution algorithm for effort‐aware
just‐in‐time software defect prediction. Int. J. Software Eng. Knowl.

LI ET AL. - 493

 17518814, 2023, 4, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12133 by U
niversity O

f M
acau Procurem

ent Section, W
iley O

nline L
ibrary on [07/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1145/3561382
https://doi.org/10.1145/3561382
https://doi.org/10.1016/j.jss.2017.08.025
https://doi.org/10.1145/3576043
https://doi.org/10.1109/32.879815
https://doi.org/10.1109/tse.2007.1005
https://doi.org/10.1007/s10664-018-9661-2
https://doi.org/10.1007/s10664-018-9661-2
https://doi.org/10.1109/tse.2012.70
https://doi.org/10.1109/tse.2012.70
https://doi.org/10.1109/tse.2016.2543218
https://doi.org/10.1049/sfw2.12040
https://doi.org/10.1007/s11704-021-1013-5
https://doi.org/10.1016/j.infsof.2022.106980
https://doi.org/10.1016/j.infsof.2022.106980
https://doi.org/10.1109/tr.2021.3074660
https://doi.org/10.1016/j.asoc.2020.106940
https://doi.org/10.1049/sfw2.12012
https://doi.org/10.1016/j.infsof.2021.106588
https://doi.org/10.1016/j.infsof.2021.106588
https://doi.org/10.1109/tse.2020.3001739
https://doi.org/10.1109/tse.2013.11
https://doi.org/10.1007/s10664-008-9103-7
https://doi.org/10.1109/tse.2016.2584050
https://doi.org/10.1214/aos/1013699998
https://doi.org/10.1016/j.infsof.2017.03.007
https://doi.org/10.1109/tr.2020.3047396
https://doi.org/10.1145/3183339
https://doi.org/10.1109/tse.2014.2370048
https://doi.org/10.1016/j.infsof.2015.09.001

Eng. 31(03), 289–310 (2021). https://doi.org/10.1142/s021819402
1500108

49. Yang, Y., et al.: An empirical study on dependence clusters for effort‐
aware fault‐proneness prediction. In: 2016 31st IEEE/ACM Interna-
tional Conference on Automated Software Engineering, pp. 296–307.
IEEE (2016)

50. Muthukumaran, K., et al.: Testing and code review based effort‐aware
bug prediction model. In: Software Engineering, Artificial Intelli-
gence, Networking and Parallel/Distributed Computing, pp. 17–30.
Springer (2016)

51. Bennin, K.E., et al.: Empirical evaluation of cross‐release effort‐aware
defect prediction models. In: 2016 IEEE International Conference on
Software Quality, Reliability and Security, pp. 214–221. IEEE (2016)

52. Yu, X., et al.: An empirical study of learning to rank techniques for
effort‐aware defect prediction. In: 2019 IEEE 26th International
Conference on Software Analysis, Evolution and Reengineering,
pp. 298–309. IEEE (2019)

53. Bennin, K.E., et al.: Investigating the effects of balanced training and
testing datasets on effort‐aware fault prediction models. In: 2016 IEEE
40th Annual Computer Software and Applications Conference,
pp. 154–163. IEEE (2016)

54. Yan, M., et al.: File‐level defect prediction: unsupervised vs. super-
vised models. In: 2017 ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement, pp. 344–353. IEEE
(2017)

55. Fu, W., Menzies, T.: Revisiting unsupervised learning for defect pre-
diction. In: Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering, pp. 72–83 (2017)

56. Liu, J., et al.: Code churn: a neglected metric in effort‐aware just‐in‐time
defect prediction. In: 2017 ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement, pp. 11–19. IEEE
(2017)

57. Miletić, M., et al.: Cross‐release code churn impact on effort‐aware
software defect prediction. In: 2018 41st International Convention on
Information and Communication Technology, Electronics and Micro-
electronics, pp. 1460–1466. IEEE (2018)

58. Chen, X., et al.: Multi: multi‐objective effort‐aware just‐in‐time software
defect prediction. Inf. Software Technol. 93, 1–13 (2018). https://doi.
org/10.1016/j.infsof.2017.08.004

59. Huang, Q., et al.: Supervised vs unsupervised models: a holistic look at
effort–aware just–in–time defect prediction. In: 2017 IEEE Interna-
tional Conference on Software Maintenance and Evolution (ICSME),
pp. 159–170. IEEE (2017)

60. Guo, Y., Shepperd, M., Li, N.: Bridging effort‐aware prediction and
strong classification: a just‐in‐time software defect prediction study. In:
Proceedings of the 40th International Conference on Software Engi-
neering: Companion Proceeedings, pp. 325–326 (2018)

61. Qiao, L., Wang, Y.: Effort‐aware and just‐in‐time defect prediction with
neural network. PLoS One 14(2), e0211359 (2019). https://doi.org/10.
1371/journal.pone.0211359

62. Qu, Y., et al.: Using k‐core decomposition on class dependency net-
works to improve bug prediction model’s practical performance. IEEE
Trans. Software Eng. 47(2), 348–366 (2019). https://doi.org/10.1109/
tse.2019.2892959

63. Du, X., et al.: Corebug: improving effort‐aware bug prediction in soft-
ware systems using generalized k‐core decomposition in class de-
pendency networks. Axioms 11(5), 205 (2022). https://doi.org/10.3390/
axioms11050205

64. Zhang, W., Li, W., Jia, X.: Effort‐aware tri‐training for semi‐
supervised just‐in‐time defect prediction. In: Pacific‐asia Conference
on Knowledge Discovery and Data Mining, pp. 293–304. Springer
(2019)

65. Fan, Y., et al.: The impact of changes mislabeled by SZZ on just‐in‐time
defect prediction. IEEE Trans. Software Eng., 1–26 (2019)

66. Ulan, M., et al.: Weighted software metrics aggregation and its appli-
cation to defect prediction. Empir. Software Eng. 26(5), 1–34 (2021).
https://doi.org/10.1007/s10664-021-09984-2

67. Çarka, J., Esposito, M., Falessi, D.: On effort‐aware metrics for defect
prediction. Empir. Software Eng. 27(6), 1–38 (2022). https://doi.org/
10.1007/s10664-022-10186-7

68. Xu, Z., et al.: Effort‐aware just‐in‐time bug prediction for mobile apps
via cross‐triplet deep feature embedding. IEEE Trans. Reliab. 71(1),
204–220 (2021). https://doi.org/10.1109/tr.2021.3066170

69. Briand, L.C., Melo, W.L., Wust, J.: Assessing the applicability of fault‐
proneness models across object‐oriented software projects. IEEE
Trans. Software Eng. 28(7), 706–720 (2002). https://doi.org/10.1109/
tse.2002.1019484

70. Bai, J., Jia, J., Capretz, L.F.: A three‐stage transfer learning framework for
multi‐source cross‐project software defect prediction. Inf. Software
Technol. 150, 106985 (2022). https://doi.org/10.1016/j.infsof.2022.
106985

71. Chen, H., et al.: Aligned metric representation based balanced multiset
ensemble learning for heterogeneous defect prediction. Inf. Software
Technol. 147, 106892 (2022). https://doi.org/10.1016/j.infsof.2022.
106892

72. Peters, F., Menzies, T., Marcus, A.: Better cross company defect pre-
diction. In: 2013 10th Working Conference on Mining Software Re-
positories, pp. 409–418. IEEE (2013)

73. Kawata, K., Amasaki, S., Yokogawa, T.: Improving relevancy filter
methods for cross‐project defect prediction. In: 2015 3rd International
Conference on Applied Computing and Information Technology/2nd
International Conference on Computational Science and Intelligence,
pp. 2–7. IEEE (2015)

74. Yu, X., et al.: Improving cross‐company defect prediction with data
filtering. Int. J. Software Eng. Knowl. Eng. 27(09n10), 1427–1438
(2017). https://doi.org/10.1142/s0218194017400046

75. Hosseini, S., Turhan, B., Mäntylä, M.: A benchmark study on the
effectiveness of search‐based data selection and feature selection for
cross project defect prediction. Inf. Software Technol. 95, 296–312
(2018). https://doi.org/10.1016/j.infsof.2017.06.004

76. Bin, Y., et al.: Training data selection for cross‐project defection pre-
diction: which approach is better? In: 2017 ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement, pp.
354–363. IEEE (2017)

77. Ma, Y., et al.: Transfer learning for cross‐company software defect
prediction. Inf. Software Technol. 54(3), 248–256 (2012). https://doi.
org/10.1016/j.infsof.2011.09.007

78. Nam, J., Pan, S.J., Kim, S.: Transfer defect learning. In: 2013 35th In-
ternational Conference on Software Engineering, pp. 382–391. IEEE
(2013)

79. Jing, X.Y., et al.: An improved sda based defect prediction framework
for both within‐project and cross‐project class‐imbalance problems.
IEEE Trans. Software Eng. 43(4), 321–339 (2016). https://doi.org/10.
1109/tse.2016.2597849

80. Limsettho, N., et al.: Cross project defect prediction using class distri-
bution estimation and oversampling. Inf. Software Technol. 100,
87–102 (2018). https://doi.org/10.1016/j.infsof.2018.04.001

81. Wu, F., et al.: Cross‐project and within‐project semisupervised software
defect prediction: a unified approach. IEEE Trans. Reliab. 67(2),
581–597 (2018). https://doi.org/10.1109/tr.2018.2804922

82. Gong, L., et al.: A novel class‐imbalance learning approach for
both within‐project and cross‐project defect prediction. IEEE
Trans. Reliab. 69(1), 40–54 (2019). https://doi.org/10.1109/tr.2019.
2895462

83. Xu, B., et al.: Cross‐project aging‐related bug prediction based on joint
distribution adaptation and improved subclass discriminant analysis. In:
2020 IEEE 31st International Symposium on Software Reliability En-
gineering, pp. 325–334. IEEE (2020)

84. Li, D., et al.: A cross‐project aging‐related bug prediction approach
based on joint probability domain adaptation and k‐means smote. In:
2021 IEEE 21st International Conference on Software Quality, Reli-
ability and Security Companion, pp. 350–358. IEEE (2021)

85. Omondiagbe, O.P., Licorish, S.A., MacDonell, S.G.: Improving
transfer learning for cross project defect prediction. TechRxiv

494 - LI ET AL.

 17518814, 2023, 4, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12133 by U
niversity O

f M
acau Procurem

ent Section, W
iley O

nline L
ibrary on [07/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1142/s0218194021500108
https://doi.org/10.1142/s0218194021500108
https://doi.org/10.1016/j.infsof.2017.08.004
https://doi.org/10.1016/j.infsof.2017.08.004
https://doi.org/10.1371/journal.pone.0211359
https://doi.org/10.1371/journal.pone.0211359
https://doi.org/10.1109/tse.2019.2892959
https://doi.org/10.1109/tse.2019.2892959
https://doi.org/10.3390/axioms11050205
https://doi.org/10.3390/axioms11050205
https://doi.org/10.1007/s10664-021-09984-2
https://doi.org/10.1007/s10664-022-10186-7
https://doi.org/10.1007/s10664-022-10186-7
https://doi.org/10.1109/tr.2021.3066170
https://doi.org/10.1109/tse.2002.1019484
https://doi.org/10.1109/tse.2002.1019484
https://doi.org/10.1016/j.infsof.2022.106985
https://doi.org/10.1016/j.infsof.2022.106985
https://doi.org/10.1016/j.infsof.2022.106892
https://doi.org/10.1016/j.infsof.2022.106892
https://doi.org/10.1142/s0218194017400046
https://doi.org/10.1016/j.infsof.2017.06.004
https://doi.org/10.1016/j.infsof.2011.09.007
https://doi.org/10.1016/j.infsof.2011.09.007
https://doi.org/10.1109/tse.2016.2597849
https://doi.org/10.1109/tse.2016.2597849
https://doi.org/10.1016/j.infsof.2018.04.001
https://doi.org/10.1109/tr.2018.2804922
https://doi.org/10.1109/tr.2019.2895462
https://doi.org/10.1109/tr.2019.2895462

preprint techrxiv 19517029 (2022). https://doi.org/10.36227/techrxiv.
19517029

86. Jin, C.: Cross‐project software defect prediction based on domain
adaptation learning and optimization. Expert Syst. Appl. 171, 114637
(2021). https://doi.org/10.1016/j.eswa.2021.114637

87. Pan, S.J., et al.: Domain adaptation via transfer component analysis.
IEEE Trans. Neural Network. 22(2), 199–210 (2010). https://doi.org/
10.1109/tnn.2010.2091281

88. Long, M., et al.: Transfer feature learning with joint distribution adap-
tation. In: Proceedings of the IEEE International Conference on
Computer Vision, pp. 2200–2207 (2013)

89. Wang, J., et al.: Balanced distribution adaptation for transfer learning. In:
2017 IEEE International Conference on Data Mining, pp. 1129–1134.
IEEE (2017)

90. Zhang, W., Wu, D.: Discriminative joint probability maximum mean
discrepancy (djp‐mmd) for domain adaptation. In: 2020 International
Joint Conference on Neural Networks, pp. 1–8. IEEE (2020)

91. Boetticher, G.: The promise repository of empirical software engi-
neering data. http://promisedata.org/repository (2007)

92. Chen, Y., et al.: Improving ponzi scheme contract detection using multi‐
channel textcnn and transformer. Sensors 21(19), 6417 (2021). https://
doi.org/10.3390/s21196417

93. Ma, X., et al.: Casms: combining clustering with attention semantic
model for identifying security bug reports. Inf. Software Technol. 147,
106906 (2022). https://doi.org/10.1016/j.infsof.2022.106906

94. Zhen, Y., et al.: On the significance of category prediction for code‐
comment synchronization. ACM Trans. Software Eng. Methodol.
(2022). https://doi.org/10.1145/3534117

95. Chen, Y., Lu, X., Li, X.: Supervised deep hashing with a joint deep
network. Pattern Recogn. 105, 107368 (2020). https://doi.org/10.
1016/j.patcog.2020.107368

96. Chen, Y., Lu, X., Wang, S.: Deep cross‐modal image–voice retrieval in
remote sensing. IEEE Trans. Geosci. Rem. Sens. 58(10), 7049–7061
(2020). https://doi.org/10.1109/tgrs.2020.2979273

97. Chen, Y., et al.: Deep quadruple‐based hashing for remote sensing
image‐sound retrieval. IEEE Trans. Geosci. Rem. Sens. 60, 1–14 (2022).
https://doi.org/10.1109/tgrs.2022.3155283

98. He, C., Wu, J., Zhang, Q.: Characterizing research leadership on
geographically weighted collaboration network. Scientometrics 126(5),
4005–4037 (2021). https://doi.org/10.1007/s11192-021-03943-w

99. He, C., Wu, J., Zhang, Q.: Proximity‐aware research leadership recom-
mendation in research collaboration via deep neural networks. J. Assoc.
Inf. Sci. Technol. 73(1), 70–89 (2022). https://doi.org/10.1002/asi.24546

100. Yang, Z., et al.: Acomnn: attention enhanced compound neural network
for financial time‐series forecasting with cross‐regional features. Appl.

Soft Comput. 111, 107649 (2021). https://doi.org/10.1016/j.asoc.2021.
107649

101. Kochhar, P.S., et al.: Practitioners’ expectations on automated fault
localization. In: Proceedings of the 25th International Symposium on
Software Testing and Analysis, pp. 165–176 (2016)

102. Ghotra, B., McIntosh, S., Hassan, A.E.: Revisiting the impact of clas-
sification techniques on the performance of defect prediction models.
In: 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, pp. 789–800. IEEE (2015)

103. LaValley, M.P.: Logistic regression. Circulation 117(18), 2395–2399
(2008). https://doi.org/10.1161/circulationaha.106.682658

104. Hautamaki, V., Karkkainen, I., Franti, P.: Outlier detection using k‐
nearest neighbour graph. In: Proceedings of the 17th International
Conference on Pattern Recognition, 2004, pp. 430–433. ICPR 2004,
IEEE (2004)

105. Liaw, A., Wiener, M.: Classification and regression by randomforest. R.
News 2, 18–22 (2002)

106. Ferreira, J.A., Zwinderman, A.H.: On the benjamini–hochberg method.
Ann. Stat. 34(4), 1827–1849 (2006). https://doi.org/10.1214/009053
606000000425

107. Hinkle, D.E., Wiersma, W., Jurs, S.G.: Applied statistics for the behav-
ioral sciences. Houghton Mifflin College Division. vol. 663. https://
books.google.com.tw/books?id=7tntAAAAMAAJ (2003)

108. He, Z., et al.: An investigation on the feasibility of cross‐project defect
prediction. Autom. Software Eng. 19(2), 167–199 (2012). https://doi.
org/10.1007/s10515-011-0090-3

109. Stuckman, J., Walden, J., Scandariato, R.: The effect of dimensionality
reduction on software vulnerability prediction models. IEEE Trans.
Reliab. 66, 1–21 (2017). https://doi.org/10.1109/tr.2016.2630503

110. Xin, X., et al.: Hydra: Massively compositional model for cross‐project
defect prediction. IEEE Trans. Software Eng. 42(10), 977–998 (2016).
https://doi.org/10.1109/tse.2016.2543218

111. Tantithamthavorn, C., et al.: Automated parameter optimization of
classification techniques for defect prediction models. In: Proceedings
of the 38th International Conference on Software Engineering, pp.
321–332 (2016)

How to cite this article: Li, F., et al.: Revisiting
‘revisiting supervised methods for effort‐aware cross‐
project defect prediction’. IET Soft. 17(4), 472–495
(2023). https://doi.org/10.1049/sfw2.12133

LI ET AL. - 495

 17518814, 2023, 4, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12133 by U
niversity O

f M
acau Procurem

ent Section, W
iley O

nline L
ibrary on [07/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.36227/techrxiv.19517029
https://doi.org/10.36227/techrxiv.19517029
https://doi.org/10.1016/j.eswa.2021.114637
https://doi.org/10.1109/tnn.2010.2091281
https://doi.org/10.1109/tnn.2010.2091281
http://promisedata.org/repository
https://doi.org/10.3390/s21196417
https://doi.org/10.3390/s21196417
https://doi.org/10.1016/j.infsof.2022.106906
https://doi.org/10.1145/3534117
https://doi.org/10.1016/j.patcog.2020.107368
https://doi.org/10.1016/j.patcog.2020.107368
https://doi.org/10.1109/tgrs.2020.2979273
https://doi.org/10.1109/tgrs.2022.3155283
https://doi.org/10.1007/s11192-021-03943-w
https://doi.org/10.1002/asi.24546
https://doi.org/10.1016/j.asoc.2021.107649
https://doi.org/10.1016/j.asoc.2021.107649
https://doi.org/10.1161/circulationaha.106.682658
https://doi.org/10.1214/009053606000000425
https://doi.org/10.1214/009053606000000425
https://books.google.com.tw/books?id=7tntAAAAMAAJ
https://books.google.com.tw/books?id=7tntAAAAMAAJ
https://doi.org/10.1007/s10515-011-0090-3
https://doi.org/10.1007/s10515-011-0090-3
https://doi.org/10.1109/tr.2016.2630503
https://doi.org/10.1109/tse.2016.2543218
https://doi.org/10.1049/sfw2.12133

	Revisiting ‘revisiting supervised methods for effort‐aware cross‐project defect prediction’
	1 | INTRODUCTION
	1.1 | Motivations
	1.2 | Our works and contributions
	1.3 | Organisation

	2 | RELATED WORK
	2.1 | Effort‐aware defect prediction
	2.2 | Cross‐project defect prediction
	2.2.1 | Cross‐project defect prediction based on data filtering
	2.2.2 | Cross‐project defect prediction based on transfer learning

	3 | PRELIMINARIES
	3.1 | Defect density calculation methods
	3.2 | Data filtering methods
	3.3 | Transfer learning methods

	4 | EXPERIMENTAL SETUP
	4.1 | Datasets
	4.2 | Evaluation metrics
	4.2.1 | Effort‐aware evaluation metrics
	4.2.2 | Classification evaluation metrics

	4.3 | Experimental process
	4.4 | Classifiers
	4.5 | Statistic test

	5 | EXPERIMENTAL RESULTS
	5.1 | RQ1: what is the best strategy of defect density for EACPDP?
	5.2 | RQ2: can data filtering and transfer learning approaches improve the EACPDP performance?
	5.3 | RQ3: what is the relationship among the performance measures?
	5.4 | RQ4: how does the defect threshold λ affect EACPDP performance?

	6 | THREATS TO VALIDITY3https://github.com/scikit-learn,4https://github.com/jindongwang/transferlearning/tree/master/code/t ...
	7 | IMPLICATIONS
	8 | CONCLUSION
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGEMENTS
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT

