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Abstract
Effort‐Aware Defect Prediction (EADP) methods sort software modules based on the
defect density and guide the testing team to inspect the modules with high defect density
first. Previous studies indicated that some feature selection methods could improve the
performance of Classification‐Based Defect Prediction (CBDP) models, and the
Correlation‐based feature subset selection method with the Best First strategy (CorBF)
performed the best. However, the practical benefits of feature selection methods on
EADP performance are still unknown, and blindly employing the best‐performing CorBF
method in CBDP to pre‐process the defect datasets may not improve the performance of
EADP models but possibly result in performance degradation. To assess the impact of
the feature selection techniques on EADP, a total of 24 feature selection methods with 10
classifiers embedded in a state‐of‐the‐art EADP model (CBS+) on the 41 PROMISE
defect datasets were examined. We employ six evaluation metrics to assess the perfor-
mance of EADP models comprehensively. The results show that (1) The impact of the
feature selection methods varies in classifiers and datasets. (2) The four wrapper‐based
feature subset selection methods with forwards search, that is, AdaBoost with For-
wards Search, Deep Forest with Forwards Search, Random Forest with Forwards Search,
and XGBoost with Forwards Search (XGBF) are better than other methods across the
studied classifiers and the used datasets. And XGBF with XGBoost as the embedded
classifier in CBS+ performs the best on the datasets. (3) The best‐performing CorBF
method in CBDP does not perform well on the EADP task. (4) The selected features vary
with different feature selection methods and different datasets, and the features noc
(number of children), ic (inheritance coupling), cbo (coupling between object classes), and
cbm (coupling between methods) are frequently selected by the four wrapper‐based
feature subset selection methods with forwards search. (5) Using AdaBoost, deep for-
est, random forest, and XGBoost as the base classifiers embedded in CBS+ can achieve
the best performance. In summary, we recommend the software testing team should
employ XGBF with XGBoost as the embedded classifier in CBS+ to enhance the EADP
performance.
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1 | INTRODUCTION

Recently, the scale of software systems has become increasingly
complex and huge, which will lead to software systems being
more prone to defects, errors, and even crashes [1–5]. Therefore,
finding and fixing software bugs as early as possible is particularly
significant [6]. However, there are often limited software testing
resources in real life, and the software testing team cannot test
every software module within a limited time [7–11]. Therefore,
researchers propose Software Defect Prediction (SDP) to assist
the software testing team in prioritising limited testing resources
by inspecting themost likely defectivemodules. SDP technology
first builds the prediction model by utilising datasets from his-
torical software repositories. Then, it deploys the constructed
prediction model to calculate the defect‐proneness of software
modules. Accurate predictions can guide the software testing
team to pay attention to those predicted defective software
modules and inspect them first, which helps allocate limited
testing resources more optimally [10, 12–14].

The existing SDP methods are mainly categorised into
Classification‐Based Defect Prediction (CBDP) and Effort‐
Aware Defect Prediction (EADP) [15]. CBDP employs the bi-
nary classification algorithm to train the model and predicts
whether a new software module is faulty. When too many soft-
ware modules are predicted to be faulty, and the software testing
team cannot inspect all the predicted ones due to the deadline,
they haveno idea to inspect the predicted defectivemodules first.
Therefore, EADP techniques were proposed to guide software
testers to inspect the software modules with high defect density
first [15, 16]. The primary objective of EADP is finding more
software bugs and defective modules when inspecting a certain
amount of Lines Of Code (LOC) and obtaining a more accurate
ranking of modules.

Huang et al. [17] proposed an EADP model called CBS+
(Classify Before Sorting). CBS+ first employs the binary classi-
fication algorithm (i.e., Logistic Regression (LR)) to calculate the
probability of new modules being defective. Then, CBS+ sug-
gests that the software testing team inspects the predicted
defective modules with a high defect density (i.e., the ratio be-
tween the defect probability and LOC) first. If there are
remaining limited testing resources after inspecting all predicted
defective ones, the non‐faulty modules will continue to be
checked. The experimental results show that CBS+ outperforms
Effort‐Aware Linear Regression (EALR) [18] and ManualUp
[19]. Subsequently, Ni et al. [20] investigated CBS+ for cross‐
project EADP and showed its superiority, and Ni et al. [21]
have indicated CBS+ still outperforms the baselines on 20
JavaScript projects. Recently, Yan et al. [22] pointed out that
Alibaba's Development Efficiency department took consider-
able interest in effort‐aware bug identification and found that
CBS+ performed better than EALR, ManualUp, and OneWay
on Alibaba real‐world software projects. In addition, they pro-
duced a tool based on CBS+, but the tool help software testers
pay attention to a small number of the warned code changes (i.e.,

the performance of CBS+ is not very promising on Alibaba
projects.). In another SDP study, Wan et al. [23] explored the
practical value of SDP and pointed out that over 90% of prac-
titioners would like to adopt SDP techniques. The main reason
for unwillingness is that some practitioners had disbelief in the
performance of SDP methods.

Similar to the CBDP task, the performance of the EADP
model (e.g., CBS+) is also dependent on the quality of the
software features collected from modules. The previous studies
[24–29] show that the CBDP models often exhibit low clas-
sification performance due to the feature irrelevance or
redundancy, and some feature selection methods enhance the
CBDP performance by filtering out the useless features, while
some methods may degrade the performance. In the two
highly‐cited and most influential articles, Xu et al. [28] and
Ghotra et al. [26] studied more than 30 feature selection
methods for CBDP and observed that the Correlation‐based
feature subset selection method with the Best First strategy
(CorBF) usually achieved the best performance. However, the
previous feature selection studies all focus on the CBDP task,
and whether the feature selection methods can enhance the
EADP performance is still unknown. Blindly employing
the best‐performing CorBF method in CBDP to pre‐process
the defect datasets may not enhance the performance of
EADP models but possibly result in performance degradation.

Considering this issue,we perform a comprehensive study to
examine the practical benefits of 24 feature selectionmethods on
the performance of CBS+ with 10 classifiers. The 24 methods
are categorised into four families, that is, (1) filter‐based ranking,
(2) filter‐based subset, (3) wrapper‐based, and (4)None (using all
original features). The 10 classifiers embedded in CBS+ fall into
the six groups, that is, statistical, decision tree‐based, nearest‐
neighbour‐based, neural network‐based, support vector
machine‐based and ensemble‐based. The 41 datasets from the
PROMISE corpus are employed to conduct our experimental
studies. Since the primary objective of EADP is to find more
bugs and defective modules and obtain a more accurate global
ranking of software modules, we mainly employ Recall@20%,
PofB@20% (Proportion of the found Bugs when inspecting the
top 20%LOC), and Norm(Popt) to measure the effects of the
above‐mentioned feature selection methods and classifiers. In
addition, we also use Precision@20% and IFA (Initial False
Alarms) to evaluate the false positive rate, and PMI@20%
(Proportion of Modules Inspected when inspecting the top 20%
LOC) to measure how many software modules are required to
inspect. Finally, we apply the Scott‐Knott Effect Size Difference
(Scott‐Knott ESD) test [30] to divide the feature selection
methods into different rankings.

The results are as follows:

(1) The impact of the feature selection methods varies in
classifiers and testing datasets. Compared with None, most
of the studied methods achieve similar or even better
performance on the classifier and testing dataset levels.
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(2) On the testing dataset level, the four wrapper‐based
feature subset selection methods with forwards search
(i.e., AdaBoost with Forwards Search (ADBF), Deep
Forest with Forwards Search (DFF), Random Forest with
Forwards Search (RFF), and XGBoost with Forwards
Search (XGBF)) outperform other feature selection
methods. All of these four methods can be in the top‐3
ranking in the range of 60%–97% of the studied testing
datasets in terms of PofB@20%, Recall@20%, and Norm
(Popt) and also achieve acceptable performance in terms
of Precision@20%, PMI@20%, and IFA. In addition, RFF
and XGBF perform the best among these four methods.

(3) On the classifier level, ADBF, DFF, RFF, and XGBF obtain
better performance than others. All of these four methods
can be in the top‐2 ranking in the range of 70%–100%of the
studied classifiers in terms of PofB@20%, Recall@20%,
and Norm(Popt), and they also achieve the acceptable Pre-
cision@20%, PMI@20%, and IFA values. In addition,
XGBF with XGBoost as the embedded classifier in CBS
+ achieves the highest average PofB@20%, Recall@20%,
and Norm(Popt) values on the testing datasets.

(4) The best‐performing CorBF method in CBDP does not
perform well on the EADP task. Compared with the None
method, CorBF can only achieve similar performance on
most classifiers and testing datasets.

(5) The selected features vary with different feature selection
methods and different datasets. The featuresnoc, ic, cbo, and
cbm are selected by the four wrapper‐based feature subset
selection methods with forwards search for the most times
among the testing datasets, which indicates that these four
features help construct the EADP models more effectively.

(6) Employing AdaBoost (ADB), Deep Forest (DF), Random
Forest (RF), and XGBoost (XGB) as the base classifiers
embedded in CBS+ can achieve the best performance in
terms of Precision@20%, Recall@20%, PofB@20%, and
Norm(Popt).

Our contributions can be concluded as the following two
points:

� We, for the first time, perform such a comprehensive
empirical study to explore the practical benefits of 24 feature
selection methods and 10 classifiers for EADP.

� We use six evaluation metrics on 41 datasets from the
PROMISE corpus to comprehensively evaluate these
methods, discuss the experimental results on both classifier
and testing dataset levels, and provide some implications to
researchers and practitioners.

2 | PRELIMINARIES

We give an overview of the studied feature selection methods.
We also treat the None method that uses all original features as
a feature selection method. Therefore, we totally apply 24
feature selection methods for EADP. The selection of the
methods is the same as Ghotra et al.‘s [26] empirical study. In
addition, the 24 methods are widely used in previous SDP

studies [28, 31–33] and cover the four families, that is, 11 filter‐
based feature ranking methods, four filter‐based feature subset
selection methods, eight wrapper‐based feature subset selec-
tion methods, and None.

2.1 | Filter‐based feature ranking

The process of the methods is to first evaluate the importance
value of each software feature and then rank the features ac-
cording to the value. A higher value indicates that the corre-
sponding software feature correlates more strongly with the
class labels.

Statistic‐based methods:

� Chi‐Square (CS) measures the importance value of each
feature by calculating the chi‐square statistic value between
the features and the class labels.

� CorRelation (CR) evaluates the importance value of each
feature by calculating the Pearson correlation coefficient
value between the features and the class labels.

� Clustering Variation (CV) evaluates the importance value of
each feature by calculating the coefficient of variation value
between the features and the class labels.

Probability‐based methods:

� Probabilistic Significance (PS) is a conditional probability‐
based method in which each feature is assigned a signifi-
cance value depending on how effectively it discerns each
class label.

� Information Gain (IG) is an entropy‐based method in
which features are sorted and selected based on the uncer-
tainty of the class labels. The higher IG value indicates a
stronger capability of eliminating uncertainty.

� Gain Ratio (GR) is an improvement to IG concerning the
preference for the features with a larger number of possible
values.

� Symmetrical Uncertainty (SU) similarly alleviates IG's bias
towards multi‐valued features and normalises the values
within the range from zero to one by calculating the SU
between one set of features and another.

Instance‐based methods:

� ReliefF(REF) chooses a software module at random and its
nearest neighbours from the defective modules and non‐
defective ones. Then, the correlation value of each feature
is updated by comparing this module and its nearest
neighbours.

� ReliefF‐Weight (RW) can be regarded as a parameter tuning
of ReliefF where the nearest neighbours will be weighed by
their distance to the chosen software module.

Classifier‐based methods:

� One Rule based Feature selection counts all the features and
the number of their occurrences in the case of each class label
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and then calculates the error rate for each feature as the only
rule. The feature with the minimal error rate will be selected.

� Support Vector Machine‐based Feature selection (SVMF)
sorts the software feature based on the square of the weight
assigned by the SVM algorithm.

For the above‐mentioned methods, we choose the top
log2n features suggested by Khoshgoftaar et al. [34], where n is
the total number of software features.

2.2 | Filter‐based feature subset selection

The idea of the methods is to select a subset of features from
all original features instead of evaluating the importance value
of each software feature individually.

� Correlation‐based feature subset selection (Cor) employs the
heuristics method to evaluate and rank feature subsets rather
than an individual feature and chooses the better subset
where features are strongly correlated with the class label
but not correlated with each other.

� Consistency‐based feature subset selection (Con) selects the
smallest feature subset whose consistency is equal to the
consistency of all original features.

We employ two search strategies to generate feature sub-
sets using the aforementioned consistency‐based and
correlation‐based methods.

� Best First (BF) implements the greedy hill‐climbing method
with backtracking to generate feature subsets. It can search
forward from an empty feature set, search backward from
the complete feature set, or search bidirectionally from an
intermediate point.

� Greedy Stepwise (GS) greedily searches the feature subset
space forward or backward without backtracking till adding
or removing a feature leads to performance degradation.

Therefore, we totally obtain four (2 filter‐based feature
subset selection methods � 2 search strategies) feature selec-
tion methods, that is, Cor with Best First, Cor with Greedy
Stepwise, Con with Best First, and Con with Greedy Stepwise.
We abbreviate them to CorBF, CorGS, ConBF, and ConGS,
respectively.

2.3 | Wrapper‐based feature subset selection

The methods employ pre‐determined classifiers and perfor-
mance measures to search for a best‐performing feature subset.
In this study, we use the four classifiers, that is, ADB, XGB, DF,
and RF as the base classification model because our preliminary
experimental results show that the four classifiers perform the
best when using all original software features. We employ
PofB@20% as the performance measure because the primary
objective of EADP is to discover more software bugs by

inspecting a certain amount of LOC. In addition, we use two
search strategies in the process of wrapper‐based feature subset
selection, which are starting forwards search from the empty
feature set and starting backwards search from the full feature
set. Therefore, we totally obtain the eight (4 classifiers� 2 search
strategies) feature selection methods, that is, ADB with For-
wards Search, ADB with Backwards Search, XGB with For-
wards Search, XGB with Backwards Search, DF with Forwards
Search, DF with Backwards Search, RF with Forwards Search,
and RF with Backwards Search. We abbreviate them to ADBF,
ADBB, XGBF, XGBB, DFF, DFB, RFF, and RFB, respectively.

3 | EXPERIMENTAL SETUP

3.1 | Datasets

Many public software defect datasets only have the informa-
tion of the class label (i.e., defective or not). Since EADP
models aim to find more bugs, in this experiment, we select the
PROMISE defect datasets [35] that have information on bug
numbers. In addition, we conduct the cross‐version validation,
so we only select the projects that contain three or more
versions. Table 1 shows the detailed information of the 41
experimental datasets, where #Module is the number of
modules, %Defects is the proportion of the defective ones,
AvgDefects is the average number of defects, and AvgLOC is
the average number of LOC. There are 20 software features in
the datasets, as shown in Table 2.

3.2 | Evaluation metric

Due to the limitation of the testing resources in actual defect
inspection, it is vital to utilise limited resources to find more
software defects. Therefore, it is necessary to take the effort
into consideration for defect prediction. In this work, we
deploy six different effort‐aware evaluation metrics to measure
the prediction results of EADP models, some of which are also
widely used in the machine learning field [3, 36–43]. Similar to
the previous EADP studies, we restrict the limited effort to
20% of the total LOC of one dataset in our work. There are M
software modules in a defect dataset, and it contains P
defective modules and Q bugs. When inspecting the top 20%
LOC based on the prediction results of an EADP model, the
software testing team inspects m software modules and finds p
actual defective modules and q bugs. Based on this, the six
effort‐aware evaluation metrics are calculated as follows:

PofB@20% indicates the proportion of the number of
inspected bugs to the total number of defects. The higher
PofB@20% value means more defects can be found.

Pof B@20%¼
q
Q

ð1Þ

Recall@20% indicates the proportion of the number of
inspected actual defective software modules to the total
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number of defective software modules in the defect dataset.
The higher Recall@20% value means more defective software
modules can be found.

Recall@20%¼
p
P

ð2Þ

Norm(Popt) indicates the difference between the optimal
EADP model and the predictive model. In the optimal model,
all software modules are sorted in descending order of the
actual defect density, while all software modules are ranked in
descending order of the predicted defect density in the pre-
dictive model. In Figure 1, the horizontal axis represents the
cumulative proportion of the inspected LOC, and the vertical
axis represents the cumulative percentage of the found bugs.
The red curve in the figure denotes the optimal model, the blue
curve denotes the prediction model, and Δopt denotes the
difference between the two models. Then, Popt is defined as
follows:

Popt ¼ 1 − Δopt ð3Þ

According to the research of Kamei et al. [44], since the
minimum value of Popt is dependent on the total quantity of
defects in the dataset, we also employ the normalised Popt, that
is, Norm(Popt), as the evaluation metric. Obviously, the higher

TABLE 1 The details of the experimental datasets

Datasets #Module %Defects AvgDefects AvgLOC

Ant‐1.3 125 16% 1.65 301.6

Ant‐1.4 178 22.5% 1.18 304.5

Ant‐1.5 293 10.9% 1.09 297.1

Ant‐1.6 351 26.2% 2.00 322.6

Ant‐1.7 745 22.3% 2.04 280.1

Camel‐1.0 339 3.8% 1.08 99.5

Camel‐1.2 608 35.5% 2.42 109.0

Camel‐1.4 872 16.6% 2.31 112.5

Camel‐1.6 965 19.5% 2.66 117.2

Ivy‐1.1 111 56.8% 3.7 245.9

Ivy‐1.4 241 6.6% 1.12 246

Ivy‐2.0 352 11.4% 1.4 249.3

Jedit‐3.2 272 33.1% 4.24 473.8

Jedit‐4.0 306 24.5% 3.01 473.2

Jedit‐4.1 312 25.3% 2.75 490.7

Jedit‐4.2 367 13.1% 2.21 465.1

Jedit‐4.3 492 2.2% 1.09 411.3

Log4j‐1.0 135 25.2% 1.79 159.6

Log4j‐1.1 109 33.9% 2.32 182.9

Log4j‐1.2 205 92.2% 2.63 186.3

Lucene‐2.0 195 46.7% 2.95 259.5

Lucene‐2.2 247 58.3% 2.88 257.4

Lucene‐2.4 340 59.7% 3.11 302.5

Poi‐1.5 237 59.5% 2.43 233.9

Poi‐2.0 314 11.8% 1.05 296.7

Poi‐2.5 385 64.4% 2.0 311.0

Poi‐3.0 442 63.6% 1.78 292.6

Synapse‐1.0 157 10.2% 1.31 183.5

Synapse‐1.1 222 27% 1.65 190.5

Synapse‐1.2 256 33.6% 1.69 209.0

Velocity‐1.4 196 75% 1.43 263.8

Velocity‐1.5 214 66.4% 2.33 248.3

Velocity‐1.6 229 34.1% 2.44 249.0

Xalan‐2.4 723 15.2% 1.42 311.3

Xalan‐2.5 803 48.2% 1.37 379.7

Xalan‐2.6 885 46.4% 1.52 465.2

Xalan‐2.7 909 98.8% 1.35 471.5

Xerces‐init 162 47.5% 2.17 560.0

Xerces‐1.2 440 16.1% 1.62 361.9

Xerces‐1.3 453 15.2% 2.8 368.9

Xerces‐1.4 588 74.3% 3.65 240.1

TABLE 2 The definition of the 20 software features in the datasets

No. Feature Name

1 wmc Weighted methods per class

2 dit Depth of inheritance tree

3 noc Number of children

4 cbo Coupling between object classes

5 rfc Response for a class

6 lcom Lack of cohesion in methods

7 ca Afferent couplings

8 ce Efferent couplings

9 npm Number of public methods

10 lcom3 Another lack of cohesion in methods

11 loc Line of code

12 dam Data access metric

13 moa Measure of aggregation

14 mfa Measure of functional abstraction

15 cam Cohesion among methods of vlass

16 ic Inheritance coupling

17 cbm Coupling between methods

18 amc Average method complexity

19 max_cc Max McCabes cyclomatic complexity

20 avg_cc Average McCabes cyclomatic complexity
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Norm(Popt) value means that the predictive model is closer to
the optimal model.

NormðPoptÞ ¼
Popt − minðPoptÞ

maxðPoptÞ − minðPoptÞ
ð4Þ

Precision@20% indicates the proportion of the number
of inspected actual defective software modules to that of the
software modules in the top 20% LOC. The higher Preci-
sion@20% value means better performance of the prediction
model.

Precision@20%¼
p
m

ð5Þ

PMI@20% indicates the proportion of the number of
inspected software modules to the total number of software
modules in the dataset. The lower PMI@20% value means the
software testing team is required to inspect fewer software
modules.

PMI@20%¼
m
M

ð6Þ

IFA indicates the number of inspected modules before the
testing team finds the first defective module. The lower IFA
value means better performance of the prediction model.
When the IFA value is greater than 10, it is considered unac-
ceptable [17].

In general, when the model obtains a higher Recall@20%
value, it would achieve a lower Precision@20%. When the
model obtains a higher PofB@20% value, it will achieve a
higher PMI@20%.

3.3 | Experimental process

The overall experimental process is shown in Figure 2. The
previous EADP studies [17, 20] usually use the ten‐fold cross‐
validation method. However, the within‐version validation that
derives both training and testing data from a single version is
very unrealistic in the actual software testing environment [45,
46]. In addition, we acknowledge the existence of cross‐project
validation that uses other projects (i.e., cross‐projects) as the
training data and predicts the ranking of the modules in the
within‐project. But we need to consider the data distribution
difference between within‐project and cross‐project data.
Therefore, it is more realistic to construct the predictive model
by using the historically developed data and calculate the
defect‐proneness of the developing modules. Therefore, we
use the cross‐version validation method, that is, the prediction
model is constructed by using the previous version of a soft-
ware project and then applied to predict the software modules
in the current version of the project. For example, we employ
the Xerces‐1.3 as the training data and the following version
(Xerces‐1.4) as the testing data. Therefore, we totally have 30
different training and testing datasets pairs.

For each pair, we first utilise the 24 feature selection
methods to pick the representative features from the training
datasets, so we can obtain the simplified training datasets.
Then, we choose the same features from the testing datasets to
get the simplified testing datasets. Therefore, we can construct
the new simplified training and testing datasets pairs. Next, we
utilise the new training datasets to train the EADP model and
apply the model to the new testing datasets. Finally, weF I GURE 1 A cumulative lift chart

F I GURE 2 An overview of the experiment
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calculate the corresponding performance measures and
conduct the experimental evaluation.

3.4 | Classifiers

Huang et al. [17] deploy the LR as the base classifier in CBS+,
and we want to investigate the impact of the feature selection
methods with more classifiers embedded in CBS+ for EADP.
Since we implement the CBS+ method by using the Python
language, we prefer to choose the base classifiers embedded in
CBS+ that can be implemented by using Python machine
learning packages. Therefore, we construct the CBS+ model
with 10 classifiers, as depicted in Figure 2. These classifiers fall
into the six groups, including statistic‐based (i.e., naive Bayes
and logistic regression), decision tree‐based (i.e., decision tree),
nearest neighbour‐based (i.e., K‐nearest neighbour), neural
network‐based (i.e., multi‐layer perceptron), support vector
machine‐based (i.e., support vector machine), and ensemble‐
based (i.e., AdaBoost, XGBoost, random forest, and deep
forest).

(1) Naive Bayes (NB) is based on the Bayes theorem and
supposes that the software features are independent of
each other. It greatly simplifies the complexity of Bayesian
methods.

(2) Logistic Regression (LR) adds a non‐linear mapping
(Sigmoid function) to linear regression, which makes it
able to classify software modules into discrete outcomes.

(3) Decision Tree (DT) is a tree function composed of
multiple judgement nodes, where each non‐leaf node is a
feature attribute, each branch is the output of the feature
attribute on a certain value range, and each leaf node is a
class label.

(4) K‐Nearest Neighbour (KNN) decides the defect‐
proneness of the new software modules based on the
defect‐proneness of the nearest one or several software
modules.

(5) Multi‐Layer Perceptron (MLP) is the popularisation of
single‐layer perceptron and contains an input layer, hid-
den layers, and an output layer. It trains the model with
the back‐propagation algorithm.

(6) Support Vector Machine (SVM) is a generalised linear
classifier that classifies data into binary categories with
supervised learning. Its decision boundary is the hyper-
plane with the maximum margin of the sample.

(7) AdaBoost (ADB) employs an adaptive boosting that the
weights of software modules misclassified by the previous
basic classifier are increased, while the weights of soft-
ware modules classified correctly are reduced, and the
new weighted total instances are used again to train the
next basic classifier.

(8) XGBoost (XGB) is an optimised distributed gradient
boosting algorithm and is robust to handle a variety of
data types, relationships, and distributions.

(9) Random Forest (RF) generates an ensemble model with
basic decision trees. It randomly samples each instance to
train different decision trees.

(10) Deep Forest (DF) consists of non‐differentiable deci-
sion trees. Its training process does not depend on the
back‐propagation algorithm and gradient calculation.

3.5 | Statistic test

We employ the Scott–Knott ESD test [30] as the statistic test
method in our experiment, which is a multiple comparison
technique for statistical analysis by using a hierarchical clus-
tering algorithm. It divides the different feature selection
methods into significantly different groups, where the feature
selection methods in the same group have no significant dif-
ference, while the feature selection methods in different groups
have a significant difference.

In our study, we use the double Scott–Knott ESD test to
investigate the significant differences in the feature selection
techniques. In the first phase, when we conduct the result
analysis at the testing dataset level, we provide the performance
measure values of the feature selection methods on 10 classi-
fiers on each testing dataset to the first Scott–Knott ESD test
and obtain the ranking of each feature selection method on
each dataset; when we generate each feature selection method's
ranking on each classifier, we provide the performance mea-
sure values of the feature selection methods on 30 testing
datasets on each classifier for the first Scott–Knott ESD test.

In the second phase, we obtain the final rankings of the
feature selection methods at the classifier level, with the 10
different Scott–Knott ESD rankings being the input to the
second Scott–Knott ESD test; we input the 30 different Scott–
Knott ESD rankings generated by the first test to the second
Scott–Knott ESD test and generate the final rankings of the
feature selection methods at the testing dataset level.

4 | EXPERIMENTAL RESULTS

4.1 | RQ1: Does CBS+ perform the best in
the file‐level EADP?

Motivations:Although CBS+ has been verified to have the best
performance on some datasets (e.g., change‐level projects [17],
JavaScript projects [21], and Alibaba projects [22]), the perfor-
mance of CBS+ on the file‐level PROMISE datasets is still
unknown. Therefore, we would like to figure out how CBS+
performs on our experimental datasets.

Methods: We compare CBS+ with the four regression
models, including EALR [18], Ridge Regression (RR), Gradient
Boosting Regression, and Random Forest Regression (RFR),
and one unsupervised method called ManualUP [19], since Yu
et al.'s [47] study showed the four regression models achieved
better EADP performance and EALR and ManualUP were
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widely used as the baseline methods in the previous EADP
studies [17, 20, 22]. We first use the trained regression models
to predict the bug numbers and then divide the bug numbers
by LOC to obtain the predicted bug density. Table 3 shows the
average values of the six evaluation metrics of the models.
Figure 3 shows the performance distribution of the models
more intuitively. The red, green, blue, yellow, and purple
boxplots represent the first, second, third, fourth, and fifth
Scott–Knott ESD rankings, respectively.

Results: According to Figure 3f, we can observe that the
IFA values of the four regression methods and ManualUP are
greater than 10, which is unacceptable in the EADP task. Pre-
vious studies have pointed out that software testers would not
continue to inspect the predicted faulty modules if the first 10
modules were all false alarms [17]. Since software modules with
fewer LOC tend to have higher defect density, the regression
models tend to rank the modules with fewer LOC first, ac-
cording to the predicted defect density. As an unsupervised
method, ManualUP sorts the software modules in the ascending
order of LOC. Because the modules with fewer LOC tend to be
non‐defective, the regression models and ManualUP result in
more modules that need to be tested before the first bug is being
found. In addition, we also find the PMI@20%values of the four
regressionmethods andManualUPare high, which indicates that
software testers are required to put in more effort to inspect
more modules. CBS+ with the 10 classifiers achieves low IFA
values (less than 10), since it suggests that software testers
inspect the predicted defectivemodules by the 10 classifiers first.
The experiment results of the EADPmodels are consistent with
those in the previous studies [17, 20, 22]. Therefore, we prefer
CBS+ as our EADP model, since it obtains the acceptable IFA
value and relatively high PofB@20%, Recall@20%, and Norm
(Popt) value.

Answer to RQ1

CBS+ performs better than the four regression
models and ManualUP.

4.2 | RQ2: Do different feature selection
methods affect the performance of different
testing datasets for a given classifier?

Motivations: Previous researches have shown that irrelevant
or redundant features often lead to poor classification per-
formance of CBDP models. Some feature selection methods
enhance the CBDP performance by filtering out the useless
features, while others may have the opposite effect. It is
observed that the CorBF usually performs the best for CBDP
models according to Xu et al. [28] and Ghotra et al. [26].
However, it is still unknown whether the feature selection
methods (including CorBF) can improve the EADP perfor-
mance. Since we totally have 30 different training and testing
datasets pairs through the cross‐version validation method and
there may be differences between different versions of data-
sets, it is necessary to explore the influence of feature selection
methods on a large number of different datasets. Therefore, we
conduct an experiment on the testing datasets level, discuss
how different feature selection methods affect the perfor-
mance of different testing datasets for each classifier, and
finally find out which feature selection method(s) would
perform the best.

Methods: We analyse the average value of the methods on
each testing dataset across all 10 classifiers. We totally have 720

TABLE 3 The average PofB@20%,
Recall@20%, Norm(Popt), Precision@20%,
PMI@20%, and IFA values of the different
Effort‐Aware Defect Prediction (EADP)
models

Models PofB@20% Recall@20% Norm(Popt) Precision@20% PMI@20% IFA

CBS+ NB 0.235 0.241 0.493 0.507 0.170 6.100

LR 0.273 0.280 0.613 0.502 0.245 3.567

DT 0.295 0.309 0.574 0.444 0.240 7.633

KNN 0.245 0.280 0.531 0.429 0.269 3.533

MLP 0.296 0.331 0.607 0.448 0.316 3.500

SVM 0.292 0.343 0.343 0.448 0.395 6.733

ADB 0.300 0.320 0.593 0.427 0.265 4.300

XGB 0.315 0.327 0.627 0.476 0.251 3.967

RF 0.308 0.320 0.617 0.485 0.250 4.267

DF 0.317 0.322 0.624 0.470 0.264 5.300

Regression EALR 0.374 0.450 0.666 0.316 0.545 20.600

RR 0.373 0.450 0.666 0.317 0.546 20.233

GBR 0.371 0.442 0.680 0.317 0.546 16.967

RFR 0.372 0.438 0.674 0.330 0.509 13.900

ManualUP 0.382 0.494 0.682 0.293 0.687 16.767
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(=24 feature selection methods � 30 testing datasets) average
results across all classifiers in terms of each evaluation metric.
Therefore, we employ the heat map to present the average
result of each feature selection method on each testing dataset
across all classifiers. Figures 4–6 depict the average value of
different methods on each testing dataset across all classifiers
in terms of six performance measures. It is noteworthy that the
cell with darker colour represents the better performance in
terms of PofB@20%, Recall@20%, Norm(Popt), and Preci-
sion@20%, while the cell with brighter colour indicates the
better performance in terms of PMI@20% and IFA. Then, we
conduct the Scott–Knott ESD test to investigate the statisti-
cally significant difference between each feature selection
method. Figures 7–9 demonstrate the corresponding Scott–
Knott ESD ranking values of different feature selection
methods on each testing dataset in terms of six performance
measures. The cell with darker colour represents the worse
Scott–Knott ESD ranking result in terms of PofB@20%,
Recall@20%, Norm(Popt), and Precision@20%, while the cell
with brighter colour indicates the feature selection method
obtains the better Scott–Knott ESD ranking in terms of
PMI@20% and IFA. We further apply the second Scott–Knott

ESD test to get the final Scott–Knott ESD rankings of
different feature selection techniques at the testing dataset level
as shown in Figure 10.

Results: From these figures, it can be found that the four
wrapper‐based feature selection methods with forwards search,
ADBF, DFF, RFF, and XGBF outperform the other families of
feature selection methods. And among these four methods,
RFF and XGBF perform the best. Considering the main
objective of EADP, we first give the more detailed findings of
the feature selection methods in terms of PofB@20%,
Recall@20%, and Norm(Popt), then analyse the Preci-
sion@20%, PMI@20%, and IFA results.

(1) As shown in Figure 4a, most of the feature selection
methods obtain the high PofB@20% values on the two
testing datasets (i.e., Velocity‐1.5 and Xerces‐1.2), and
most of the feature selection methods perform worse on
two testing datasets (i.e., Poi‐2.5 and Xalan‐2.5) in terms of
PofB@20%. Additionally, the four wrapper‐based feature
selection methods with forwards search (including ADBF,
DFF, RFF, and XGBF) obtain better performance on
nearly all testing datasets. In particular, ADBF, DFF, RFF,

F I GURE 3 The performance of different Effort‐Aware Defect Prediction (EADP) models in terms of six evaluation metrics
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F I GURE 4 The average PofB@20% and Recall@20% values of these methods on each testing dataset across all classifiers

F I GURE 5 The average Norm(Popt) and Precision@20% values of these methods on each testing dataset across all classifiers
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F I GURE 7 The Scott–Knott ESD ranking of the methods for each classifier across all testing datasets in terms of PofB@20% and Recall@20%.

F I GURE 6 The average PMI@20% and IFA values of these methods on each testing dataset across all classifiers
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F I GURE 8 The Scott–Knott ESD ranking of the methods for each classifier across all testing datasets in terms of Norm(Popt) and Precision@20%.

F I GURE 9 The Scott–Knott ESD ranking of the methods for each classifier across all testing datasets in terms of PMI@20% and IFA
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and XGBF achieve the highest PofB@20% values on
Xerces‐1.2 (0.69, 0.58, 0.73, and 0.63, respectively). From
Figure 7a, we can find that ADBF, DFF, RFF, and XGBF
fall into the top‐3 Scott–Knott ESD ranking on 77%,
73%, 97%, and 90% of the testing datasets, respectively.

(2) As shown in Figure 4b, most methods achieve the better
performance on one testing dataset (i.e., Velocity‐1.5),
while most of the feature selection methods perform
worse on two testing datasets (i.e., Poi‐2.5 and Xalan‐2.5)
in terms of Recall@20%. Additionally, the four wrapper‐
based feature selection methods with forwards search
(including ADBF, DFF, RFF, and XGBF) obtain better
performance on nearly all testing datasets. In particular,
ADBF and RFF obtain the highest Recall@20% values on
Xerces‐1.2 (0.71 and 0.72, respectively), and DFF and
XGBF obtain the same highest Recall@20% values on
Xerces‐1.4 (0.73). From Figure 7b, we can also find that
ADBF, DFF, RFF, and XGBF fall into the top‐3 Scott–
Knott ESD ranking on 60%, 80%, 83%, and 83% of the
testing datasets, respectively.

(3) As shown in Figure 5a, most of the feature selection
methods obtain the higher performance values on one

testing dataset (i.e., Velocity‐1.5), but most of the feature
selection methods perform worse on three testing datasets
(including Log4j‐1.2, Poi‐2.5, and Xalan‐2.7) in terms of
Norm(Popt). Additionally, the four wrapper‐based
feature selection methods with forwards search
(including ADBF, DFF, RFF, and XGBF) obtain better
performance on nearly all testing datasets. In particular,
ADBF and RFF achieve the highest Norm(Popt) value on
Xerces‐1.2 (0.90), DFF achieves the highest Norm(Popt)
value on Log4j‐1.2 and Xalan‐2.7 (0.89), and XGBF ach-
ieves the highest Norm(Popt) value on Log4j‐1.2 (0.89). As
shown in Figure 8a, ADBF, DFF, RFF, and XGBF fall into
the top‐3 Scott–Knott ESD ranking on 77%, 73%, 80%,
and 83% of the testing datasets, respectively.

(4) As shown in Figure 5b, most of the feature selection
methods achieve better performance on three testing
datasets (including Log4j‐1.2, Xalan‐2.7, and Xerces‐1.4),
while most of the feature selection methods perform
worse on five testing datasets (including Ant‐1.5, Ivy‐1.4,
Ivy‐2.0, Jedit‐4.3, and Poi‐2.0) in terms of Preci-
sion@20%. Additionally, we noticed that even though the
four wrapper‐based feature selection methods with

F I GURE 1 0 The final Scott–Knott ESD rankings of different feature selection techniques at the testing dataset level in terms of six evaluation metrics
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forwards search (including ADBF, DFF, RFF, and XGBF)
cannot perform the best on all testing datasets, they still
obtain the acceptable Precision@20% values compared
with other feature selection methods. As shown in
Figure 8b, most feature selection methods fall into the top‐
3 Scott–Knott ESD ranking on over half of the testing
datasets.

(5) As shown in Figure 6a, most methods achieve better
performance on over half of the testing datasets, while
most of the feature selection methods perform worse on
one testing dataset (i.e., Velocity‐1.5) in terms of
PMI@20%. Additionally, we noticed that even though the
four wrapper‐based feature selection methods with for-
wards search (including ADBF, DFF, RFF, and XGBF)
cannot perform the best on all testing datasets, their
PMI@20% values are still acceptable. From Figure 9a, we
can find that ADBF, DFF, RFF, and XGBF fall into the
top‐3 Scott–Knott ESD ranking on 73%, 87%, 80%, and
73% of the testing datasets, respectively. In other words,
using ADBF, DFF, RFF, and XGBF requires software
testers to inspect more modules. But these feature selec-
tion methods can suggest that the software testing team
finds more defects.

(6) As shown in Figure 6b, almost all testing datasets (except
for Ant‐1.5, Camel‐1.4, Ivy‐1.4, Ivy‐2.0, Jedit‐4.3, Poi‐2.0,
Velocity‐1.6, and Xalan‐2.6) obtain better IFA values
(which are less than 10) on nearly all feature selection
methods. From Figure 9b, most of the feature selection
methods fall into the top‐3 Scott–Knott ESD ranking on
over half of the testing datasets.

(7) From Figure 7a–c, we can observe that compared with the
None method (i.e., retaining all original features), most of
the feature selection methods can achieve the similar or
even better performance on most of the testing datasets
across all classifiers in terms of PofB@20%, Recall@20%,
and Norm(Popt). This shows the validity of the most
feature selection methods across all classifiers, when they
are applied to most testing datasets for the EADP task.

(8) It is worth noting that the best‐performing CorBF method
in CBDP does not perform well on the EADP task.
CorBF belongs to the first Scott–Knott ESD ranking in
the best cases and the last ranking in the worse cases in
terms of PofB20%, Recall@20%, and Norm(Popt). In
particular, CorBF falls into the last‐3 Scott–Knott ESD
ranking on 33%, 43%, and 37% of the studied datasets in
terms of the three metrics. In addition, CorBF can only
achieve a similar performance with None on most testing
datasets across all classifiers in terms of the three metrics.
Obviously, the four wrapper‐based feature selection
methods with forwards search ADBF, DFF, RFF, and
XGBF significantly outperform CorBF on the EADP task.

(9) In summary, the four wrapper‐based methods feature se-
lection methods with forwards search (i.e., ADBF, DFF,
RFF, and XGBF) outperform other feature selection
methods. Furthermore, from Figure 10a,b we can observe
that both RFF and XGBF rank the first in terms of
PofB@20% and Recall@20%, and from Figure 10c we can

notice that RFF rank first in terms of Norm(Popt) among
all the feature selection methods. Therefore, we conclude
that the two feature selection methods (i.e., RFF and
XGBF) outperform the others and we recommend
employing RFF and XGBF as the feature selection
methods on most testing datasets in EADP tasks when
considering the primary objective of EADP.

Answer to RQ2

The two wrapper‐based feature subset selection
methods (i.e., RFF and XGBF) perform the best and
both obtain high rankings in terms of PofB@20%,
Recall@20%, and Norm(Popt).

4.3 | RQ3: Do different feature selection
methods affect the performance of different
classifiers for a given testing dataset?

Motivations: Similar to RQ2, how different feature selection
methods affect the performance of EADP models with
different classifiers for each testing dataset is still unknown.
Therefore, we conduct an experiment on the classifier level and
finally find out which feature selection method(s) perform the
best.

Methods: We analyse the average values of these methods
for each classifier across all 30 testing datasets. We totally have
240 (=24 feature selection methods � 10 classifiers) mean
results across all testing datasets in terms of each evaluation
metric. Therefore, we employ the heat map to present the
average result of the methods for each classifier across all
testing datasets. Figure 11 depicts the average value of different
methods for each classifier across all testing datasets in terms
of six evaluation metrics. Then, we conduct the Scott–Knott
ESD test to investigate the statistically significant difference
between each feature selection method. Figure 12 demon-
strates the corresponding Scott–Knott ESD ranking values of
different methods for each classifier in terms of six perfor-
mance measures. Similar to RQ2, we further apply the second
Scott–Knott ESD test to get the final Scott–Knott ESD
rankings of different feature selection techniques at the clas-
sifier level as shown in Figure 13.

Results: From these figures, we can find that the four
wrapper‐based feature selection methods with forwards search,
ADBF, DFF, RFF, and XGBF perform the best. Similar to
RQ2, we also first analyse the PofB@20%, Recall@20%, and
Norm(Popt) results and then provide the findings in terms of
Precision@20%, PMI@20%, and IFA.

(1) As shown in Figure 11a, MLP achieves better perfor-
mance, while NB and KNN perform worse than other
classifiers on most feature selection methods in terms of
PofB@20%. Additionally, RFF and XGBF obtain better
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performance on almost all classifiers. Except for the four
wrapper‐based feature selection methods with forwards
search (including ADBF, DFF, RFF, and XGBF), the other
methods do not perform well on almost all classifiers. In
addition, ADBF, DFF, RFF, and XGBF achieve compar-
atively high PofB@20% values with their corresponding
classifiers, that is, ADBF with the AdaBoost classifier
(0.47), DFF with the deep forest classifier (0.46), RFF with
the random forest classifier (0.44), and XGBF with the
XGBoost classifier (0.47). From Figure 12a, we can find
that most feature selection methods fall into the top‐4
Scott–Knott ESD ranking across over half of the classi-
fiers. ADBF, DFF, RFF, and XGBF fall into the top‐3
Scott–Knott ESD ranking for all classifiers. In particular,
RFF and XGBF rank first on seven classifiers.

(2) From Figure 11b, except for NB, the rest of the classifiers
perform better on most of the feature selection methods in
terms of Recall@20%. RFF and XGBF perform better on
almost all classifiers. In addition, ADBF with ADB, DFF
with DF, RFF with RF, and XGBF with XGB achieve
comparatively high Recall@20% values (0.50, 0.48, 0.48,
and 0.51, respectively). As shown in Figure 12b, most
feature selection methods fall into the top‐4 Scott–Knott
ESD ranking across over half of the classifiers, in which
DFF, RFF, and XGBF fall into the top‐3 Scott–Knott
ESD ranking for all classifiers. Especially, RFF and
XGBF rank first on seven and eight classifiers, respectively.

(3) As shown in Figure 11c, except for NB and KNN, the rest
of the classifiers perform better on most of the feature
selection methods in terms of Norm(Popt). Additionally,

F I GURE 1 1 The six average metrics of these methods for each classifier across all testing datasets
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the four wrapper‐based feature selection methods with
forwards search (including ADBF, DFF, XGBF, and RFF)
obtain the better performance on nearly all classifiers and
achieve the highest Norm(Popt) values with their corre-
sponding classifiers (0.75, 0.71, 0.73, and 0.74, respec-
tively.) From Figure 12c, most feature selection methods
rank in the top‐4 across over half of the classifiers. In
particular, ADBF, DFF, RFF, and XGBF fall into the top‐3
Scott–Knott ESD ranking for all classifiers, and RFF and
XGBF fall into the first Scott–Knott ESD ranking on eight
classifiers.

(4) From Figure 11d, we can find that NB outperforms other
classifiers when employing most methods in terms of
Precision@20%. As shown in Figure 12d, nearly all
methods fall into the top‐3 Scott–Knott ESD ranking
across nearly all classifiers.

(5) From Figure 11e, we can observe that nearly all of the
classifiers perform better when using most of the feature
selection methods, in which NB performs the best in
terms of PMI@20%. As shown in Figure 12e, most of the
feature selection methods fall into the top‐3 Scott–Knott
ESD ranking across over half of the classifiers in which
ADBF, DFF, RFF, and XGBF fall into the top‐3 Scott–
Knott ESD ranking for all classifiers. In other words, us-
ing ADBF, DFF, RFF, and XGBF requires software testers
to inspect more modules.

(6) From Figure 11f, almost all classifiers obtain better IFA
values (which are less than 10) on nearly all feature se-
lection methods. In addition, ADBF with the ADB clas-
sifier, DFF with the DF classifier, RFF with the RF
classifier, and XGBF with the XGB classifier achieve low
IFA values (3.47, 3.67, 5.03, and 5.00, respectively). From

F I GURE 1 2 The Scott‐Knott ESD ranking of the methods for each classifier across all testing datasets in terms of six evaluation metrics
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Figure 12f, we can find that most methods fall into the
top‐3 Scott–Knott ESD ranking on over half of the
classifiers.

(7) From Figure 12a–c, it is observed that compared to the
None method (i.e., retaining all original features), except
for ConBF and ConGS, most of the feature selection
methods can achieve the similar or better performance on
most of the classifiers across all testing datasets in terms of
PofB@20%, Recall@20%, and Norm(Popt). In other
words, using fewer software features selected by most
feature selection methods can have similar performance or
enhance the overall performance of most classifiers.

(8) Similar to RQ2, the best‐performing CorBF method in
CBDP does not perform well on the EADP task. CorBF
belongs to the third Scott–Knott ESD ranking in the best
cases and the last ranking in the worse cases in terms of
PofB20%, Recall@20%, and Norm(Popt). In particular,
CorBF falls into the last two Scott–Knott ESD ranking on
80%, 70%, and 50% of the studied classifiers in terms of
the three metrics. Additionally, we can observe that
compared with the None method, CorBF can only achieve
similar performance on most classifiers across all testing

datasets in terms of the three metrics. Obviously, ADBF,
DFF, RFF, and XGBF significantly outperform CorBF on
the EADP task.

(9) In summary, the four wrapper‐based methods (i.e., ADBF,
DFF, RFF, and XGBF) outperform other feature selection
methods. Furthermore, from Figure 13a and c, we can
observe that both RFF and XGBF rank first in terms of
PofB@20% and Norm(Popt), and from Figure 13b, we
can notice that XGBF rank first in terms of Recall@20%
among all the feature selection methods. Based on this,
Figure 11a–c show that XGBF with XGBoost as the
embedded classifier in CBS+ obtains the highest average
PofB@20%, Recall@20%, and Norm(Popt) on the testing
datasets. In addition, XGBF with XGBoost as the
embedded classifier belongs to the top‐1 ranking in terms
of PofB@20%, Recall@20%, and Norm(Popt) from
Figure 12a–c. Therefore, since the primary objective of
EADP is to find more bugs, more defective modules, or
obtain a more correct global ranking of software modules
based on the defect density, we recommend to employ
XGBF with its corresponding classifier (i.e., XGBoost) as
the feature selection method.

F I GURE 1 3 The final Scott‐Knott ESD rankings of different feature selection techniques at the classifier level in terms of six evaluation metrics
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Answer to RQ3

XGBF with XGBoost as the embedded classifier in
CBS+ performs the best and obtains the highest
average PofB@20%, Recall@20%, and Norm(Popt)
values on the testing datasets.

4.4 | RQ4: Which features are frequently
selected by the four wrapper‐based methods?

Motivations: Generally, some features are frequently selected
by different feature selection methods in different datasets. It
means that these features make a greater contribution to the
construction of EADP models. Therefore, to explore which
features help construct the EADP models more effectively, we

TABLE 4 The selected features by AdaBoost with Forwards Search (ADBF), Deep Forest with Forwards Search (DFF), Random Forest with Forwards
Search (RFF), and XGBoost with Forwards Search (XGBF) on each dataset

Datasets ADBF DFF RFF XGBF

Ant‐1.4 ic, mfa, cbo, avg_cc mfa, avg_cc ce wmc

Ant‐1.5 loc, amc npm, noc, dam loc, ic noc, cbo, ce, dit, dam, lcom, ic, cam

Ant‐1.6 loc, rfc, lcom npm cbo, amc, noc noc, cbo, amc

Ant‐1.7 ic, mfa, amc, ce, dit, dam, cbm lcom3 cbo, amc, ce, dam, avg_cc rfc, ce, cbm, lcom3, moa

Camel‐1.2 cbo ca, noc noc, dam noc, dit

Camel‐1.4 max_cc moa ca, cbm ca

Camel‐1.6 moa, avg_cc, mfa, dam moa moa, noc, dam moa, noc, dam

Ivy‐1.4 ca, max_cc, avg_cc, cbm, ic, moa, mfa,
dam, dit

ce, cbo, dit ca, avg_cc, lcom, ic, dam, mfa, lcom3 ca, avg_cc, mfa, max_cc, cbm, ic,
moa, cbo, dam, amc, lcom3, noc,
dit, cam, rfc, ce, lcom

Ivy‐2.0 cbo, ic, mfa, cbm, moa, dam, amc, dit moa, cbo loc, ic, ce, rfc, dit, moa, cbm npm, lcom, mfa, cbm, loc, moa, ic,
dit, cam

Jedit‐4.0 cbo, avg_cc moa, wmc moa moa

Jedit‐4.1 cbo, noc dit, mfa, cam, ic, cbm dit, ic, cbo, lcom, noc dit, ic, cbo, lcom, lcom3

Jedit‐4.2 ca, moa, mfa ca, lcom3 npm, ic npm, cbm

Jedit‐4.3 npm, loc, max_cc, ic, moa, ce cam, loc, ic, amc amc mfa, moa, ic, noc, dit

Log4j‐1.1 cbo, ic ca, mfa cbo wmc, noc

Log4j‐1.2 noc noc noc noc

Lucene‐2.2 cbo, max_cc, lcom, npm noc cbm noc

Lucene‐2.4 ic ic ic ic

Poi‐2.0 moa, ca, noc noc, npm moa, ca moa, ca

Poi‐2.5 dit dit dit dit

Poi‐3.0 moa max_cc moa moa

Synapse‐1.1 ce, wmc, ca, ic, mfa, cbm, moa, cbo,
noc, lcom, dam, dit

lcom, ca, ic cbo, mfa, noc cbo, mfa, cbm, ic, noc, dit

Synapse‐1.2 cam, dit noc ic ic

Velocity‐1.5 wmc, npm, max_cc ce amc, rfc, npm, loc, ca, wmc, dam amc, cbo, cbm

Velocity‐1.6 cbo, cbm, moa, ic, ca mfa cbo, cbm ca, avg_cc, noc

Xalan‐2.5 cbm, ic noc ic ic

Xalan‐2.6 noc ic cbm cbm

Xalan‐2.7 ic, cbm noc cbm cbm

Xerces‐1.2 ic noc noc, ic, max_cc, amc, cbo, avg_cc, cbm ic, max_cc, amc, dam, cbo, cbm, ce

Xerces‐1.3 wmc, avg_cc noc, rfc npm npm

Xerces‐1.4 mfa, dit, lcom3 noc dit noc
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conduct an experiment and discuss which features are
frequently selected by the four wrapper‐based feature selection
methods with forwards search.

Methods: Table 4 shows the selected features after applying
the four feature selection methods (i.e., ADBF, DFF, RFF, and
XGBF) on each dataset. Figure 14a–d present the usage per-
centage of the 20 software features among the 30 studied testing
datasets by the four feature selection methods, respectively.
Among these figures, a 100% for one feature means it is selected
in all 30 testing datasets, while a 0% for one feature indicates
none of the feature selection methods chooses the feature.

Results: (1) The selected features are different by the four
feature selection methods on the same dataset. The potential
reason is that the four wrapper‐based methods employ different
classifiers to find the best feature subsets. (2) The selected fea-
tures by the same feature selection method vary with different
versions of the same project. For example, ADBF selects cbo on
Camel‐1.2, max_cc on Camel‐1.4, and moa, avg_cc, mfa, and
dam on Camel‐1.6. (3) Almost all features (except for cam) are
selected by the four feature selection methods, which indicates
that they have played important roles in the construction of

EADPmodels. In addition, themost frequently selected features
are noc, ic, cbo, and cbm. In detail, the feature noc is selected in
20%, 40%, 26.67%, and 43.33% of testing datasets when
applying ADBF,DFF, RFF, andXGBF, respectively; The feature
ic is selected in 40%, 30%, and 33.33% of testing datasets when
applying ADBF, RFF, andXGBF, respectively; The feature cbo is
selected in 30%, 23.33%, and 23.33%of testing datasets applying
ADBF,RFF, andXGBF, respectively; The feature cbm is selected
in 20%, 23.33%, and 30% of testing datasets when applying
ADBF, RFF, and XGBF, respectively. In other words, these
features are more useful when building EADP models.

Answer to RQ4

The selected features vary with different feature se-
lection methods and different datasets, and noc, ic,
cbo, and cbm are the frequently selected features by
the four wrapper‐based feature selection methods with
forwards search.

F I GURE 1 4 The usage of each software feature among 30 testing datasets when applying four feature selection methods
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4.5 | RQ5: Which is the best classifier
embedded in CBS+?

Motivation (1): The original CBS+ uses LR as the base
classifier, while the original Effort‐Aware Supervised Cross‐
project defect prediction (EASC) employs NB. The previous
studies [48–50] show the superiority of ensemble learning al-
gorithms for CBDP. Therefore, to explore which classifier is
the most suitable for constructing EADP models, we utilise six
machine learning techniques, that is, NB, LR, DT, KNN, MLP,
and SVM, and four ensemble‐based methods, that is, ADB, RF
and the two advanced deep ensemble learning algorithms (i.e.,
DF and XGB) as the base classifiers.

Method (1): We first use Figure 15 to show the classifi-
cation performance (i.e., the Precision and Recall values) of the
classifiers using all original features across all testing datasets.
Then, Figure 3 shows the distribution of the PofB@20%,
Recall@20%, Norm(Popt), Precision@20%, PMI@20%, and
IFA values of CBS+ embedding the different classifiers using
all original features across all testing datasets. The red, green,
blue, yellow, purple, and orange boxplots represent the first,
second, third, fourth, fifth, and sixth Scott–Knott ESD rank-
ings, respectively.

Result (1): ADB, DF, RF, and XGB perform the best in
terms of Precision and Recall. It indicates that the four ensemble
learning algorithms indeed outperform other classification al-
gorithms for CBDP. Except for the regression models and
ManualUP in Figure 3, NB belongs to the third Scott–Knott
ESD ranking in terms of PofB@20%, the fourth ranking in
terms of Recall@20%, and the fifth ranking in terms of Norm
(Popt); LR belongs to the second Scott–Knott ESD ranking in
terms of PofB@20% and Norm(Popt), and the third in terms of
Recall@20%; ADB, DF, RF, and XGB perform the best, since
they fall into the first Scott–Knott ESD ranking in terms of
Precision@20%, Recall@20%, and PofB@20%.

In addition, the four classifiers also achieve the acceptable
PMI@20% and IFA values. Therefore, we suggest that re-
searchers employ ADB, DF, RF, and XGB as the base classi-
fiers embedded in CBS+.

Motivation (2): Based on the above‐mentioned results, we
can conclude that the four ensemble learning classifiers can
better construct the EADPmodel. So in order to further explore
the relationship between these four methods in the classification
performance and the effort‐aware performance, we conduct an

experiment and discuss the correlation among the performance
of the four ensemble learning classifiers embedded in CBS+.

Method (2): In addition, we make a correlation analysis to
investigate the relationship between the classification perfor-
mance and the effort‐aware performance more intuitively. To
answer RQ5, we totally consider eight performance measures,
including six effort‐aware evaluation metrics and two
classification‐based evaluation metrics. We calculate the Pear-
son correlation coefficient (i.e., r) and make a correlation
analysis among the performance of the four ensemble learning
classifiers embedded in CBS+ on all datasets. We employ the
heat map to present the Pearson correlation coefficient.
Different colours represent different degrees of correlation
between each two evaluation metrics. According to Hinkle
et al. [51], the correlation is considered negligible (|r| < 0.3),
low (0.3 ≤ |r| < 0.5), moderate (0.5 ≤ |r| < 0.7), high
(0.7 ≤ |r| < 0.9), and very high (0.9 ≤ |r| ≤ 1).

Result (2): As shown in Figure 16a–d, we can observe that:
(1) Recall has a high or moderate correlation with both
PofB@20% (0.69, 0.58, 0.73, and 0.68, respectively) and Norm
(Popt) (0.52, 0.52, 0.64, and 0.60, respectively). It is obvious that
more defective modules are ranked first by an EADPmodel, the
higher PofB@20% andNorm(Popt) values of the model has. (2)
PofB@20% has a moderate correlation with PMI@20% (0.55,
0.53, 0.60, and 0.69, respectively), since more software modules
have been inspected, more defects are likely to be discovered. (3)
Precision@20% has a moderate correlation with IFA (−0.45,
−0.65, −0.57, and −0.56, respectively), since if there are many
false alarms in the top 20% LOC, the IFA will be more likely to
reach a high value. (4) Precision has a very high correlation with
Precision@20% on these four classifiers (0.97, 0.87, 0.98, and
0.96, respectively) and Recall has a high correlation with
Recall@20% (0.74, 0.80, 0.87, and 0.85, respectively). It indicates
that the better classification performance of the algorithms can
contribute to the superiority of CBS+. Therefore, we suggest
that researchers employ the more superior classifiers (e.g., ADB,
DF, RF, and XGB) as the base classifiers embedded in CBS+.

Answer to RQ5

ADB, DF, RF, and XGB embedded in CBS+ perform
the best.

F I GURE 1 5 The performance of the different classifiers in terms of the two classification metrics
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5 | DISCUSSION

5.1 | Performance interpretation

Sections 4.2 and 4.3 demonstrate that the four wrapper‐based
feature selection methods (i.e., ADBF, DFF, RFF, and XGBF)
outperform others. The superiority of ADB, DF, RF, and XGB
in Section 4.5 can also contribute to explaining the reason why
the four wrapper‐based feature subset selection methods
perform the best. The four wrapper‐based methods employ
PofB@20% as the evaluation criterion and find the best subset.
In these methods, the EADP model is employed as a black box
to evaluate the performance of the best feature subset found in
the search process. Due to the application of the EADP model
built with the best‐performing base classifiers (i.e., ADB, DF,

RF, XGB) for the feature subset, the four wrapper methods
can provide better performance.

The experimental results in Section 4.3 indicate that the
two feature selection methods, (i.e., ConBF and ConGS) ach-
ieve even worse performance compared with None (i.e.,
without feature selection). ConBF and ConGS select the
feature subset whose consistency is equal to the consistency of
all original features with the BF strategy and GS strategy,
respectively. In other words, both of them ignore the corre-
lation between features and the class label in the process of
feature selection. Additionally, except for the two methods,
most of the feature selection methods we investigated can
outperform None. It is obviously demonstrated that the per-
formance of EADP models can be improved by eliminating
redundant or irrelevant features.

F I GURE 1 6 The correlation between evaluation metrics in terms of four classifiers
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5.2 | Implications

We summarise the main suggestions according to our results
for the future EADP study.

(1) Researchers and practitioners should consider
employing XGBF with XGBoost as the embedded clas-
sifier in CBS+ to enhance the EADP performance. From
the results shown in Section 4.2 and Section 3, we find that
XGBF with XGBoost as the embedded classifier in CBS+
performs the best in terms of PofB@20%, Recall@20%, and
Norm(Popt) on both the classifier level and dataset level. We
investigate almost the same feature selection methods as
Ghotra et al.‘s [26] and Xu et al.‘s [28], but they found that the
CorBF method performs the best for CBDP. In our EADP
situation, CorBF does not perform well on the EADP task and
only achieves similar performance on most classifiers and
testing datasets compared with the None method. Therefore,
the CorBF method is not recommended for pre‐processing the
defect datasets for EADP performance improvement. In
addition, we observe that not all feature selection techniques
can enhance the EADP performance. For instance, ConBF
and ConGS achieve similar or even worse performances with
None on most classifiers and testing datasets. The finding is
similar to Ghotra et al.‘s [26] and Xu et al.‘s [28] studies. They
also found that not all methods can improve the CBDP per-
formance. Therefore, we suggest researchers and practitioners
ought to carefully choose the appropriate feature selection
techniques (e.g., XGBF) to find more bugs (higher PofB@20%
value) and defective modules (higher Recall@20% value) and
obtain a more accurate global ranking of software modules
(higher Norm(Popt) value).

(2) Future EADP research ought to consider exploring
whether more advanced binary classification algorithms
embedded in CBS+ can further improve the EADP per-
formance. The previous studies [48–50] have shown that
employing some more advanced binary classification algorithms
(e.g., ADB, DF, RF, and XGB) can build more accurate CBDP
models. Therefore, we investigate whether utilising these algo-
rithms as the base classifiers embedded in CBS+ can also
improve the EADP performance, and the results in Section 4.5
show that these algorithms indeed enhance the performance in
terms of Precision@20%,Recall@20%, PofB@20%, andNorm
(Popt). In addition, the correlation analysis in Section 4.5 also
indicates that the better classification performance of the algo-
rithms can contribute to the superiority of CBS+. For example,
Recall has a high or moderate correlation with Recall@20% and
PofB@20%. The main reason is that CBS+ employs the built
classification model to calculate the probability of new modules
being defective and ranks new modules according to the ratio
between the defect probability and LOC. In other words, the
ranking performance of CBS+ depends on the accurate pre-
diction of defect probability to some extent. Such a result shows
that more advanced binary classification algorithms have the
potential to enhance the EADP performance. Therefore, we
encourage future research to investigate introducing higher‐
performing classification algorithms into EADP to rank soft-
ware modules more accurately.

(3) Researchers and practitioners should consider
extracting the four features (i.e., noc, ic, cbo, and cbm)
and carefully select different features to train EADP
models for different datasets. The results in Section 4.3
show that the selected features vary with different feature se-
lection methods, but the four features (i.e., noc, ic, cbo, and
cbm) appear more frequently than others. It indicates these
four features help construct the EADP models more effec-
tively. In addition, even for the same project, the same feature
selection method chooses the different features for different
versions. Therefore, the best feature subset of EADP models
should be selected carefully for different datasets.

6 | THREATS TO VALIDITY

Internal validity lies in the investigated methods and tech-
nologies used in our experiments, that is, classification models
and feature selection methods. (1) We apply four families of
feature selection methods and six families of classifiers, which
makes our research objects diverse and representative and
helps to enhance the generalisation of the experimental results.
The feature selection methods are widely used in prior studies
[26, 28, 31–33]. The adoption of other feature selection
methods not studied in our work is left for future study. To
alleviate the technical errors in our experiments, we implement
the investigated feature selection methods and classifiers pro-
vided by the third‐party libraries, that is, Weka* and Scikit‐
learn†. Specifically, we implement the feature selection
methods based on Weka; the machine learning classifiers (i.e.,
DT, KNN, LR, NB, and MLP) and some of the ensemble‐
based classifiers (i.e., ADB and RF) are implemented based
on Scikit‐learn; The other ensemble‐based classifiers are based
on their own third‐party libraries (i.e., XGB‡ and DF§). (2) We
directly employ the default hyper‐parameters of classifiers
provided by Scikit‐learn rather than tune these hyper‐
parameters. The main reason is that we employ several per-
formance measures to evaluate EADP models comprehen-
sively. If we directly optimise PofB@20%, it will increase the
PMI@20% and IFA values of models. This results in that
tuning hyper‐parameters is a multi‐objective optimisation
problem. We will conduct a follow‐up study to investigate the
issue.

External validity in our work is mainly concerned with
the datasets we studied. (1) Since we conduct the more realistic
cross‐version validation and need the information on the bug
numbers, the experimental datasets are 11 public projects from
PROMISE, each of which contains three or more versions of
datasets. The datasets have been widely utilised and validated
by a number of previous SDP studies [20, 52–54]. Additionally,
all software projects used in our study from the PROMISE
corpus were developed by the open‐source community.

*
https://git.cms.waikato.ac.nz/weka/weka
†
https://github.com/scikit‐learn/scikit‐learn
‡
https://github.com/dmlc/xgboost
§
https://github.com/kingfengji/gcforest
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Therefore, it is unclear whether we can extend our conclusions
to other software projects in other fields with other software
characteristics or programing languages, especially commercial
projects. In future work, we plan to collect more defect data-
sets to verify the generalisation of our conclusions. (2) We do
not consider the data imbalance problem, which may have
some impact on our results. Therefore, we plan to conduct a
follow‐up study focussing on the effect of different methods
dealing with data imbalance problems for the EADP tasks.

Construct validity mainly comes from the effort‐aware
evaluation metrics we used to measure the performance of
EADP models. We use the six evaluation metrics (including
Precision@20%, Recall@20%, PofB@20%, PMI@20%, IFA,
and Norm(Popt)) to evaluate the experimental results
comprehensively. Since EADP models aim to find more
defective modules and bugs and obtain a more accurate
ranking based on the predicted defect density, we employ
Recall@20%, PofB@20%, and Norm(Popt). Since Preci-
sion@20% and Recall@20% are usually paired, Preci-
sion@20% is used. In addition, inspecting too many software
modules also leads to an additional effort, so we employ
PMI@20%. Then, the IFA is used, since the previous studies
[17] showed that the software testing team would not use the
EADP model when the IFA value is too high.

Conclusion validity mainly refers to the statistical analysis
method used in our work. We apply the Scott–Knott ESD test
to analyse the significant differences among the feature selec-
tion methods, which helps to enhance the rigour of our ex-
periments. Furthermore, for a more intuitive observation, we
rank the feature selection methods with the double Scott–
Knott ESD test and cluster them into non‐overlapping
groups with statistically significant differences.

7 | RELATED WORK

7.1 | Effort‐aware defect prediction

Mende et al. [55] incorporated the concept of “effort‐aware”
into the SDP study and proposed two strategies for evaluating
EADP models. Kamei et al. [44] found that the process met-
rics outperformed the product metrics on EADP models.
Kamei et al. [18] proposed an EALR model and demonstrated
that EALR could find 35% of defective code changes by
checking only 20% of all changes. Yang et al. [56] verified the
capability of the slice‐based cohesion metrics for EADP.
Bennin et al. [45, 57] explored the best‐performing EADP
algorithms and studied the practical benefits of data resampling
techniques for EADP. Yang et al. [58] found that the unsu-
pervised method (i.e., ManualUp [19]) generally outperformed
several simple supervised models for change‐level EADP. Fu
et al. [59] proposed the OneWay method to utilise the training
dataset to select the best software feature for ManualUp
automatically. Chen et al. [52] employed a multi‐objective
optimisation method to build the change‐level EADP model.
Yu et al. [47] explored the best EADP algorithms and found
that the RR algorithm achieved the best performance. Yan

et al. [60] observed that the findings of Yang et al. [58] are
consistent for within‐project file‐level EADP, but are incon-
sistent in the cross‐project scenario. Qu et al. [61] proposed a
top‐core equation to help rearrange the likely defective mod-
ules for EADP. Qu et al. [62] proposed integrating developer
information into EADP to enhance performance. Carka et al.
[63] proposed to assess the EADP performance using the
normalised PofB, which sorted software modules according to
the predicted defect densities. Huang et al. [17] proposed the
CBS+ algorithm for EADP. The results showed that CBS+
could find more defective changes than EALR; Compared with
ManualUp, CBS+ could find a similar number of defective
changes, but required to inspect fewer changes and signifi-
cantly reduced the IFA value. Subsequently, Ni et al. [20]
proposed the EASC algorithm for cross‐project EADP. EASC
has the same algorithm flow as CBS+ and employs NB as the
base classification model. The results showed that EASC
outperformed some cross‐project defect prediction algorithms.
Yan et al. [22] validated the effectiveness of CBS+ on Alibaba
projects. Ni et al. [21] investigated the change‐level EADP
models on JavaScript projects and found that CBS+ statisti-
cally significantly outperformed EALR, OneWay, and Man-
ualUp. Therefore, we employ CBS+ as the EADP model in
our study.

It is worth mentioning that some researchers proposed to
use the bug numbers to sort software modules and aim to find
more bugs while inspecting a certain number of modules. For
example, Santosh et al. [64, 65] proposed some regression al-
gorithms predict bug numbers. Yang et al. [66] proposed a
learning‐to‐rank method to directly sort modules based on the
bug numbers. But the works do not belong to the category of
EADP, so we do not discuss them in detail.

7.2 | Feature selection for Classification‐
Based Defect Prediction

Many researchers have performed empirical investigations to
validate the effect of feature selection methods for CBDP. He
et al. [67] investigated the feasibility of some classifiers trained
on a simplified feature subset. Shivaji et al. [68] verified the
effectiveness of IG, chi‐square, PS probabilistic significance,
ReliefF, and the wrapper‐based methods for change‐level
CBDP. Muthukumaran et al. [69] studied 10 feature selection
methods for CBDP and showed that the methods could help
improve the accuracy of classifiers, and subset‐based feature
selection methods outperformed other methods on NASA and
AEEEM datasets. Gao et al. [31] explored the effect of four
subset selections and seven feature ranking methods on a
software system with five classifiers, and indicated that the
performance of the CBDP model was enhanced when elimi-
nating more than 85% of features. Wang et al. [70] performed
an empirical study with an ensemble of 17 feature ranking
methods and found that an ensemble of fewer feature ranking
methods could achieve better performance. Wang et al. [71]
designed a novel ensemble technique that combines six filter‐
based ranking methods and concluded that the ensemble
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technique outperformed any single filter‐based method.
Rathore et al. [32] studied 15 different feature selection
methods and found that InfoGain and Principal Component
Analysis corbf outperformed other feature ranking methods,
while LR and ClassifierSubsetEval outperformed other feature
subset selection methods. Xu et al. [28] investigated 32 feature
selection methods on the CBDP model built with the random
forest algorithm on NASA and AEEEM dataset, and found
that the feature subset selection methods and wrapper‐based
methods could usually perform better. Gogra et al. [26] stud-
ied the effect of 30 feature selection methods on 21 classifiers
for CBDP and observed that a correlation‐based subset se-
lection approach was better than other approaches. Kondo
et al. [27] investigated eight feature reduction methods on five
supervised learning and five unsupervised CBDP models. The
results on three publicly available datasets demonstrated that
the model using feature selection methods achieved better
performance than the model built with all features. Blowgun
et al. [25] studied 14 feature subset selections and four feature
ranking methods by using four different classification models.
The experimental analysis on five NASA datasets demon-
strated that the effect of the methods varied due to the datasets
and the classifiers. Jiarpakdee et al. [72] systematically investi-
gated the interpretation of feature selection methods for
CBDP. The results indicated that the features selected by these
different methods were mostly inconsistent. Balogun et al. [24]
addressed the biases in the existing feature selection empirical
studies and investigated 46 feature selection methods for the
CBDP task by using two classifiers. The experimental analysis
on 25 datasets indicated that none of the feature selection
methods could obtain the best performance, since their
respective performance depended on the selection of the
classification models, evaluation metrics, and different datasets.
Kabir [46] studied the robustness of 11 feature selection
methods to concept drift for CBDP.

However, the above‐mentioned empirical studies mainly
focus on the CBDP task. Which methods can enhance the
EADP performance has been unclear. Therefore, we, for the
first time, study 24 feature selection methods with eight clas-
sifiers to explore the topic.

8 | CONCLUSION

This study assesses the practical benefits of 24 feature selection
methods for EADP on 41 datasets from the PROMISE re-
pository. We employ 10 classifiers embedded in the state‐of‐the‐
art CBS+ algorithm to build the EADP model. We use
PofB@20%, Recall@20%, Norm(Popt), Precision@20%,
PMI@20%, and IFA to evaluate the performance comprehen-
sively and apply the Scott–Knott ESD test to analyse the
experimental results from both classifiers and testing datasets
level. We observe that the impact of the feature selection
methods varies in classifiers embedded in CBS+ and testing
datasets, and the four wrapper‐based feature subset selection
methods (i.e., ADBF, DFF, RFF, and XGBF) perform the best
among the 10 classification models and on most testing datasets.

Hence, we suggest researchers and practitioners to employ the
four wrapper‐based feature selection methods with forward
search to select the optimal feature subsets, and we prefer to
recommend XGBF with XGBoost as the embedded classifier in
CBS+ to enhance the performance of EADP models. We
further find that the selected features vary with different feature
selection methods and different datasets, and noc, ic, cbo, and
cbm are the most frequently selected features by the four
methods. Therefore, researchers and practitioners should care-
fully select different features to train EADPmodels for different
datasets. Finally, we observe that ADB, DF, RF, and XGB are the
best‐performing classifiers embedded in CBS+. We open‐
source the source code, experimental datasets, and detailed re-
sults¶ to facilitate the replication of our work and conduct
further study.
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